JPH0454414A - Air/fuel ratio measuring instrument - Google Patents

Air/fuel ratio measuring instrument

Info

Publication number
JPH0454414A
JPH0454414A JP2164110A JP16411090A JPH0454414A JP H0454414 A JPH0454414 A JP H0454414A JP 2164110 A JP2164110 A JP 2164110A JP 16411090 A JP16411090 A JP 16411090A JP H0454414 A JPH0454414 A JP H0454414A
Authority
JP
Japan
Prior art keywords
flow rate
air
sectional area
valve
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2164110A
Other languages
Japanese (ja)
Inventor
Tetsuo Kameda
亀田 哲生
Tomoyoshi Noguchi
野口 朝義
Yoshihiro Kawakami
川上 義弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Automotive Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Automotive Engineering Co Ltd
Priority to JP2164110A priority Critical patent/JPH0454414A/en
Publication of JPH0454414A publication Critical patent/JPH0454414A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To measure the flow rate in a main flow passage with high accuracy and to shorten the setting and stabilization time of the flow rate by setting the flow rate continuously by an acoustic velocity nozzle which has variable sectional area. CONSTITUTION:Target values of suction negative pressure and a flow rate are inputted to a personal computer 12. The maximum flow rate of air flowing through the acoustic velocity nozzle 4 is calculated from them to calculate the current sectional area of the acoustic velocity nozzle 4. Consequently, the movement distance of a valve 5 is calculated to output the number of driving pulses of an actuator 6. Consequently, the valve 5 moves and the current sectional area of the acoustic velocity nozzle 4 varies to vary the air flow rate. The suction negative pressure also varies correspondingly, but a throttle valve is controlled by an actuator 7 so that the suction negative pressure reach the target value; when the target value is reached, data on the suction negative pressure, the movement distance of the value, and a fuel flow are inputted, sent to the personal computer, and printed out.

Description

【発明の詳細な説明】 [産業上の利用分野〕 本発明は、空燃比制御装置の空燃比を計量する装置に適
合する。空気流量が連続的に計量出来るために、計量時
間が短縮され量産計測に適している。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention is applicable to a device for measuring the air-fuel ratio of an air-fuel ratio control device. Since air flow rate can be measured continuously, measurement time is shortened and it is suitable for mass production measurement.

〔従来の技術〕[Conventional technology]

従来の装置は、流通断面積の異なる多段の音速ノズルを
組み合わせ、最大空気流量を設定していた。この方法で
は、最小断面積の音速ノズルの流量の刻みで段階的に流
量が設定される。また、零から最大流量まで連続的に流
量を変え空燃比制御装置の特性を計測する事が出来ない
。更に、多段のノズルを切り換えるために、主流量が安
定するまでに時間を要する。
Conventional devices combine multi-stage sonic nozzles with different flow cross-sectional areas to set the maximum air flow rate. In this method, the flow rate is set in steps according to the flow rate of the sonic nozzle with the minimum cross-sectional area. Furthermore, it is not possible to measure the characteristics of the air-fuel ratio control device by changing the flow rate continuously from zero to the maximum flow rate. Furthermore, since multiple nozzles are switched, it takes time for the main flow amount to stabilize.

尚、この種の装置として関連するものには、たとえば実
開昭56−41210号、実開昭61−119721号
等が挙げられる。
Incidentally, related devices of this type include, for example, Japanese Utility Model Application No. 56-41210 and Japanese Utility Model Application No. 61-119721.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

1、従来、空燃比制御装置の空気流量を計測する場合、
音速ノズルを多段用意しその組み合わせにより最大流量
が決められていた。これは、最小ノズルの刻みで空気流
量が段階的に変化するもので無段階に変えられない。そ
こで、可変断面積音速ノズルを用いて空気流量を無段階
に変える事を目的としている。
1. Conventionally, when measuring the air flow rate of an air-fuel ratio control device,
Multiple stages of sonic nozzles were prepared, and the maximum flow rate was determined by their combination. This means that the air flow rate changes step by step in increments of the smallest nozzle and cannot be changed steplessly. Therefore, the aim is to change the air flow rate steplessly using a variable cross-sectional area sonic nozzle.

2、可変断面積音速ノズルを用いて空気流量を無段階に
変えることにより、空気流量を微小に変化させ、空燃比
制御装置の空燃比を連続に計測することを目的とする。
2. The purpose is to continuously measure the air-fuel ratio of an air-fuel ratio control device by changing the air flow rate steplessly using a variable cross-sectional area sonic nozzle.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、空燃比制御装置の流路に可
変断面積音速ノズルを設け、ノズルの断面積を変え空気
流量を制御する。
In order to achieve the above object, a variable cross-sectional area sonic nozzle is provided in the flow path of the air-fuel ratio control device, and the air flow rate is controlled by changing the cross-sectional area of the nozzle.

