JPH0454472Y2 - - Google Patents

Info

Publication number
JPH0454472Y2
JPH0454472Y2 JP1986049443U JP4944386U JPH0454472Y2 JP H0454472 Y2 JPH0454472 Y2 JP H0454472Y2 JP 1986049443 U JP1986049443 U JP 1986049443U JP 4944386 U JP4944386 U JP 4944386U JP H0454472 Y2 JPH0454472 Y2 JP H0454472Y2
Authority
JP
Japan
Prior art keywords
light
detected
light receiving
output
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1986049443U
Other languages
Japanese (ja)
Other versions
JPS62160382U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986049443U priority Critical patent/JPH0454472Y2/ja
Publication of JPS62160382U publication Critical patent/JPS62160382U/ja
Application granted granted Critical
Publication of JPH0454472Y2 publication Critical patent/JPH0454472Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

【考案の詳細な説明】 <産業上の利用分野> 本考案は、例えば所定の検知エリア内における
人体等の存在の有無を検知して自動ドアの開閉や
防犯警報装置の作動を制御するためのセンサに適
用できる物体検知装置に関するものである。
[Detailed description of the invention] <Industrial application field> The present invention is used to control the opening and closing of automatic doors and the operation of security alarm devices by detecting the presence or absence of a human body, etc., within a predetermined detection area, for example. The present invention relates to an object detection device that can be applied to a sensor.

<従来の技術> 人体等の物体を検知して防犯警報装置の作動や
自動開閉ドアの開閉を制御するための起動用スイ
ツチに利用される物体検知装置として実用化され
ているものとしては、マツトスイツチによるも
の、超音波によるもの、マイクロ波のドツプ
ラー効果を利用したもの、背景と移動物体との
温度差にもとづく放射赤外線光束の変動を利用す
る赤外線方式のもの、赤外線を投射して物体か
らの反射光の光量変化を検知するもの、投射し
た赤外線の物体からの反射光の光量の絶対量を検
知するものがある。
<Prior art> The Matsuto switch is a device that has been put into practical use as an object detection device that detects an object such as a human body and is used in a start switch to control the activation of a security alarm system or the opening/closing of an automatic door. , ultrasonic rays, microwave Doppler effect rays, infrared rays that utilize fluctuations in the radiated infrared flux based on the temperature difference between the background and the moving object, and rays that emit infrared rays and reflect from the object. There are those that detect changes in the amount of light, and those that detect the absolute amount of reflected light from an object that projects infrared rays.

しかしながら、前記の何れの方式もそれぞれ
種々の欠点を有している。即ち、のものは、検
知エリアがマツト形状により決定されるので、設
置現場において検知エリア形状を可変することが
できなく、また、人体による接触型の機械的検知
方式であるため、非接触型のものに比し寿命が短
い欠点がある。また、およびのものは、検知
エリアが明確でないために、この検知エリアの形
状の設定および可変が困難である他に、のもの
は、人体が静止した場合には検知できない欠陥が
ある。更に、およびのものは、検知エリアが
明確で且つその設定並びに可変が容易であり、非
接触型であるから長寿命である等の長所を有し、
近年において多用されているが、人体が静止した
場合には赤外線光束の変動または光量の変化がな
いことから検知することができない問題があり、
そのため、自動開閉ドアのセンサとして用いる場
合には、ドアの直近で人体が立ち止まつた時にド
アが閉じてしまう危険を防止するために、ドアの
左右の側壁に投光器と受光器とを対向して取付け
た安全ビーム装置を検知エリア検出用のセンサと
は別に設ける必要があり、余分な装置を必要とす
る。更にまた、のものは人体が静止した場合に
も検出できるが、投、受光ビームのクロスする位
置で物体の存在を検知するため、検知距離が限定
される欠点がある。
However, each of the above methods has various drawbacks. In other words, since the detection area is determined by the mat shape, the detection area shape cannot be changed at the installation site, and since it is a mechanical detection method that uses human contact, it is not possible to use a non-contact type. The disadvantage is that it has a short lifespan compared to other products. Furthermore, since the detection area is not clear, it is difficult to set and change the shape of the detection area, and in addition, there is a defect that the detection area cannot be detected when the human body is stationary. Furthermore, the detection area and the detection area are clear, and it is easy to set and change, and since it is a non-contact type, it has a long life.
Although it has been widely used in recent years, there is a problem that it cannot be detected when the human body is stationary because there is no change in the infrared light flux or light amount.
Therefore, when used as a sensor for an automatic opening/closing door, the emitter and receiver should be placed opposite each other on the left and right side walls of the door to prevent the door from closing if a person stops in the vicinity of the door. It is necessary to provide the attached safety beam device separately from the sensor for detecting the detection area, which requires extra equipment. Furthermore, although objects can be detected even when the human body is stationary, the detection distance is limited because the presence of the object is detected at a position where the projected and received beams intersect.

