JPH0454403A - Gap measuring instrument for linear motor - Google Patents

Gap measuring instrument for linear motor

Info

Publication number
JPH0454403A
JPH0454403A JP2162662A JP16266290A JPH0454403A JP H0454403 A JPH0454403 A JP H0454403A JP 2162662 A JP2162662 A JP 2162662A JP 16266290 A JP16266290 A JP 16266290A JP H0454403 A JPH0454403 A JP H0454403A
Authority
JP
Japan
Prior art keywords
magnetic flux
linear motor
gap
flux density
air gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2162662A
Other languages
Japanese (ja)
Inventor
Yoshiteru Minoda
蓑田 義輝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2162662A priority Critical patent/JPH0454403A/en
Publication of JPH0454403A publication Critical patent/JPH0454403A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
  • Control Of Linear Motors (AREA)

Abstract

PURPOSE:To detect the gap of the linear motor continuously not only during its stop, but also in its operation by measuring variation in the magnetic flux density in the gap by a magnetic flux detecting means. CONSTITUTION:When the primary coil 1 of the linear motor where a magnetic flux detector 5 is set moves, the magnetic flux density between the primary coil 2 and secondary coil 2 is measured continuously and amplified by a magnetic flux density measuring amplifier 6. The amplified density is inputted to an arithmetic processing part 8 by a moving cable 12 through an input interface device 7. The gap length output obtained by comparing the input magnetic flux density detection quantity with data for gap length conversion from a storage part 9 is displayed on a display device 11. Consequently, the gap of the linear motor in operation can be measured automatically and remotely.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明はリニアモータの空隙を維持、管理するだめの空
隙計測を、自動的に行なう空隙計測装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a gap measuring device that automatically measures a gap for maintaining and managing a gap in a linear motor.

[従来の技術] 従来、製造段階において、空隙維持用の支持機構にて空
隙を機械的に保った状態での空隙計測は行なわれていた
が、使用中の空隙計測はほとんど行なわれていなかった
[Conventional technology] Conventionally, gap measurements were performed during the manufacturing stage while the gap was mechanically maintained using a support mechanism for maintaining the gap, but gap measurement was rarely performed during use. .

しかるに大型のリニアモータを構成すべく、次コイルと
二次コイルとを独立に現地組み立てしたような場合には
、定期的な空隙チエツクが必要となる。空隙計測手段と
しては、リニアモータを停止した状態で、隙間ゲージ等
にて数点計測を実施しているのが一般的である。
However, if the secondary coil and the secondary coil are assembled independently on-site to construct a large linear motor, periodic air gap checks are required. As a gap measuring means, it is common to measure several points using a gap gauge or the like while the linear motor is stopped.

[発明が解決しようとする課題] 上記した従来の計測手段には次のような欠点がある。[Problem to be solved by the invention] The conventional measuring means described above has the following drawbacks.

(1)人間が装置本体に近づいて、空隙を直接計測する
ものであるため、必然的に停止中のリニアモータの空隙
を計測することになる。しかるにリニアモータは、運転
中に一次、二次コイル間に強力な磁気吸引力か作用する
。このため、停止中のリニアモータ空隙より運転中のリ
ニアモータ空隙の方が狭くなる傾向にある。特に大型リ
ニアモータの場合、数10トン(ton)の吸引力が作
用する。したがって真の空隙は停止状態では計れない。
(1) Since a person approaches the main body of the device and directly measures the air gap, it is inevitable that the air gap of the stopped linear motor will be measured. However, in a linear motor, a strong magnetic attraction force acts between the primary and secondary coils during operation. For this reason, the linear motor gap during operation tends to be narrower than the linear motor gap when the linear motor is stopped. In particular, in the case of a large linear motor, a suction force of several tens of tons is applied. Therefore, the true air gap cannot be measured in a stationary state.

