JPH0454464A - Diagnostic device for insulation deterioration of live-line - Google Patents

Diagnostic device for insulation deterioration of live-line

Info

Publication number
JPH0454464A
JPH0454464A JP16537290A JP16537290A JPH0454464A JP H0454464 A JPH0454464 A JP H0454464A JP 16537290 A JP16537290 A JP 16537290A JP 16537290 A JP16537290 A JP 16537290A JP H0454464 A JPH0454464 A JP H0454464A
Authority
JP
Japan
Prior art keywords
distribution
circuit
current
increase
insulation deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16537290A
Other languages
Japanese (ja)
Other versions
JPH0731220B2 (en
Inventor
Tatsuki Okamoto
達希 岡本
Yasuyuki Ikeda
池田 易行
Yoshiyuki Hirayama
平山 良行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP16537290A priority Critical patent/JPH0731220B2/en
Publication of JPH0454464A publication Critical patent/JPH0454464A/en
Publication of JPH0731220B2 publication Critical patent/JPH0731220B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Relating To Insulation (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE:To obtain a maximum electric discharge, increment amount of loss angle and increment amount of charge current by measuring a local discharge pulse. CONSTITUTION:The local discharge pulse is detected by a discharge pulse detecting circuit a. By a signal generating circuit B for separating phase angle, phase angle dividing pulses are transmitted for every point equally divided to N pieces. An average cycle distribution for the apparent electric discharge 1 and generated phase angle phi are obtained by a detection circuit C. By a CPU of arithmetic display circuit D, (phi-n) distribution and (phi-q) distribution are read out after one measurement period is finished, then the maximum electric discharge qmax, increment amount DELTAtandelta of loss angle and increment amount DELTAI of AC current are calculated, and salso the distortion degree of (phi-q) distribution is calculated and printed out.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は活線状態において回転機巻線やCV絶縁ケーブ
ルなどの絶縁劣化を、各種診断法により同時または別個
に迅速に診断できる装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a device that can quickly diagnose insulation deterioration of rotating machine windings, CV insulated cables, etc. under live wire conditions using various diagnostic methods simultaneously or separately. It is.

(従来技術とその問題点) 電力系統において停電のない安定な送電を確保するため
には、系統を構成する回転機、ケーブル。
(Conventional technology and its problems) In order to ensure stable power transmission without power outages in the power system, the rotating machines and cables that make up the system must be used.

トランスその他の絶縁状態を実使用状態、即ち活線状態
において確度高く非破壊的に診断できることか理想であ
る。
It would be ideal to be able to diagnose the insulation condition of transformers and other equipment in an actual operating state, that is, in a live wire state, with high accuracy and in a non-destructive manner.

ところで従来においては、絶縁劣化時生ずる部分放電パ
ルスの最大レベル、即ち見掛けの最大放電電荷q。0.
損失角(tanδ)の増加分△tanδ。
By the way, in the past, the maximum level of partial discharge pulses that occur when insulation deteriorates, that is, the apparent maximum discharge charge q. 0.
Increase in loss angle (tanδ) Δtanδ.

交流電流(容量電流分)の増加分ΔIの推移なとによる
周知の絶縁劣化診断法、更には本発明者等にもとづく部
分放電位相特性であるφ−q分布の歪度か、絶縁劣化に
もとづき変化することを利用した絶縁劣化診断法(特開
昭60−203866号参照)などの各種の診断パラメ
ータを併用して、各方法による絶縁劣化診断の長所短所
を補い合って、確度の高い絶縁劣化診断を行っている。
The well-known insulation deterioration diagnosis method is based on the change in the increase ΔI of the alternating current (capacitance current), and also the skewness of the φ-q distribution, which is the partial discharge phase characteristic, based on the inventors' method, or the insulation deterioration. Highly accurate insulation deterioration diagnosis can be achieved by combining various diagnostic parameters such as the insulation deterioration diagnosis method that utilizes changes (see JP-A No. 60-203866) and compensating for the advantages and disadvantages of each method of insulation deterioration diagnosis. It is carried out.