そこで、人体が静止した場合にも確実に検知す
ることができるとともに、光量や検知距離にほと
んど制限を受けることなく移動物体を検知できる
手段として、第3図に示すような三角測量法に基
づく物体検知方法が注目されている。これを説明
すると、発光ダイオード又はレーザダイオード等
の発光素子1と、投光ビームPを形成する投光レ
ンズ2と、図示していないが投光タイミングを設
定する同期信号を発生する発振回路と、この同期
信号に基づいて発光素子1を駆動するドライブ回
路とにより、被検知物体H1,H2に対してパル
ス変調光より成る検知用ビームPを投光する投光
部3が形成されている。この投光部3から所定間
隔lをもつて側方に並置された受光部4は、投光
部3および被検知物体H1,H2に対して三角測
量的に配置されており、この受光部4は、被検知
物体H1,H2による反射光R1,R2を集光す
るための凸レンズより成る受光レンズ5と、この
受光レンズ5の集光面に配設され、集光スポツト
S1,S2の位置に対応した位置信号を出力する
位置検出素子6とで構成されている。同図におい
て、投光レンズ2から各被検知物体H1,H2ま
での距離をD1,D2,受光レンズ5の焦点距離
をf、投光レンズ2と受光レンズ5の各光軸間の
距離である基線長をl、位置検出素子6の中点か
ら各集光スポツトS1,S2までの各距離をX
1,X2とすれば、l/D1=X1/f,l/D
2=X2/fとなり、X1=l×f/D1、X2
=l×f/D2の関係が成り立つ。即ち、投光レ
ンズ3から被検知物体H1,H2までの距離D
1,D2は、位置検出素子6の集光スポツトS
1,S2の位置により検知することができる。次
に、位置検知出素子6について第4図および第5
図に基づいて説明する。
Therefore, as a means to reliably detect a human body even when it is stationary, and also to detect moving objects without being subject to any limitations on light intensity or detection distance, we have developed an object based on the triangulation method as shown in Figure 3. Detection methods are attracting attention. To explain this, a light emitting element 1 such as a light emitting diode or a laser diode, a light emitting lens 2 that forms a light emitting beam P, and an oscillation circuit (not shown) that generates a synchronization signal that sets the light emitting timing. A drive circuit that drives the light emitting element 1 based on this synchronization signal forms a light projecting section 3 that projects a detection beam P made of pulse modulated light onto the objects H1 and H2 to be detected. The light receiving section 4 is arranged side by side with a predetermined distance l from the light projecting section 3 and is arranged in a triangular manner with respect to the light projecting section 3 and the objects H1 and H2 to be detected. includes a light-receiving lens 5 made of a convex lens for condensing the reflected lights R1 and R2 from the objects H1 and H2 to be detected, and a light-receiving lens 5 disposed on the light-converging surface of the light-receiving lens 5 and positioned at the light-converging spots S1 and S2. It is composed of a position detection element 6 that outputs a corresponding position signal. In the figure, the distances from the light emitting lens 2 to each detected object H1 and H2 are D1 and D2, the focal length of the light receiving lens 5 is f, and the distance between each optical axis of the light emitting lens 2 and the light receiving lens 5 is The base line length is l, and the distances from the midpoint of the position detection element 6 to each of the focusing spots S1 and S2 are X.
1, X2, l/D1=X1/f, l/D
2=X2/f, X1=l×f/D1, X2
The relationship: =l×f/D2 holds true. That is, the distance D from the light projection lens 3 to the detected objects H1 and H2
1, D2 is a condensing spot S of the position detection element 6
1, it can be detected by the position of S2. Next, regarding the position detection element 6, FIGS.
This will be explained based on the diagram.