(2)空隙の計測チエツクは、リニアモータ全走行範囲
について実施するのが理想であるか、計測ポイントを絞
って実施していた。このため、計測データがラフになる
。しかも人為的計測手段によるものであるため、計測作
業に手間がかかると共に、ミリメートル・オーダの計測
であるため、人為的計測ミスの発生は避けがたい。
(2) Ideally, the air gap measurement check should be performed over the entire travel range of the linear motor, but it was performed by narrowing down the measurement points. Therefore, the measurement data becomes rough. Moreover, since the measurement is performed by an artificial measurement means, the measurement work is time-consuming, and since the measurement is on the order of millimeters, the occurrence of human measurement errors is unavoidable.

(3)空隙計測は、定期的なポイント計測であるため、
経年変化による異常(地盤沈下、支持機構の摩耗等)を
早期に発見することが困難である。
(3) Since air gap measurement is a regular point measurement,
It is difficult to detect abnormalities due to aging (ground subsidence, wear of support mechanisms, etc.) at an early stage.

そこで本発明の目的は、停止中のみならず運転中の空隙
計測か可能であり、真の空隙を検知できる上、高精度で
連続的な計測データを得ることができ、経年変化による
異常を早期に発見することのできるリニアモータの空隙
計測装置を提供することにある。
Therefore, the purpose of the present invention is to make it possible to measure air gaps not only when stopped but also during operation, to detect true air gaps, and to obtain continuous measurement data with high accuracy, so that abnormalities due to aging can be detected early. An object of the present invention is to provide a gap measuring device for a linear motor that can be found in the following.

[課題を解決するための手段] 本発明は上記課題を解決し目的を達成するために、次の
ような手段を講した。
[Means for Solving the Problems] In order to solve the above problems and achieve the objects, the present invention takes the following measures.

空隙の変化が電磁気特性の変化として現われる点に着目
し、磁束検出器を用い、空隙の変化を磁束密度の変化と
してとらえるようにした。したがって間接的に空隙の計
測、監視ができるようになる。なお上記検出器をリニア
モータ移動コイル側に設けるようにすれば、リニアモー
タの走行中に連続的に上記磁束密度の変化を検出記録す
ることが可能となる。
Focusing on the fact that changes in the air gap appear as changes in electromagnetic properties, we used a magnetic flux detector to detect changes in the air gap as changes in magnetic flux density. Therefore, air gaps can be measured and monitored indirectly. If the detector is provided on the moving coil side of the linear motor, it is possible to continuously detect and record changes in the magnetic flux density while the linear motor is running.

[作用] 空隙の変化による磁束密度の変化は次式にて表わせる。[Effect] The change in magnetic flux density due to the change in air gap can be expressed by the following equation.

G a = (A T X μO) / B mただし
、 Ga:リニアモーター次、二次コイル間空隙長(m) AT:空隙のアンペアターン(A T)μ。:真空の透
磁率4 yr X 10−’ (H/m)Bm:空隙磁
束密度(gauss) (1)前式より空隙の磁束密度Bmを計測することによ
り、空隙長Gaを計測できることか解る。
Ga = (A T : Vacuum magnetic permeability 4 yr

なお空隙のアンペアターンATは運転時の一次電流を一
定にすることにより一定として取り扱う。
Note that the ampere turn AT of the air gap is treated as constant by keeping the primary current constant during operation.

(2)空隙磁束密度Bmは、磁束検出器(主にホール素
子)を空隙部に取付けることにより計測すれば良い。
(2) The air gap magnetic flux density Bm may be measured by attaching a magnetic flux detector (mainly a Hall element) to the air gap.

[実施例] 第1図は本発明に係るリニアモータ空隙自動計測装置の
一実施例を示す図である。
[Embodiment] FIG. 1 is a diagram showing an embodiment of an automatic linear motor gap measuring device according to the present invention.

リニアモーター次コイル1(これは移動側に取付けられ
る)と、二次コイル2(これは固定側に取付けられる)
との空隙3は、支持機構4にて規定値に保たれる。磁束
検出器5はセンサ部が空隙部3内に位置するようにリニ
アモーター次コイル1に取り付け6れる。
Linear motor secondary coil 1 (this is installed on the moving side) and secondary coil 2 (this is installed on the stationary side)
The gap 3 between the two is maintained at a specified value by the support mechanism 4. The magnetic flux detector 5 is attached 6 to the linear motor secondary coil 1 such that the sensor portion is located within the air gap 3.