空気流量を無段階に制御するために、目標値を微小刻み
で設定し、目標値に従い可変断面積音速ノズルの断面積
を変える。
In order to control the air flow rate steplessly, a target value is set in minute increments, and the cross-sectional area of the variable cross-sectional area sonic nozzle is changed according to the target value.

〔作用〕[Effect]

可変断面積音速ノズルは、流通断面積を変え流路の空気
流量を変える。
Variable cross-sectional area sonic nozzles change the flow cross-sectional area to change the air flow rate in the flow path.

アクチュエータは、可変断面積音速ノズルのバルブを軸
線方向に移動させるもので、これにより音速ノズルの流
通断面積を変える。
The actuator moves the valve of the variable cross-sectional area sonic nozzle in the axial direction, thereby changing the flow cross-sectional area of the sonic nozzle.

マイコンは、アクチュエータを介しバルブの位置を制御
して音速ノズルの流通断面積を変え、音速ノズルを流れ
る最大空気流量を変える。更に、空燃比制御装置の絞り
弁を制御して吸入負圧を目標値に設定する。また、バル
ブの位置と音速ノズル上流の圧力、燃料流量を計測して
パソコンに転送する。
The microcomputer controls the position of the valve via an actuator to change the flow cross-sectional area of the sonic nozzle, thereby changing the maximum air flow rate through the sonic nozzle. Furthermore, the throttle valve of the air-fuel ratio control device is controlled to set the suction negative pressure to a target value. Additionally, the valve position, pressure upstream of the sonic nozzle, and fuel flow rate are measured and transferred to a computer.

パソコンは、おおまかな空気流量、吸入負圧の値を入力
し、補間計算により制御の目標値を設定する。目標値は
マイコンに転送し計測させる。計測結果をマイコンから
受信し空燃比を計算し、結果を表示すると共にグラフで
示す。
The personal computer inputs approximate values of air flow rate and suction negative pressure, and sets control target values through interpolation calculations. The target value is transferred to the microcomputer and measured. It receives the measurement results from the microcomputer, calculates the air-fuel ratio, and displays the results as well as a graph.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。1は
空気の流れる主流路を示す。2は主流路1に空気を流す
ための真空ポンプである。3は被測定物(気化器)であ
る。4は主流路1に設けられた音速ノズルである。音速
ノズルの流通断面積は、必要な最大流量より決定する。
An embodiment of the present invention will be described below with reference to FIG. 1 indicates the main channel through which air flows. 2 is a vacuum pump for flowing air into the main flow path 1; 3 is an object to be measured (vaporizer). 4 is a sonic nozzle provided in the main flow path 1. The flow cross-sectional area of the sonic nozzle is determined based on the required maximum flow rate.

5は音速ノズル2の流通断面積を変えるバルブである。5 is a valve that changes the flow cross-sectional area of the sonic nozzle 2.

バルブ5は円錐形をし、音速ノズル4と同軸上に設置し
軸線方向に移動することにより、音速ノズル4の流通断
面積を変える。バルブ5のテーパは、バルブ5の移動距
離に対する音速ノズル4の流通断面積の変化を考慮して
いる。6はバルブ5を移動させるアクチュエータ1であ
る。7は被測定物3の絞り弁を動かすアクチュエータ2
である。8はバルブ5の位置を検出する位置横比センサ
で、音速ノズル4が全閉の状態を基準に、バルブ5の移
動距離を検出する。9は音速ノズル2の上流圧力を検出
する圧力センサである。10は被測定物3の燃料流量を
測定する燃料流量計である。11は絞り弁、バルブ5を
制御し、音速ノズル4の上流圧力燃料流量、バルブの移
動距離を計測するマイコンである。12は目標値(吸入
負圧、空気流量)の入力、計測結果の表示を行うパソコ
ンである。
The valve 5 has a conical shape, is installed coaxially with the sonic nozzle 4, and changes the flow cross-sectional area of the sonic nozzle 4 by moving in the axial direction. The taper of the valve 5 takes into consideration the change in the flow cross-sectional area of the sonic nozzle 4 with respect to the moving distance of the valve 5. 6 is an actuator 1 that moves the valve 5. 7 is an actuator 2 that moves the throttle valve of the object to be measured 3
It is. Reference numeral 8 denotes a position/lateral ratio sensor for detecting the position of the valve 5, which detects the moving distance of the valve 5 with reference to the fully closed state of the sonic nozzle 4. 9 is a pressure sensor that detects the upstream pressure of the sonic nozzle 2. 10 is a fuel flow meter that measures the fuel flow rate of the object 3 to be measured. 11 is a microcomputer that controls the throttle valve and valve 5 and measures the upstream pressure fuel flow rate of the sonic nozzle 4 and the distance traveled by the valve. 12 is a personal computer for inputting target values (inhalation negative pressure, air flow rate) and displaying measurement results.