第4図においては、位置検出素子6として
PSD(POSITION−SENSITIVE−
DETECTORS)と称せられる公知の半導体位置
検出素子を示してある。簡単に説明すると、平板
状シリコンの表面にP層6a、裏面にN層6b、
そして中間にあるI層6cの3層から構成され、
これに入射した光Pは光電変換され、光電流とし
てP層6aを矢印で示す両側方向に流れてそれぞ
れの電極T1,T2から分割出力される。即ち、
光Pが入射すると、入射位置に光エネルギに比例
した電荷が発生し、この発生電荷が光電流として
抵抗層であるP層6aを通つて電極T1,T2よ
り出力される。ここでP層6aは全面にわたり均
一な抵抗値をもつよう形成されているので、光電
流は電極T1,T2までの距離つまり抵抗値に逆
比例して分割される。例えば、両電極T1,T2
間の距離を2L、光電流I0、両電極T1,T2から
それぞれ取り出される電流をI1,I2とすれ
ば、中心を原点とした場合に、原点から光Pの入
射位置までの距離x1は、 I1/I2=L−x1/L+x1 から求めることができる。一方、一端を原点とし
た場合には、原点から光Pの入射位置までの距離
x2は、 I1/I2=2L−x2/x2 から求めることができ、この距離x2と光電流I0
との関係は第5図に示すようになる。この場合、
光Pの入射位置は、入射エネルギとは無関係に求
めることができる。
In FIG. 4, as the position detection element 6,
PSD (POSITION−SENSITIVE−
A known semiconductor position detection element called DETECTORS is shown. To explain briefly, there is a P layer 6a on the front surface of a flat silicon plate, an N layer 6b on the back surface,
It is composed of three layers, including the I layer 6c in the middle.
The light P incident thereon is photoelectrically converted, flows as a photocurrent in both directions indicated by arrows in the P layer 6a, and is divided and outputted from the respective electrodes T1 and T2. That is,
When the light P is incident, a charge proportional to the light energy is generated at the incident position, and this generated charge is output as a photocurrent from the electrodes T1 and T2 through the P layer 6a, which is a resistive layer. Here, since the P layer 6a is formed to have a uniform resistance value over the entire surface, the photocurrent is divided in inverse proportion to the distance to the electrodes T1 and T2, that is, the resistance value. For example, both electrodes T1, T2
If the distance between them is 2L, the photocurrent I 0 and the currents taken out from both electrodes T1 and T2 are I1 and I2, then when the center is the origin, the distance x1 from the origin to the incident position of the light P is: It can be determined from I1/I2=L-x1/L+x1. On the other hand, when one end is set as the origin, the distance x2 from the origin to the incident position of the light P can be found from I1/I2=2L−x2/x2, and this distance x2 and the photocurrent I 0
The relationship with is shown in FIG. in this case,
The incident position of the light P can be determined regardless of the incident energy.

<考案が解決しようとする問題点> ところで、前述の受光部4の後段には、受光部
4の出力信号から被検知物体H1,H2までの距
離を演算する演算回路、この演算回路の出力が動
作レベル以上であるか否かを比較する比較回路等
が設けられる。従つて、第6図に示すように、2
組の投光部3A,3Bと受光部4A,4Bとをド
アー7の上方部に設けて、被検知物体のドアー7
への接近を検知するためのアプローチ用検知エリ
アDE1と、ドアー7近傍における物体の存在を
検知するための安全用検知エリアDE2とを設け
た場合には、各受光部4A,4Bにそれぞれ対応
して演算回路等の回路構成を設けなければなら
ず、構成が複雑化してコスト高となる問題があ
る。
<Problems to be solved by the invention> By the way, at the downstream of the light receiving section 4 described above, there is an arithmetic circuit that calculates the distance from the output signal of the light receiving section 4 to the objects H1 and H2 to be detected, and the output of this arithmetic circuit. A comparison circuit or the like is provided to compare whether or not the level is above the operating level. Therefore, as shown in Figure 6, 2
A pair of light emitting parts 3A, 3B and light receiving parts 4A, 4B are provided in the upper part of the door 7, and the door 7 of the object to be detected is
When an approach detection area DE1 for detecting the approach to the door 7 and a safety detection area DE2 for detecting the presence of an object near the door 7 are provided, the detection area DE1 corresponds to each of the light receiving sections 4A and 4B. Therefore, it is necessary to provide a circuit configuration such as an arithmetic circuit, which results in a problem that the configuration becomes complicated and the cost increases.