しかしこのような従来方法では、上記の様な各種の診断
パラメータをそれぞれ別個の測定器を用い別個に求めて
いる。従って、測定作業が複雑であって多くの時間を必
要とするため作業コストの上昇を招き、しかも測定装置
全体の価額も高価となる。
However, in such conventional methods, the various diagnostic parameters described above are determined separately using separate measuring instruments. Therefore, the measurement work is complicated and requires a lot of time, leading to an increase in work costs, and furthermore, the price of the entire measuring device becomes expensive.

これに加えて大きな欠点は、上記各診断パラメータの内
の損失角の増加分Δtanδ、交流電流の増加分ΔIな
どの測定に当たっては、周知のように回転機その他診断
対象の運転を休止即ち測定中送電を停止しなければなら
ない欠点かある。
In addition to this, a major drawback is that when measuring the above-mentioned diagnostic parameters such as the increase in loss angle Δtanδ and the increase in alternating current ΔI, it is well known that the operation of the rotating machine or other object to be diagnosed is stopped or during measurement. The drawback is that power transmission must be stopped.

(発明の目的) 本発明は前記部分放電位相特性即ちφ−q分布の歪度の
劣化、最大放電電荷q1,8はもとより、従来非活線状
態においてそれぞれ別個の測定器ににより求められてい
た損失角の増加分Δtanδや交流電流の増加分ΔIな
どの診断パラメータをも、活線状態において1個の測定
器により、同時かつ容易迅速に求めうるようにして、前
記従来方法の問題点の解決を図ったものである。
(Objective of the Invention) The present invention solves the above-described partial discharge phase characteristics, that is, the deterioration of the skewness of the φ-q distribution, and the maximum discharge charges q1 and 8, which were conventionally determined using separate measuring instruments in the non-live state. The problems of the conventional method are solved by allowing diagnostic parameters such as the increase in loss angle Δtanδ and the increase in alternating current ΔI to be simultaneously and easily and quickly determined using a single measuring device in a live line state. The aim is to

(問題点を解決するための本発明の手段)本発明は絶縁
劣化例えばボイド欠陥などにもとづいて発生する部分放
電パルスを検出し、を秒間(複数サイクル)中において
測定された例えは第1図の如き部分放電パルス信号デー
タ群を、(ql。
(Means of the present invention for solving the problem) The present invention detects partial discharge pulses generated due to insulation deterioration, such as void defects, and an example of a partial discharge pulse measured in a second (multiple cycles) is shown in FIG. A partial discharge pulse signal data group such as (ql.

φ、)i=1・・・・n(ここでqz  φ1にはそれ
ぞれi番目のパルスの大きさ、i番目の)くルスの発生
位相角、および測定パルス数)とし、この部分放電パル
スデータ群の大きさqのパルス数nを数えて、パルスの
大きさqの関数としたn(q)、即ちサイクル平均のq
−n分布と、印加電圧位相角φに対するサイクル当たり
の平均パルス高さqをφの関数としたq(φ)、即ちφ
−q分布を求めることにより、最大放電電荷q、、8と
、損失角の増加分Δtanδ、充電電流の増加分ΔIを
求めうることを明らかにしてなされたものである。即ち
■最大放電電荷q3..は、一定のパルス発生頻度n 
(q)になるときのパルス検出レベルとして定義されて
いることから、q−n分布を用いて以下の(1)式を満
たすq matを演算することにより求めることができ
る。
φ, )i=1...n (here, qz φ1 is the size of the i-th pulse, the phase angle of the i-th) pulse, and the number of measured pulses), and this partial discharge pulse data Count the number of pulses n of the group size q and calculate n(q) as a function of the pulse size q, i.e. the cycle average q
−n distribution and the average pulse height q per cycle for the applied voltage phase angle φ as a function of φ, q(φ), i.e. φ
This was done by clarifying that by determining the −q distribution, the maximum discharge charge q, , 8, the increase in loss angle Δtanδ, and the increase in charging current ΔI can be determined. That is, ■maximum discharge charge q3. .. is a constant pulse generation frequency n
Since it is defined as the pulse detection level when (q) is reached, it can be determined by calculating q mat that satisfies the following equation (1) using the qn distribution.