リニアモーター次コイル1が移動することにより、磁束
検出器5をセットしているリニアモーター次コイル1と
二次コイル2との間の磁束密度が連続的に計測される。
As the linear motor secondary coil 1 moves, the magnetic flux density between the linear motor secondary coil 1 and the secondary coil 2, on which the magnetic flux detector 5 is set, is continuously measured.

この計測信号は磁束密度計測アンプ6にて取り扱い易い
レベルまで増幅される。この増幅された信号は、移動ケ
ーブル12(テレメータ等の無線伝送手段を用いても良
い)にて、入力インターフェイス装置7を介して、演算
処理部8へ入力される。演算処理部8では入力した磁束
密度検出量と、空隙長換算用データを予め記憶している
記憶部9からのデータとの比較演算処理が行なわれる。
This measurement signal is amplified by the magnetic flux density measurement amplifier 6 to a level that is easy to handle. This amplified signal is input to the arithmetic processing unit 8 via the input interface device 7 via the mobile cable 12 (a wireless transmission means such as a telemeter may be used). The arithmetic processing section 8 performs a computation process to compare the input magnetic flux density detection amount with data from the storage section 9 which stores air gap length conversion data in advance.

この比較演算処理により得られた空隙長出力は、出力イ
ンターフェイス装置10を介してデイスプレィ装置(C
RT、プリンタ等)11へ送り込まれて表示される。か
くして自動的にかつ遠隔的に、運転中のリニアモータの
空隙を計測できる。
The gap length output obtained by this comparison calculation process is sent to a display device (C
RT, printer, etc.) 11 and displayed. In this way, the air gap of the linear motor during operation can be measured automatically and remotely.

第2図は信号処理のもようを具体的に示す図である。−
次コイル1と二次コイル2との間にセットした磁束検出
器5によって走行距離(又は二次磁極位置)に対する磁
束密度を計測すれば、走行距離と磁束密度の関係データ
r6−OJが得られる。このデータr6−OJと、予め
記憶部9に記憶させておいた磁束密度と空隙の相関デー
タ「9−1」、および二次磁極位置と磁束密度の相関デ
ータ「9−2jとを演算処理部8で比較演算処理するこ
とにより、二次磁極位置に対する空隙長gの計測結果8
−0を連続的にデイスプレィ装置11に表示できる。ま
た各計測データを記憶しておき、前回計測データと今回
計測データとの引算処理等を行うことにより、経年変化
等を簡単にチエツクできる。
FIG. 2 is a diagram specifically showing how signal processing is performed. −
By measuring the magnetic flux density with respect to the traveling distance (or secondary magnetic pole position) using the magnetic flux detector 5 set between the secondary coil 1 and the secondary coil 2, the relationship data r6-OJ between the traveling distance and the magnetic flux density can be obtained. . This data r6-OJ, the correlation data “9-1” between the magnetic flux density and the air gap stored in the storage unit 9 in advance, and the correlation data “9-2j” between the secondary magnetic pole position and the magnetic flux density are processed by the arithmetic processing unit. By performing the comparison calculation in step 8, the measurement result of the air gap length g with respect to the secondary magnetic pole position is obtained in step 8.
-0 can be displayed continuously on the display device 11. Furthermore, by storing each measurement data and performing subtraction processing between the previous measurement data and the current measurement data, it is possible to easily check changes over time.

本実施例によれば次のような作用効果が期待できる。According to this embodiment, the following effects can be expected.

(1)リニアモータ運転中においてリアルタイムで空隙
計測が可能である。
(1) It is possible to measure air gaps in real time while the linear motor is operating.

(2)リニアモータに人が近づくことな(遠隔計測が可
能である。
(2) Do not allow people to approach the linear motor (remote measurement is possible).

(3)計測作業に専門の作業者を必要とせず、だれでも
、何時でも計測可能である。
(3) Measurement work does not require specialized workers, and anyone can perform measurements at any time.