そこで、演算回路を単一としてこの演算回路に
各受光部4A,4Bの出力信号をスイツチで切換
えて順次入力する構成とすることによりコストダ
ウンを図つたものがあるが、受光部4A,4Bか
ら出力される小信号にスイツチングノイズが混入
して誤動作し易い欠点がある。また、各受光部4
A,4Bの出力を合成して単一の演算回路に入力
することも考えられるが、演算回路からは各受光
部4A,4Bの出力を平均化した信号が出力され
るために、何れかの検知エリアDE1,DE2内の
物体を検知しているにも拘らず、演算回路の出力
レベルが平均化されることによつて比較回路の設
定動作レベル以下になつてしまう誤動作の生じる
危惧があり、非常に不正確な検知となるために、
到底実用化に至らない。
Therefore, some methods have attempted to reduce costs by using a single arithmetic circuit and sequentially inputting the output signals of the light receiving sections 4A and 4B to this arithmetic circuit by switching the output signals of the light receiving sections 4A and 4B. There is a drawback that switching noise is mixed into the output small signal, resulting in easy malfunction. In addition, each light receiving section 4
It is possible to combine the outputs of A and 4B and input them into a single arithmetic circuit, but since the arithmetic circuit outputs a signal that is the average of the outputs of each light receiving section 4A and 4B, Even though objects within the detection areas DE1 and DE2 are being detected, there is a risk of malfunction in which the output level of the arithmetic circuit is averaged and falls below the set operating level of the comparator circuit. This results in very inaccurate detection.
It will never be put into practical use.

<考案の目的> 本考案は、このような問題点に鑑みなされたも
ので、複数の検知エリアを構成する複数の受光部
の出力信号を単一の演算回路で演算できる簡素化
された安価な構成としながらも、各検知エリア毎
に物体の位置もしくは存在の有無を正確に検知す
ることのできる物体検知装置を提供することを目
的とするものである。
<Purpose of the invention> The present invention was devised in view of these problems, and is a simplified and inexpensive method that can calculate the output signals of multiple light receiving sections constituting multiple detection areas with a single calculation circuit. The object of the present invention is to provide an object detection device that can accurately detect the position or presence or absence of an object in each detection area.

<問題点を解決するための手段> 本考案の物体検知装置は、前記目的を達成する
ために、投光部から所定の検知エリアに向けて出
射した投光ビームの被検知物体による反射光を、
前記投光部および被検知物体に対して三角測量的
に配した受光部で受光し、この受光部の両出力端
子からの2種の受光出力から導出した反射光の入
射位置により前記投光部から被検知物体までの距
離を検出し、この検出距離に基づいて被検知物体
の検知エリア内の位置もしくは存在の有無を検知
する物体検知装置において、複数の検知エリアを
設定する複数組の前記投光部および受光部と、前
記各投光部を択一的に順次駆動するドライブ信号
を出力するドライブ回路と、前記各受光部の各々
の一方の出力端子同士および他方の出力端子同士
を互いに共通接続して両入力端に接続され順次駆
動される前記各投光部にそれぞれ対応する前記各
受光部の2種の出力電流により反射光の入射位置
を順次演算する単一の演算回路と、前記受光部と
同数個を有して各々の入力端子が前記演算回路の
出力端子にそれぞれ共通接続され前記ドライブ回
路の前記ドライブ信号に同期して択一的に順次駆
動されるサンプルホールド回路とを具備して成る
構成を要旨とするものである。
<Means for Solving the Problems> In order to achieve the above-mentioned purpose, the object detection device of the present invention detects the reflected light from the detected object of the light beam emitted from the light projector toward a predetermined detection area. ,
The light is received by a light receiving section arranged in a triangular manner with respect to the light projecting section and the object to be detected, and the reflected light is determined by the incident position of the reflected light derived from two types of light receiving outputs from both output terminals of the light receiving section. In an object detection device that detects a distance from a distance to a detected object and detects the position or presence or absence of the detected object within a detection area based on this detected distance, a plurality of sets of the projections that set a plurality of detection areas are used. A light section and a light receiving section, a drive circuit that outputs a drive signal to selectively and sequentially drive each of the light projecting sections, and one output terminal of each of the light receiving sections and the other output terminals of each of the light receiving sections are common to each other. a single arithmetic circuit that sequentially calculates the incident position of reflected light based on two types of output currents of each of the light receiving sections corresponding to each of the light projecting sections connected to both input ends and sequentially driven; sample and hold circuits having the same number of light receiving sections, each input terminal of which is commonly connected to the output terminal of the arithmetic circuit, and selectively and sequentially driven in synchronization with the drive signal of the drive circuit; The gist is the structure consisting of the following.