n9= 7 J’二nc(1)dq−−−(1)■ 損
失角の増加分Δtanδはφ−q分布を用いて求められ
る。即ち部分放電のない場合の電流式は、 I(φ)=fi Icos(φ+δ) また部分放電のある場合の電流式は、 1’(φ)=I(φ)十q(d) として与えられる。
n9=7 J'2 nc(1)dq---(1)■ The increase in the loss angle Δtanδ is obtained using the φ-q distribution. In other words, the current equation when there is no partial discharge is I(φ)=fi Icos(φ+δ), and the current equation when there is partial discharge is given as: 1'(φ)=I(φ)+q(d) .

ここで損失角の増加分Δtanδは、部分放電のない場
合の損失角tanδ、放電のある場合の損失角をjan
δ゛ とすれば、定義から 1Mtvrl = tan5 ’ −tanδtan6
 = f:I(φ)singtfi/ f、”I(φ)
cosφdφtanl’ = f:I’(φ)siru
J>dφ/f:I’(φ)cosφdφとして与えられ
、以上から増加分Δtanδはここで f:1′(φ)CO困φ=JπIcosδfoI(φ)
sindxip = 、fi、yrlsin4rである
から、電流Iを例えば測定電圧と被絶縁診断機器の定格
容量から知ることにより、・・・−−−−−(2) により求められる。また損失角かあまり大きくない範囲
即ちtanδ(l、  lq(φ)1(I の場合には
cosδ:=1.  qtanJ=0 と考えられるの
で、近似的に によって求められる。
Here, the increase in loss angle Δtanδ is the loss angle tanδ without partial discharge, and the loss angle with discharge is jan
If δ゛, then from the definition 1Mtvrl = tan5' - tanδtan6
= f:I(φ)singtfi/f,”I(φ)
cosφdφtanl' = f:I'(φ)siru
J>dφ/f:I'(φ)cosφdφ, and from the above, the increase Δtanδ is given as f:1'(φ)COφ=JπIcosδfoI(φ)
Since sindxip = , fi, yrlsin4r, by knowing the current I from, for example, the measured voltage and the rated capacity of the equipment to be diagnosed, it can be determined as follows (2). In addition, since the loss angle is considered to be in a not very large range, that is, tan δ(l, lq(φ) 1 (I), cos δ:=1.qtanJ=0, so it can be approximately determined by.

■充電電流の増加分△[は、部分放電のない場合の交流
電流の実効値を1とすると、部分放電のある場合の電流
1.(φ)は、前記損失角の算出の場合と同様 Id(φ)=、721cosφ+q(φ)となり(ここ
でq(φ)は位相角当たりの部分放電電流)、これから
16の実効値11はによって与えられる。
■Increase in charging current △[ is, assuming that the effective value of the alternating current without partial discharge is 1, the current in the case of partial discharge is 1. (φ) is Id(φ) = 721 cosφ + q(φ) (here, q(φ) is the partial discharge current per phase angle) as in the case of calculating the loss angle, and from this, the effective value 11 of 16 is given by Given.

ここで充電電流の増加分ΔI[%]は、定義により部分
放電のある場合の交流電流の実効値I。
Here, the increase in charging current ΔI [%] is, by definition, the effective value I of alternating current when there is partial discharge.