(4)磁束密度計測手段を利用しているので、高精度な
空隙計則が可能である。
(4) Since magnetic flux density measuring means is used, highly accurate air gap measurement is possible.

一次コイルと二次コイルとを、実機と等価な模擬鉄板を
介して磁気回路を構成した実験では、空隙規定値8mm
にて磁束密度を7000ga u sSとした場合、空
隙が±1mm変化すると、釣上500ga u s s
の変化量として検出できた。
In an experiment in which a magnetic circuit was constructed between the primary coil and the secondary coil via a simulated iron plate equivalent to that of the actual machine, the specified air gap was 8 mm.
When the magnetic flux density is 7000gaussS, if the air gap changes by ±1mm,
It could be detected as the amount of change in .

(5)磁束密度は連続的にアナログ量として検出できる
ので、これを基準データと照合することにより、空隙の
経年変化による異常を早期発見てきると共に、リニアモ
ータシステム全体の異常を知る手掛りも得ることができ
る。
(5) Magnetic flux density can be detected continuously as an analog quantity, so by comparing it with reference data, it is possible to detect abnormalities due to aging of the air gap at an early stage, and it also provides clues to abnormalities in the entire linear motor system. be able to.

なお、本発明は上記実施例に限定されるものではなく、
本発明の要旨を逸脱しない範囲で種々変形実施可能であ
るのは勿論である。
Note that the present invention is not limited to the above embodiments,
Of course, various modifications can be made without departing from the spirit of the invention.

[発明の効果] 本発明によれば、磁束密度検出手段により空隙の磁束密
度の変化を計測することによって、リニアモータの空隙
を間接的に自動計測するようにしたので、停止中のみな
らず運転中の空隙計測が可能であり、真の空隙を検知で
きる上、高精度で連続的な計測データを得ることかでき
、経年変化による異常を早期に発見することのできるリ
ニアモータの空隙計測装置を提供できる。
[Effects of the Invention] According to the present invention, the air gap of the linear motor is indirectly and automatically measured by measuring the change in the magnetic flux density of the air gap using the magnetic flux density detection means. We have developed a linear motor gap measurement device that is capable of measuring air gaps inside the motor, detecting true air gaps, and obtaining continuous measurement data with high precision, allowing early detection of abnormalities caused by aging. Can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成を示す図、第2図は同
実施例の信号処理の具体例を示す図である。 1・・・リニアモーター次コイル 2・・・リニアモー
タ二次コイル 3・・・空隙 4・・・支持機構 5・
・・磁束検出器 6・・・磁束密度計測アンプ 7・・
・入力インターフェイス装置 8・・・演算処理部 9
・・・記憶部 10・・・出力インターフェイス部 1
1・・・デイスプレィ装置 出願人代理人  弁理士 鈴江武彦 0・インタフェイスm@ デイスプレィ装置 第1図
FIG. 1 is a diagram showing the configuration of an embodiment of the present invention, and FIG. 2 is a diagram showing a specific example of signal processing of the embodiment. 1... Linear motor secondary coil 2... Linear motor secondary coil 3... Gap 4... Support mechanism 5.
...Magnetic flux detector 6...Magnetic flux density measurement amplifier 7...
・Input interface device 8... Arithmetic processing unit 9
...Storage section 10...Output interface section 1
1...Display device applicant's agent Patent attorney Takehiko Suzue0・Interface m@Display device Figure 1

Claims (1)

【特許請求の範囲】[Claims] リニアモータの一次コイルと二次コイルとの間の空隙を
規定空隙に維持、管理すべく、磁束密度検出器を備えた
磁束密度計測装置を用い、空隙の磁束密度の変化を計測
することにより、リニアモータの空隙を間接的に自動計
測する手段を備えてなることを特徴とするリニアモータ
の空隙計測装置。
In order to maintain and manage the air gap between the primary coil and the secondary coil of the linear motor at a specified air gap, a magnetic flux density measuring device equipped with a magnetic flux density detector is used to measure changes in the magnetic flux density of the air gap. A gap measuring device for a linear motor, comprising a means for indirectly and automatically measuring a gap in a linear motor.
JP2162662A 1990-06-22 1990-06-22 Gap measuring instrument for linear motor Pending JPH0454403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2162662A JPH0454403A (en) 1990-06-22 1990-06-22 Gap measuring instrument for linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2162662A JPH0454403A (en) 1990-06-22 1990-06-22 Gap measuring instrument for linear motor