<作用> 前記構成とした本考案の物体検知装置は、各発
光部がドライブ回路により択一的に順次駆動され
るので、この各発光部と対をなす各受光部にも択
一的に順次受光され、この各受光部の両出力端子
からそれぞれ出力される2種の電流が単一の演算
回路に順次入力され、演算回路において、順次入
力される各々2種の入力電流により各受光部への
反射光の入射位置がぞれ演算検出されて入力順に
出力され、この出力信号は、各投光部を駆動する
ドラム回路の信号出力に同期して順次駆動される
個別のサンプルホールド回路に同期検波される。
その結果として、各検知エリアをそれぞれ設定す
る各組の投光部と受光部とが単独に順次駆動され
るのと同等の作動となり、何れの検知エリアにお
いても被検知物体を正確に検知することができ
る。
<Operation> In the object detection device of the present invention configured as described above, since each light emitting section is selectively and sequentially driven by the drive circuit, each light receiving section paired with each light emitting section is also selectively and sequentially driven. Two types of currents that are received and output from both output terminals of each light receiving section are sequentially input to a single arithmetic circuit, and in the arithmetic circuit, the two types of input currents that are sequentially input are sent to each light receiving section. The incident positions of each reflected light are calculated and output in the order of input, and this output signal is synchronized to individual sample and hold circuits that are sequentially driven in synchronization with the signal output of the drum circuit that drives each light projector. Detected.
As a result, the operation is equivalent to when each pair of light emitter and light receiver that sets each detection area is driven individually and sequentially, and the object to be detected can be accurately detected in any detection area. I can do it.

<実施例> 以下、本考案の好ましい一実施例を図面に基づ
いて詳細に説明する。
<Example> Hereinafter, a preferred example of the present invention will be described in detail based on the drawings.

第1図において、例えば第6図に示したのと同
等の2個の投光部3A,3Bは、発振器8から出
力されるタイミング信号に同期してドライブ回路
9により順次つまり交互に発光駆動される。この
各発光部3A,3Bに対応する各受光部4A,4
Bの中点には、バイアス電源VBから逆バイアス
が印加されており、各受光部4A,4Bのそれぞ
れの一端および他端が相互に共通接続して個別の
増幅器10,11に接続されている。この増幅器
10,11の出力端子はそれぞれ単一の演算回路
12に接続され、演算回路12の出力端子には、
各投光部3A,3Bを順次駆動するドライブ回路
9の信号出力に同期して個々に駆動される2つの
サンプルホールド回路13,14がそれぞれ接続
されており、両サンプルホールド回路13,14
の出力側は、それぞれ比較回路(図示せず)に接
続される距離検出信号出力端子15,16として
導出されている。
In FIG. 1, for example, two light projecting units 3A and 3B, which are equivalent to those shown in FIG. Ru. Each light receiving section 4A, 4 corresponding to each light emitting section 3A, 3B
A reverse bias is applied to the midpoint of B from a bias power supply VB , and one end and the other end of each light receiving section 4A, 4B are commonly connected to each other and connected to individual amplifiers 10, 11. There is. The output terminals of the amplifiers 10 and 11 are each connected to a single arithmetic circuit 12, and the output terminal of the arithmetic circuit 12 has a
Two sample and hold circuits 13 and 14 that are individually driven in synchronization with the signal output of a drive circuit 9 that sequentially drives each of the light projecting sections 3A and 3B are connected, and both sample and hold circuits 13 and 14 are connected to each other.
The output sides of are led out as distance detection signal output terminals 15 and 16, respectively, which are connected to a comparison circuit (not shown).