と、部分放電がない場合の交流電流の実効値■の差の1
に対するの割合である。従って電流■を例えば測定電圧
と被絶縁劣化診断機器の定格容量から知ればΔ■は ・−(4) によって求められる。
and the difference between the effective value of AC current in the absence of partial discharge.
It is the ratio of Therefore, if the current ■ is known from, for example, the measured voltage and the rated capacity of the insulation deterioration diagnostic equipment, Δ■ can be found as follows.

従って、以上から第2図に示す原理回路図のように被絶
縁劣化診断機器(1)の活線状態における接地線電流を
変流器などの電流検出器(2)により検出して、q−n
分布[n (q)]測定器とφ−q分布(q(φ)1測
定器(3)に加え、その演算された出力のうちのq−n
分布出力を前記最大放電電荷qIn a Xの演算器(
4)に加え、またφ−q分布出力を部分放電のないとき
の交流電流がそれぞれ与えられる損失角の増加分Δta
nδの演算器(5)、および交流電流の増加分Δ■[%
]の演算器(6)に加えて、例えば前記(1)式、(3
)式および(4)式の演算を実行し、またφ−q分布の
測定結果を歪度演算器(7)に加えることにより、各診
断パターンを1個の測定装置を用いて、活線状態のまま
同時かつ容易迅速に求めることかできる。次に本発明を
実施例によって具体的に説明する。
Therefore, from the above, as shown in the principle circuit diagram shown in Fig. 2, the grounding wire current in the live state of the insulation deterioration diagnostic equipment (1) is detected by the current detector (2) such as a current transformer, and q- n
Distribution [n (q)] measuring device and φ-q distribution (q(φ)1 In addition to measuring device (3), q-n of its calculated output
The distribution output is calculated by the maximum discharge charge qIn a
In addition to 4), the φ-q distribution output is calculated by the increase in the loss angle Δta given the alternating current when there is no partial discharge.
Calculator (5) of nδ and increase of alternating current Δ■[%
] In addition to the arithmetic unit (6), for example, the above equation (1), (3
) and (4), and by adding the measurement results of the φ-q distribution to the skewness calculator (7), each diagnostic pattern can be measured in the live line state using one measuring device. You can easily and quickly obtain the same information at the same time. Next, the present invention will be specifically explained with reference to Examples.

(実施例) 第3図は本発明の一実施例のブロック回路図である。図
においてCTは変流器であって、被絶縁劣化診断機器M
の接地線電流を検出する。BFはバンドパスフィルタで
あって、検出された接地線電流から部分放電パルスを検
出する。AMは増幅器であって、これらで部分放電パル
ス検出回路Aを構成し、部分放電パルスを検出する。
(Embodiment) FIG. 3 is a block circuit diagram of an embodiment of the present invention. In the figure, CT is a current transformer, and insulation deterioration diagnostic equipment M
Detects ground wire current. BF is a bandpass filter that detects partial discharge pulses from the detected ground line current. AM is an amplifier, which constitutes a partial discharge pulse detection circuit A to detect partial discharge pulses.