被測定物3の空燃比を求める手順は以下の通りで、フロ
ーチャーI〜を第2図に示す。
The procedure for determining the air-fuel ratio of the object to be measured 3 is as follows, and the flowchart I~ is shown in FIG.

パソコン12に吸入負圧、空気流量の目標値を20点入
力する。目標値を補間計算し測定点300点のデータを
得る。吸入負圧と空気流量から音速ノズルを流れる最大
空気流量を計算する。最大空気流量から音速ノズルの流
通断面積を計算する6更に、流通断面積よりバルブの移
動距離を計算する。バルブの移動距離からアクチュエー
タの駆動パルス数を求める。
Enter 20 target values for suction negative pressure and air flow rate into the computer 12. Interpolate the target value and obtain data for 300 measurement points. Calculate the maximum air flow rate through the sonic nozzle from the suction negative pressure and air flow rate. Calculate the flow cross-sectional area of the sonic nozzle from the maximum air flow rate6Furthermore, calculate the travel distance of the valve from the flow cross-sectional area. Determine the number of actuator drive pulses from the distance traveled by the valve.

パソコンからマイコンへ、吸入負圧の目標値とアクチュ
エータの駆動パルス数を転送する。
Transfer the target value of suction negative pressure and the number of actuator drive pulses from the computer to the microcontroller.

マイコンは与えられたパルス数をアクチュエータへ出力
する。これにより、バルブが移動し音速ノズルの流通断
面積が変わり空気流量を変化する。
The microcomputer outputs the given number of pulses to the actuator. This causes the valve to move, changing the flow cross-sectional area of the sonic nozzle and changing the air flow rate.

空気流量の変化にともない吸入負圧も変わるため吸入負
圧が目標値と一致するようにアクチュエータを駆動し絞
り弁を制御する。吸入負圧が目標値に達したら、吸入負
圧、バルブの移動距離、燃料流量のデータを取り込む。
Since the suction negative pressure also changes as the air flow rate changes, the actuator is driven and the throttle valve is controlled so that the suction negative pressure matches the target value. When the suction negative pressure reaches the target value, data on the suction negative pressure, valve travel distance, and fuel flow rate are captured.

300点測定した後に。After measuring 300 points.

吸入負圧、バルブの移動距離、燃料流量のデータをパソ
コンへ転送する。
Data on suction negative pressure, valve travel distance, and fuel flow rate are transferred to a computer.

パソコンは、転送されたデータを元に空気流量と空燃比
を計算する。計算結果は、プリンタとプロツタヘ出力す
る。
The computer calculates the air flow rate and air-fuel ratio based on the transferred data. The calculation results are output to a printer and plotter.

本実施例によれば、測定点数を変えることにより音速ノ
ズルの通気流量の変化量が無段階に設定できるため、主
流路の流量が高精度で測定できる。
According to this embodiment, since the amount of change in the ventilation flow rate of the sonic nozzle can be set steplessly by changing the number of measurement points, the flow rate in the main flow path can be measured with high accuracy.

また、流量の設定が連続して行えるために、流路の安定
時間が短縮されるという効果が得られた。
Furthermore, since the flow rate can be set continuously, the stabilization time of the flow path is shortened.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、可変断面積音速ノズルにより無段階に
流量が設定できるので、主流路の流量が高精度で測定で
きる。
According to the present invention, since the flow rate can be set steplessly using the variable cross-sectional area sonic nozzle, the flow rate in the main flow path can be measured with high accuracy.