次に、前記実施例装置の動作を、第2図を参照
しながら説明する。
Next, the operation of the apparatus of the embodiment will be explained with reference to FIG.

発振器8からは、第2図a図に示すような一定
周期のタイミング信号が出力される。このタイミ
ング信号が入力されるドライブ回路9の両出力端
子9a,9bからは、同b図および同c図にそれ
ぞれ示すように、何れもタイミング信号の1つお
きのパルスに同期するドライブ信号が出力され、
この各ドライブ信号によりそれぞれ投光部3A,
3Bが交互に駆動されて投光ビームを出射し、そ
の反射光がそれぞれ対応する受光部4A,4Bで
受光されるから、各受光部4A,4Bに交互に受
光されることになり、この両受光部4A,4Bの
出力信号がそれぞれ増幅器10,11で増幅され
た後に演算回路12で演算されて出力される。こ
の演算回路12の出力信号は、同d図に示すよう
に、一方の受光部4Aによる検出信号Saと他方
の受光部4Bによる検出信号Sbとが交互に出力
される波形となり、この信号が両サンプルホール
ド回路13,14に対し出力されるが、各サンプ
ルホールド回路13,14は、ドライブ回路9の
各出力端子9a,9bからのドライブ信号に同期
して交互に駆動されるから、一方のサンプルホー
ルド回路13は、演算回路12の出力信号のうち
の検出信号Saのみを同期検波し、同e図に示す
ような距離検出信号を出力する。同様に、他方の
サンプルホールド回路14は、演算回路12の出
力信号のうちの検出信号Sbのみを同期検波し、
同f図に示すような距離検出信号を出力する。
The oscillator 8 outputs a timing signal with a constant period as shown in FIG. 2a. Both output terminals 9a and 9b of the drive circuit 9 to which this timing signal is input output drive signals that are synchronized with every other pulse of the timing signal, as shown in Figures b and c, respectively. is,
By these drive signals, the light projecting section 3A,
3B are driven alternately to emit a projected beam, and the reflected light is received by the corresponding light receiving sections 4A, 4B, so the light is alternately received by each light receiving section 4A, 4B, and both The output signals of the light receiving sections 4A and 4B are amplified by amplifiers 10 and 11, respectively, and then calculated by an arithmetic circuit 12 and output. The output signal of this arithmetic circuit 12 has a waveform in which the detection signal Sa from one light receiving section 4A and the detection signal Sb from the other light receiving section 4B are output alternately, as shown in Fig. d. The sample and hold circuits 13 and 14 are output to the sample and hold circuits 13 and 14, but since each sample and hold circuit 13 and 14 is driven alternately in synchronization with the drive signal from each output terminal 9a and 9b of the drive circuit 9, one sample The hold circuit 13 synchronously detects only the detection signal Sa of the output signals of the arithmetic circuit 12, and outputs a distance detection signal as shown in FIG. Similarly, the other sample and hold circuit 14 synchronously detects only the detection signal Sb of the output signals of the arithmetic circuit 12,
It outputs a distance detection signal as shown in the figure f.