Bは位相角区別信号発生回路であって、このうちS■は
同期信号入力端子であって、既設の変成器やコンデンサ
分圧器などによって、被絶縁劣化診断機器Mの印加電圧
、即ち系統電圧を低圧化した第4図(a)の電圧eが同
期信号電圧として加えられる。ZCはゼロクロス信号発
生回路であって、第4図fb)のように同期信号電圧e
の零点において発生するパルスを送出する。CDは位相
角区分パルス発振回路、PCは位相カウンタであって、
発振回路CDは同期信号電圧eの周波数より高周波のパ
ルス信号を送出し、位相カウンタPCはセロクロス信号
発生回路ZCからのパルス信号を同期信号として、発振
回路CDからの位相角区分パルスを計数する。そして所
定数計数するごとに、第4図(C)のように同期信号電
圧eの1サイクル360゜を、N個に等分割した点毎に
位相角区分パルスを送出する。
B is a phase angle discrimination signal generation circuit, and S is a synchronization signal input terminal, which uses an existing transformer, capacitor voltage divider, etc. to convert the voltage applied to the insulation deterioration diagnostic equipment M, that is, the system voltage. The reduced voltage e shown in FIG. 4(a) is applied as a synchronizing signal voltage. ZC is a zero cross signal generation circuit, which generates a synchronizing signal voltage e as shown in Fig. 4 fb).
It sends out a pulse that occurs at the zero point of . CD is a phase angle division pulse oscillation circuit, PC is a phase counter,
The oscillation circuit CD sends out a pulse signal with a higher frequency than the frequency of the synchronization signal voltage e, and the phase counter PC counts the phase angle division pulses from the oscillation circuit CD using the pulse signal from the cello cross signal generation circuit ZC as a synchronization signal. Then, every time a predetermined number of pulses are counted, a phase angle dividing pulse is sent out at each point where one cycle of 360° of the synchronizing signal voltage e is divided into N equal parts as shown in FIG. 4(C).

Cはn−q分布とφ−q分布の検出回路であって、この
うちPHはピークホールド回路、ASはオートシュレッ
ショルド回路であって、ピークホールド回路PHは前記
部分放電パルス検出回路Aの出力を入力とし、オートシ
ュレッショルド回路ASの設定閾値レベル以上の部分放
電パルスか入る毎にそのピークレベルを保持する。AD
はアナログ・デジタル変換回路、PSは極性判別回路、
Toは集計回路であって、集計回路TOは前記位相カウ
ンタPCからの位相角区分パルスと、前記ピークホール
ド回路PHの出力および極性判別回路PSの出力を入力
とし、測定期間(複数サイクル)における、各サイクル
のN個の位相角区間に生じた部分放電パルス、例えば第
4図(d)(e)(fl (g)に示すよように、第1
サイクルにおいてはQ10.11Q+3.1n qs。
C is a detection circuit for n-q distribution and φ-q distribution, PH is a peak hold circuit, AS is an auto-threshold circuit, and peak hold circuit PH is the output of the partial discharge pulse detection circuit A. is input, and its peak level is held every time a partial discharge pulse exceeding a set threshold level of the auto-threshold circuit AS enters. A.D.
is an analog-to-digital conversion circuit, PS is a polarity discrimination circuit,
To is an aggregation circuit, and the aggregation circuit TO receives the phase angle division pulse from the phase counter PC, the output of the peak hold circuit PH, and the output of the polarity discrimination circuit PS, and calculates the following during the measurement period (multiple cycles): Partial discharge pulses occurring in N phase angle intervals of each cycle, for example, as shown in FIG.
Q10.11Q+3.1n qs in the cycle.

、1、第2サイクルにおいてはqIo、2IQ117.
2I Q46. l、第3サイクルにおいてはQ63゜
Q13.3r Q15.2+ q4g、 2また第Nサ
イクルにおいてはq3n+ qlon+ Q15カ、Q
24゜?  440ゎ+ Q44.ゎ(なお足字の最初
の数字は位相角区分番号、次の足字はサイクル番号を示
す)を同−位相角区分毎に集計して、部分放電パルスの
発生頻度の印加電圧位相角特性、即ちφ−nのサイクル
平均分布を求める。またこれと同時にピークホールド回
路PHにより得られた、部分放電パルスのピークレベル
値を位相角区分毎に第4図(g)のように集計して、見
掛けの放電電荷qと発生位相角φの分布(φ−q分布)
のサイクル平均分布を求める。
, 1, in the second cycle qIo, 2IQ117.
2I Q46. l, in the third cycle, Q63゜Q13.3r Q15.2+ q4g, 2, and in the Nth cycle, q3n+ qlon+ Q15ka, Q
24°? 440ゎ+ Q44.ゎ(The first digit of the foot character indicates the phase angle division number, and the second character indicates the cycle number) are totaled for each phase angle division, and the applied voltage phase angle characteristics of the frequency of occurrence of partial discharge pulses, That is, the cycle average distribution of φ-n is determined. At the same time, the peak level value of the partial discharge pulse obtained by the peak hold circuit PH is aggregated for each phase angle division as shown in Fig. 4 (g), and the apparent discharge charge q and the generated phase angle φ are calculated. Distribution (φ-q distribution)
Find the cycle average distribution of.