また、可変断面積音速ノズルの流量を連続して制御でき
るので、流量の設定、安定時間が短縮された空燃比測定
装置が提供できる。
Furthermore, since the flow rate of the variable cross-sectional area sonic nozzle can be continuously controlled, an air-fuel ratio measuring device can be provided in which the flow rate setting and stabilization time are shortened.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のシステム構成図、第2図は
第1図のパソコンとマイコンの制御フローチャート、第
3図は空燃比の測定結果を示す図である。 1・・・主流路、2・・・真空ポンプ、3・・・被測定
物、4・・音速ノズル、5・・バルブ、6・・・アクチ
ュエータ1.7・・・アクチュエータ2.8・位置検出
センサ、1o・・・燃料流量計、11・・・マイコン、
12・・・パソコン、13・・・プリンタ、プロッタ、
14・・・燃料供給装置。
FIG. 1 is a system configuration diagram of an embodiment of the present invention, FIG. 2 is a control flowchart of the personal computer and microcomputer shown in FIG. 1, and FIG. 3 is a diagram showing the measurement results of the air-fuel ratio. DESCRIPTION OF SYMBOLS 1...Main flow path, 2...Vacuum pump, 3...Measurement object, 4...Sonic nozzle, 5...Valve, 6...Actuator 1.7...Actuator 2.8・position Detection sensor, 1o... fuel flow meter, 11... microcomputer,
12...PC, 13...Printer, plotter,
14...Fuel supply device.

Claims (1)

【特許請求の範囲】 1、主流路に設けられている可変断面積音速ノズル、こ
のノズルの流通断面積を制御するバルブにより空気流量
を制御し、また、バルブの位置より、空気流量を測定す
る事を特徴とする空燃比測定装置。 2、請求項1項の空燃比測定装置に於いて、可変断面積
音速ノズルの流通断面積を微小変化させ、空気流量を連
続的に制御する事を特徴とする空燃比測定装置。 3、請求項2項の空燃比測定装置に於いて、連続的に変
化する空気流量に対する燃料流量を測定し、空燃比を連
続的に測定する事を特徴とする空燃比測定装置。
[Claims] 1. Air flow rate is controlled by a variable cross-sectional area sonic nozzle provided in the main flow path, a valve that controls the flow cross-sectional area of this nozzle, and the air flow rate is measured from the position of the valve. An air-fuel ratio measuring device characterized by: 2. The air-fuel ratio measuring device according to claim 1, wherein the air-fuel ratio measuring device continuously controls the air flow rate by minutely changing the flow cross-sectional area of the variable cross-sectional area sonic nozzle. 3. The air-fuel ratio measuring device according to claim 2, characterized in that the air-fuel ratio is continuously measured by measuring the fuel flow rate with respect to the continuously changing air flow rate.
JP2164110A 1990-06-25 1990-06-25 Air/fuel ratio measuring instrument Pending JPH0454414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2164110A JPH0454414A (en) 1990-06-25 1990-06-25 Air/fuel ratio measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2164110A JPH0454414A (en) 1990-06-25 1990-06-25 Air/fuel ratio measuring instrument

Publications (1)

Publication Number Publication Date
JPH0454414A true JPH0454414A (en) 1992-02-21

Family

ID=15786944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2164110A Pending JPH0454414A (en) 1990-06-25 1990-06-25 Air/fuel ratio measuring instrument

Country Status (1)

Country Link
JP (1) JPH0454414A (en)

Similar Documents

Publication Publication Date Title
JP2004522129A (en) Method and apparatus for setting air ratio
EP0335040A3 (en) Variable gas volume flow measuring and control methods and apparatus
CN204461970U (en) A kind of measurement mechanism controlling the standard instruments calibrating of air flow source
CN100445705C (en) Device and method for calibration of a mass flow sensor
JPH0454414A (en) Air/fuel ratio measuring instrument
JP2000221123A (en) Exhaust gas sampling method
JP3893115B2 (en) Mass flow controller
JP2000028407A (en) Flow rate detecting mechanism for variable venturi
JPH04248414A (en) Variable venturi type constant-flow measurement controller
JP3604059B2 (en) Partial dilution type gas dilution system
CN113776628A (en) High-low pressure and temperature adjustable laminar flow meter testing device
TWI742281B (en) Water sample dispenser and calibration method thereof
JPH09218062A (en) Variable sectional area venturi type flow meter
JP3580558B2 (en) EGR device
CN214621326U (en) Meter-valve integrated flow monitoring device
JP3604060B2 (en) Gas flow controller for dilution
CN110748443A (en) Exhaust gas recirculation system
JP3968085B2 (en) Partial dilution type gas dilution system for measuring exhaust gas and partial dilution type gas dilution system for measuring particulate matter in exhaust gas
JP2524703B2 (en) Engine controller
JPH10153465A (en) Method for correcting measurement error of air flow rate measuring device, and measurement error correcting device
JP4008424B2 (en) Gas sample system for measuring exhaust gas with partial dilution and gas sample system for measuring particulate matter in exhaust gas with partial dilution
CN113514116A (en) Meter-valve integrated flow monitoring device and control method
JP2000075932A (en) Gas flow rate controller
JP2005083345A (en) Control device for internal combustion engine
JPH0249561Y2 (en)