<考案の効果> 以上詳述したように本考案の物体検知装置によ
ると、複数の検知エリアを構成する複数組の投光
部と受光部とを設けたものにおいて、各発光部を
ドライブ回路により択一的に順次駆動し、この各
発光部と対をなす各受光部に順次受光されて該各
受光部から出力される各々2種の電流を、2種の
共通接続線を通じて単一の演算回路に入力し、こ
の演算回路から入力に応じて時系列的に出力され
る信号を、ドライブ回路に同期して択一的に順次
駆動される各サンプルホールド回路に順次入力す
る構成としたので、単一の演算回路から時系列的
に出力される信号を、投光部の駆動タイミングで
駆動する個々のサプルホールド回路に振り分けて
サンプリングすることかできる、複数組の投光部
と受光部に対し、単一の演算回路を設けるのみで
よく、また、この種の受光部に用いられる受光素
子の出力信号レベルが低いことにより必然的に設
けられる増幅器も、投光部と受光部との組数に拘
わらず2個のみでよく、構成を大幅に簡素化して
格段のコストダウンを達成できる。
<Effects of the invention> As detailed above, according to the object detection device of the present invention, in a device provided with multiple sets of light emitting parts and light receiving parts constituting a plurality of detection areas, each light emitting part can be driven by a drive circuit. The two types of current that are selectively driven sequentially and sequentially received by each light receiving unit paired with each light emitting unit and output from each light receiving unit are processed through a single calculation through two types of common connection lines. The structure is such that the signals that are input to the circuit and output in time series from this arithmetic circuit according to the input are sequentially input to each sample and hold circuit that is selectively driven sequentially in synchronization with the drive circuit. For multiple sets of emitters and receivers, signals output in time series from a single arithmetic circuit can be distributed to individual sample hold circuits driven at the drive timing of the emitter and sampled. , only a single arithmetic circuit needs to be provided, and since the output signal level of the light-receiving element used in this type of light-receiving section is low, the amplifier that is inevitably provided is also required depending on the number of pairs of light-emitting section and light-receiving section. Regardless, only two pieces are required, which greatly simplifies the configuration and achieves significant cost reductions.

また、各投光部をドライブ回路で択一的に順次
駆動させることにより、受光部の出力を単一の演
算回路に切換え入力するためのスイツチ等が不要
となり、スイツチングノイズの発生は絶無とな
る。更に、各受光部の出力信号は、合成されるこ
となく個々に演算されて個別に出力されるから、
複数の検知エリアに対し単一の演算回路としなが
らも、検知エリア毎に信号処理することができ、
各検知エリア毎に被検知物体を正確に検知するこ
とができる。
Additionally, by selectively and sequentially driving each light emitter with a drive circuit, there is no need for a switch or the like to switch and input the output of the light receiver to a single arithmetic circuit, and switching noise is completely eliminated. Become. Furthermore, the output signals of each light receiving section are calculated individually and output individually without being combined.
Even though a single calculation circuit is used for multiple detection areas, signal processing can be performed for each detection area.
The object to be detected can be accurately detected in each detection area.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の物体検知装置の一実施例のブ
ロツク構成図、第2図a〜f図は第1図の各部の
動作電圧を示すタイミングチヤート、第3図は第
1図の一部構成を示す光学図、第4図は第3図の
一部概略正面図、第5図は第4図の光電流I0と距
離X2との関係図、第6図は検知エリアの説明図
である。 3,3A,3B……投光部、4,4A,4B…
…受光部、9……ドライブ回路、12……演算回
路、13,14……サンプルホールド回路、DE
1,DE2……検知エリア、P……投光ビーム、
R,R1,R2……反射光、H1,H2……被検
知物体。
Fig. 1 is a block diagram of an embodiment of the object detection device of the present invention, Fig. 2 a to f is a timing chart showing the operating voltage of each part in Fig. 1, and Fig. 3 is a part of Fig. 1. An optical diagram showing the configuration, FIG. 4 is a partially schematic front view of FIG. 3, FIG. 5 is a diagram of the relationship between photocurrent I 0 and distance X2 in FIG. 4, and FIG. be. 3, 3A, 3B... Light projecting section, 4, 4A, 4B...
...Light receiving section, 9...Drive circuit, 12...Arithmetic circuit, 13, 14...Sample hold circuit, DE
1, DE2...detection area, P...projection beam,
R, R1, R2...Reflected light, H1, H2... Object to be detected.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 投光部から所定の検知エリアに向けて出射した
投光ビームの被検知物体による反射光を、前記投
光部および被検知物体に対して三角測量的に配し
た受光部で受光し、この受光部の両出力端子から
の2種の受光出力から導出した反射光の入射位置
により前記投光部から被検知物体までの距離を検
出し、この検出距離に基づいて被検知物体の検知
エリア内の位置もしくは存在の有無を検知する物
体検知装置において、複数の検知エリアを設定す
る複数組の前記投光部および受光部と、前記各投
光部を択一的に順次駆動するドライブ信号を出力
するドライブ回路と、前記各受光部の各々の一方
の出力端子同士および他方の出力端子同士を互い
に共通接続して両入力端に接続され順次駆動され
る前記各投光部にそれぞれ対応する前記各受光部
の2種の出力電流により反射光の入射位置を順次
演算する単一の演算回路と、前記受光部と同数個
を有して各々の入力端子が前記演算回路の出力端
子にそれぞれ共通接続され前記ドライブ回路の前
記ドライブ信号に同期して択一的に順次駆動され
るサンプルホールド回路とを具備して成ることを
特徴とする物体検知装置。
The light reflected by the object to be detected of the projection beam emitted from the projection part towards a predetermined detection area is received by the light receiving part which is arranged in a triangular manner with respect to the projection part and the object to be detected. The distance from the light emitter to the object to be detected is detected based on the incident position of the reflected light derived from the two types of light reception outputs from both output terminals of the unit, and based on this detected distance, the distance of the object to be detected within the detection area is detected. In an object detection device that detects a position or the presence or absence of an object, a plurality of sets of the light projecting section and the light receiving section that set a plurality of detection areas, and a drive signal that selectively sequentially drives each of the light projecting sections are output. A drive circuit, and each of the light receiving sections corresponding to each of the light emitting sections connected to both input terminals and sequentially driven by commonly connecting one output terminal and the other output terminal of each of the light receiving sections to each other. a single arithmetic circuit that sequentially calculates the incident position of the reflected light using two types of output current of the section, and a single arithmetic circuit having the same number of light receiving sections as the light receiving section, each of which has an input terminal commonly connected to an output terminal of the arithmetic circuit. An object detection device comprising: a sample and hold circuit that is selectively driven sequentially in synchronization with the drive signal of the drive circuit.
JP1986049443U 1986-03-31 1986-03-31 Expired JPH0454472Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986049443U JPH0454472Y2 (en) 1986-03-31 1986-03-31