Dは演算表示回路で、このうちBMはバッファメモリ、
CPUはマイクロコンピュータ、PRはプリンタで、マ
イクロコンピュータCPUはバッファメモリBMにメモ
リされた集計回路Toからのφ−n分布とφ−q分布を
一測定期間終了後に読出して、前記した各式により最大
放電電荷q。、8、損失角の増加分Δtanδ、および
交流電流の増加分ΔIの演算を行い、またφ−q分布の
歪度の演算を行ってプリントアウトする。
D is an arithmetic display circuit, of which BM is a buffer memory,
CPU is a microcomputer, PR is a printer, and the microcomputer CPU reads out the φ-n distribution and φ-q distribution from the aggregation circuit To stored in the buffer memory BM after one measurement period, and calculates the maximum value using the above-mentioned formulas. Discharge charge q. , 8. Calculate the loss angle increase Δtanδ and the alternating current increase ΔI, and also calculate the skewness of the φ-q distribution and print them out.

次に本発明による実測例について説明する。Next, an actual measurement example according to the present invention will be explained.

第1表は電圧6.6KV  容量10.0OOkVA(
7)発電機の巻線について測定された従来方法と本発明
による最大放電電荷qta*x 、損失角の増加分Δt
anδ、充電電流の増加分ΔIの比較であって、診断精
度は従来の非活線状態における診断方法とほぼ同様であ
る。
Table 1 shows the voltage: 6.6KV, capacity: 10.0OOkVA (
7) Maximum discharge charge qta*x measured by the conventional method and the present invention for generator windings, increase in loss angle Δt
This is a comparison of an δ and the charging current increase ΔI, and the diagnostic accuracy is almost the same as the conventional diagnostic method in a non-live state.

第1表 Δtanδ、ΔIなどを同時に測定するようにしたが、
演算回路を選択的に働かすことにより必要なもののみを
測定できることは云うまでもない。
Table 1: Δtanδ, ΔI, etc. were measured at the same time, but
It goes without saying that only what is necessary can be measured by selectively operating the arithmetic circuit.

(発明の効果) 以上のように本発明によれば部分放電パルスを測定する
だけで最大放電電荷Q m&Xのみならず損失角の増加
分Δtanδ、充電電流増加分Δlをそれぞれ専用の測
定器を用いることなく同時に測定できる。従って従来方
法に比べて測定装置の価額を低下できるばかりでなく、
測定時間の短縮と作業の容易化か図られるので、絶縁診
断に要するコストの大幅な低減を図りつる。またこれに
加えて活線状態で最大放電電荷などを測定できるのて、
診断精度を向上できる。なお以上においてqmax 1
(Effects of the Invention) As described above, according to the present invention, by simply measuring the partial discharge pulse, not only the maximum discharge charge Q m & can be measured at the same time without any problems. Therefore, not only can the cost of the measuring device be reduced compared to the conventional method, but also
Since the measurement time is shortened and the work is made easier, the cost required for insulation diagnosis can be significantly reduced. In addition to this, it is possible to measure the maximum discharge charge etc. in a live line state.
Diagnostic accuracy can be improved. Furthermore, in the above, qmax 1