Publications (1)

Publication Number Publication Date
JPH0454403A true JPH0454403A (en) 1992-02-21

Family

ID=15758896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2162662A Pending JPH0454403A (en) 1990-06-22 1990-06-22 Gap measuring instrument for linear motor

Country Status (1)

Country Link
JP (1) JPH0454403A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103926532A (en) * 2013-01-11 2014-07-16 中国科学院理化技术研究所 Linear motor performance parameter detection system
CN104181467A (en) * 2014-08-29 2014-12-03 东南大学 Portable linear motor multi-axis linkage measuring and controlling system
US20150147469A1 (en) * 2004-07-21 2015-05-28 Jgc Catalysts And Chemicals Ltd. Method of producing silica-based particles
WO2019238276A1 (en) * 2018-06-15 2019-12-19 Krones Ag Method and apparatus for monitoring the wear of a long-stator linear motor system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150147469A1 (en) * 2004-07-21 2015-05-28 Jgc Catalysts And Chemicals Ltd. Method of producing silica-based particles
US10239759B2 (en) * 2004-07-21 2019-03-26 Jgc Catalysts And Chemicals Ltd. Method of producing silica-based particles
CN103926532A (en) * 2013-01-11 2014-07-16 中国科学院理化技术研究所 Linear motor performance parameter detection system
CN104181467A (en) * 2014-08-29 2014-12-03 东南大学 Portable linear motor multi-axis linkage measuring and controlling system
WO2019238276A1 (en) * 2018-06-15 2019-12-19 Krones Ag Method and apparatus for monitoring the wear of a long-stator linear motor system
US11555857B2 (en) 2018-06-15 2023-01-17 Krones Ag Method and apparatus for monitoring the wear of a long stator linear motor system

Similar Documents

Publication Publication Date Title
US4837489A (en) Magnetometer-based locator and identifier for ferrous objects having unknown shapes
US8115480B2 (en) Magnetic body detector
NO152271B (en) PROCEDURE AND DISTANCE MEASUREMENT
JPH0454403A (en) Gap measuring instrument for linear motor
US7348773B2 (en) Method and device for assessing ambient conditions of an installation site of a magnetic resonance imaging device
CN109356005A (en) Paver screed balances TT&C system and paver
JPS6298287A (en) Metal detecting device
RU2246144C2 (en) Method and device for checking gas gap in process channel of uranium-graphite reactor
JP3019714B2 (en) Measuring device for incremental permeability of magnetic steel sheet
JPH1078411A (en) Method and device for measuring magnetic powder concentration
RU108639U1 (en) DEVICE FOR DETERMINING THE COERCITIVE FORCE OF FERROMAGNETIC PRODUCTS
JPH04120456A (en) Nondestructive inspecting apparatus by skid
JP2916692B2 (en) Magnetic shield room performance measurement method and measurement system
JP2000088571A (en) Detecting method for position of moving body at inside of pipe
JPH07181265A (en) Radioactive ray measuring instrument
US7430275B2 (en) Method and apparatus for measuring the diameter of a steel reinforcement rod in concrete
JP2577456B2 (en) Thickness measuring device
JPH0353111A (en) Measuring instrument
JPH04208892A (en) Method and device for measuring number of cords
RU111686U1 (en) Coercimeter Sensor
JP6152008B2 (en) Magnetic detector
SU1659942A1 (en) Method and apparatus for detecting non-uniformity of magnetic field
JP3383827B2 (en) Magnetic measuring method and magnetic measuring device
JP3054716U (en) Automatic liquid level gauge
SU885938A1 (en) Magnetic field strength measuring method