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986049443U JPH0454472Y2 (en) 1986-03-31 1986-03-31

Publications (2)

Publication Number Publication Date
JPS62160382U JPS62160382U (en) 1987-10-12
JPH0454472Y2 true JPH0454472Y2 (en) 1992-12-21

Family

ID=30871899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986049443U Expired JPH0454472Y2 (en) 1986-03-31 1986-03-31

Country Status (1)

Country Link
JP (1) JPH0454472Y2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210575A (en) * 1975-07-16 1977-01-26 Toyo Denki Kk Photoelectric switch group by time difference light
JPS59158029A (en) * 1983-02-28 1984-09-07 松下電工株式会社 Reflection type photoelectric switch
JPS6076676A (en) * 1983-10-03 1985-05-01 Sogo Keibi Hoshiyou Kk Invasion detecting apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210575A (en) * 1975-07-16 1977-01-26 Toyo Denki Kk Photoelectric switch group by time difference light
JPS59158029A (en) * 1983-02-28 1984-09-07 松下電工株式会社 Reflection type photoelectric switch
JPS6076676A (en) * 1983-10-03 1985-05-01 Sogo Keibi Hoshiyou Kk Invasion detecting apparatus

Also Published As

Publication number Publication date
JPS62160382U (en) 1987-10-12

Similar Documents

Publication Publication Date Title
US5245177A (en) Electro-optical system for detecting the presence of an object within a predetermined detection system
US6201236B1 (en) Detection system with improved noise tolerance
JPH0454472Y2 (en)
JPS62204113A (en) Body detecting method
JPH03200941A (en) Range finder for camera
JPH10105869A (en) Vehicle type discrimination device
JP2614446B2 (en) Distance measuring device
JP3893155B2 (en) Detection system with improved noise tolerance
JPS61260113A (en) Detector for tilt angle of plane
JPH0464004B2 (en)
US6614014B2 (en) Method for selecting the operation of an optical detector and multimode optical detector
JPH0335603B2 (en)
JP2747187B2 (en) Photoelectric switch
JP2627514B2 (en) Multi-beam type surface detection switch
JP3809735B2 (en) Trinocular rangefinder
JPH0531584Y2 (en)
JPH03200940A (en) Range finder for camera
JPS639185B2 (en)
JPH0637352Y2 (en) Object detector
JPH0330980Y2 (en)
JPH02271280A (en) Optical body detecting apparatus
JPH0682508U (en) Automatic door
JPH1137751A (en) Range finding optical sensor
JPH06132802A (en) Multiple optical axis photoelectric switch
JPH0688726A (en) Distance measuring sensor