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は部分放電パルスの発生状況図、第2図は本発明
の原理説明図、第3図は本発明の一実施例回路図、第4
図は動作説明用の波形図である。 (1)・・・被絶縁劣化診断機器、 (2)・・・電流
検出器、(3)・・・n−q分布とφ−q分布の検出器
、 (4)・・・最大放電電荷の演算器、 (5)・・
・損失角の増加分Δtanδ[%1の演算器、 (6)
・・・交流電流の増加分ΔIの演算器、 (7)・・・
φ−q分布の歪度演算器、M・・・被絶縁劣化診断機器
、 CT・・・変流器、BF・・・バンドパスフィルタ
、 AM・・・増幅器、B・・・位相角区分信号発生回
路、 Sv・・・同期信号入力端子、 PT・・・変成
器、 ZC・・・セロクロス信号発生回路、 CD・・
・クロックパルス発振回路、 PC・・・位相カウンタ
、 C・・・n−qおよびφ−q分布の検出回路、 P
H・・・ピークホールト回路、 AS・・・オートシュ
レッショルド回路、 AD・・・アナログ・デジタル変
換回路、PS・・・極性判別回路、 TO・・・集計回
路、D・・・演算表示回路、 BM・・・バッファメモ
リ、CPU・・・マイクロコンピュータ、PR・・・プ
リンタ。 代 理 人
Fig. 1 is a diagram of the generation situation of partial discharge pulses, Fig. 2 is a diagram explaining the principle of the present invention, Fig. 3 is a circuit diagram of an embodiment of the present invention, Fig. 4
The figure is a waveform diagram for explaining the operation. (1)...Insulation deterioration diagnostic equipment, (2)...Current detector, (3)...N-Q distribution and φ-Q distribution detector, (4)...Maximum discharge charge arithmetic unit, (5)...
・Arithmetic unit of increase in loss angle Δtanδ [%1, (6)
...Arithmetic unit for the increase in alternating current ΔI, (7)...
φ-q distribution distortion calculator, M...Insulation deterioration diagnostic equipment, CT...Current transformer, BF...Band pass filter, AM...Amplifier, B...Phase angle division signal Generation circuit, Sv...Synchronization signal input terminal, PT...Transformer, ZC...Serocross signal generation circuit, CD...
・Clock pulse oscillation circuit, PC...phase counter, C...n-q and φ-q distribution detection circuit, P
H...Peak halt circuit, AS...Auto threshold circuit, AD...Analog/digital conversion circuit, PS...Polarity discrimination circuit, TO...Tally circuit, D...Calculation display circuit , BM...buffer memory, CPU...microcomputer, PR...printer. agent

Claims (1)

【特許請求の範囲】[Claims] 活線状態における被絶縁劣化診断機器の接地線電流の検
出回路と、この回路により検出された部分放電パルスの
大きさqとその発生回数nの分布、および前記部分放電
パルスの大きさqとその発生位相角φの分布を、測定複
数サイクルにおけるサイクル平均として求める回路と、
この回路によるq−n分布を用いて最大放電電荷q_m
_a_xを演算する回路と、前記φ−q分布と被絶縁劣
化診断機器の電流Iとを用いて損失角の増加分Δtan
δを演算する回路と、前記φ−q分布と被絶縁劣化診断
機器のIとを用いて充電電流の増加分ΔIを演算する回
路と、前記φ−q分布の歪度を演算する回路とを備え、
最大放電電荷q_m_a_x、損失角の増加分Δtan
δ、充電電流の増加分ΔI、φ−q分布の歪度を活線状
態において同時または個別に測定できるようにしたこと
を特徴とする活線絶縁劣化診断装置。
A detection circuit for the ground line current of an insulation deterioration diagnostic equipment in a live line state, a distribution of the magnitude q of partial discharge pulses detected by this circuit and the number of occurrences n thereof, and a distribution of the magnitude q of the partial discharge pulses and its occurrence number n. a circuit for determining the distribution of the generated phase angle φ as a cycle average over multiple measurement cycles;
Using the qn distribution by this circuit, the maximum discharge charge q_m
Using a circuit that calculates _a_x, the φ-q distribution, and the current I of the insulation deterioration diagnostic equipment, calculate the increase in the loss angle Δtan.
A circuit that calculates δ, a circuit that calculates an increase in charging current ΔI using the φ-q distribution and I of the insulation deterioration diagnostic equipment, and a circuit that calculates the skewness of the φ-q distribution. Prepare,
Maximum discharge charge q_m_a_x, increase in loss angle Δtan
1. A live line insulation deterioration diagnostic device, characterized in that it is possible to simultaneously or individually measure δ, charge current increase ΔI, and skewness of φ-q distribution in a live line state.
JP16537290A 1990-06-22 1990-06-22 Hot wire insulation deterioration diagnosis device Expired - Fee Related JPH0731220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16537290A JPH0731220B2 (en) 1990-06-22 1990-06-22 Hot wire insulation deterioration diagnosis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16537290A JPH0731220B2 (en) 1990-06-22 1990-06-22 Hot wire insulation deterioration diagnosis device

Publications (2)

Publication Number Publication Date
JPH0454464A true JPH0454464A (en) 1992-02-21
JPH0731220B2 JPH0731220B2 (en) 1995-04-10

Family

ID=15811126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16537290A Expired - Fee Related JPH0731220B2 (en) 1990-06-22 1990-06-22 Hot wire insulation deterioration diagnosis device

Country Status (1)

Country Link
JP (1) JPH0731220B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007105850A (en) * 2005-10-14 2007-04-26 Brother Ind Ltd Spindle device, and machine tool with that device
JP2010527227A (en) * 2007-05-14 2010-08-05 サンダイン コーポレーション Electric machine with air cooling system
JP2020046202A (en) * 2018-09-14 2020-03-26 株式会社東芝 Partial discharge detection device, partial discharge detection method, partial discharge detection system, and computer program product

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007105850A (en) * 2005-10-14 2007-04-26 Brother Ind Ltd Spindle device, and machine tool with that device
JP2010527227A (en) * 2007-05-14 2010-08-05 サンダイン コーポレーション Electric machine with air cooling system
JP2020046202A (en) * 2018-09-14 2020-03-26 株式会社東芝 Partial discharge detection device, partial discharge detection method, partial discharge detection system, and computer program product

Also Published As

Publication number Publication date
JPH0731220B2 (en) 1995-04-10

Similar Documents

Publication Publication Date Title
US10088546B2 (en) Method and apparatus to diagnose current sensor polarities and phase associations for a three-phase electric power system
US4766370A (en) System and method for calibrating an energy meter
JPS6025745B2 (en) Power measurement method
TWI427298B (en) Signal generation device, measurement device, leakage detection device, and signal generation method
JPS5811027B2 (en) power measurement device
JPH0454464A (en) Diagnostic device for insulation deterioration of live-line
JPS61126485A (en) Error measuring instrument
JP6199109B2 (en) Electricity meter weighing test equipment
JPH05297038A (en) Grounding-resistance testing instrument
JPS6233527B2 (en)
SU415618A1 (en)
JPS6111680A (en) Testing device for normal watt-hour meter instrument error
RU2526500C1 (en) Device to control serviceability of dc motor
Abdul-Karim et al. A digital power-factor meter design based on binary rate multiplication techniques
JP2550987B2 (en) Signal gradient measuring instrument
JPH0510992A (en) Phase difference measurement device
JPS61260120A (en) Electronic integrating instrument
RU2006871C1 (en) Device for trouble detection in electrical machine sliding contact
JPH0510993A (en) Phase difference measurement device
JP3499845B2 (en) Motor control device
JPS62148882A (en) Time measuring instrument
JPS61151478A (en) Apparatus for diagnosis of electromoter
SU1422170A1 (en) Apparatus for measuring three-phase voltage loss on corona discharge
JPH0727842A (en) Electronic watt-hour meter
SU934211A1 (en) Device for testing shaft angular position-to-pulse train converters

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees