JPH0454383A - Control valve - Google Patents

Control valve

Info

Publication number
JPH0454383A
JPH0454383A JP16538990A JP16538990A JPH0454383A JP H0454383 A JPH0454383 A JP H0454383A JP 16538990 A JP16538990 A JP 16538990A JP 16538990 A JP16538990 A JP 16538990A JP H0454383 A JPH0454383 A JP H0454383A
Authority
JP
Japan
Prior art keywords
valve
divided
pair
flowing liquid
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16538990A
Other languages
Japanese (ja)
Other versions
JP2548429B2 (en
Inventor
Harumasa Tozaki
戸崎 治正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAZU KOGYO KK
Original Assignee
HAZU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAZU KOGYO KK filed Critical HAZU KOGYO KK
Priority to JP2165389A priority Critical patent/JP2548429B2/en
Publication of JPH0454383A publication Critical patent/JPH0454383A/en
Application granted granted Critical
Publication of JP2548429B2 publication Critical patent/JP2548429B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lift Valve (AREA)

Abstract

PURPOSE:To restrain enlargement of an overall structure by precisely adjusting pressure and flow rate of a flowin liquid by means of constituting the control valve in the title so that the flowing liquid flown in a valve box is divided and flown through in each of divided flowing liquid ports having a reduced opening area and each of the divided flowing liquid ports is individually opened and closed by each of divided valve bodies. CONSTITUTION:A partition wall 6 to divide an inflow chamber 14 communicated through to an inflow port 1a and an outflow chamber 15 communicated through to an outflow port b is formed in a valve box 1 having the inflow port 1a connected to an upstream side duct line and the outflow port 1b connected to a downstream side duct line. Two pairs of divided flowing liquid ports 9A, 9B provided in parallel concentrically and having an opening area divided from an opening area of the inflow port 1a are opened respectively against a pair of valve rods 5 driven and controlled by a control motor 4 and a pair of dividing valve bodies 16, 17 which synchronously open and close the pair of the divided flowing liquid ports 9A, 9B are respectively connected to both of these valve rods 5 on this partition wall 6. Consequently, it is possible to precisely adjust pressure and flow rate of the flowing liquid by way of restraining radical change of the pressure and the flow rate of the flowing liquid and simultaneously possible to secure a passing liquid area at the time of overall opening by way of restraining enlargement of an overall structure.

Description

【発明の詳細な説明】 E産業上の利用分野コ この発明は水道管路等の配水管路において、昼夜での需
要量差や、地域的な需給量差に対する対応、高所、低所
における給水量の標準化、水槽内における一定水位の保
持、節水時の給水量管理、緊急時における管路の自動遮
断等を目的として装設される制御弁に関する。
[Detailed Description of the Invention] E Industrial Field of Application This invention is applicable to water distribution pipes such as water pipes, dealing with differences in demand between day and night, regional differences in supply and demand, and in high and low places. The present invention relates to a control valve installed for the purpose of standardizing the amount of water supplied, maintaining a constant water level in a water tank, managing the amount of water supplied when saving water, automatically shutting off pipes in an emergency, etc.

[従来の技術] 流水口を絞って流液の圧力、流量を制御する場合に、管
路の口径(呼ひ口径)とほぼ等しい口径を有する流水口
を弁体によって開閉する大口径形制御弁や、多数個の流
水孔を有する板状乃至円筒状の弁体を移動させて開孔度
を増減し、流量を制御する多孔形制御弁等が使用されて
いる。
[Prior art] A large-diameter control valve that opens and closes a water port having a diameter approximately equal to the diameter (nominal diameter) of a pipe line using a valve body when controlling the pressure and flow rate of a flowing liquid by restricting the water flow port. Also used are multi-hole control valves that control the flow rate by moving a plate-shaped or cylindrical valve body having a large number of water flow holes to increase or decrease the degree of aperture.

[発明か解決しようとする課題] 前記大口径形制御弁では流水口の口径とほぼ等しい直径
を有する弁座と弁体とによって流水口を開閉するので、
圧力及び流量の精細な制御が困難で、止水性や耐久性が
低下する不具合があり、また、前記多孔形制御弁では弁
体の全開孔面積が管路面積の約30%に止まり、圧力損
失及び流量損失が大きくなる不具合があり、また、弁体
の全開孔面積を100%に拡大した場合には弁機構全体
の構造が過大となってコスト高となる不具合や、流量不
足のために主管路には設置し得ない不具合や、弁の構造
上圧力に対する歪みか大きくなって水密性が低下する等
の不具合かあった。
[Problem to be solved by the invention] In the large-diameter control valve, the water inlet is opened and closed by a valve seat and a valve body having a diameter approximately equal to the aperture of the water inlet.
Precise control of pressure and flow rate is difficult, resulting in reduced water-stop performance and durability.In addition, in the multi-hole type control valve, the total open area of the valve body is only about 30% of the pipe area, resulting in pressure loss. In addition, if the total aperture area of the valve body is expanded to 100%, the structure of the entire valve mechanism becomes excessively large, resulting in high costs, and the main pipe is damaged due to insufficient flow. There were problems such as the valve not being able to be installed in roads, and the structure of the valve causing greater distortion in response to pressure, reducing watertightness.

本発明の課題は前記不具合を解消して精細な制御か可能
で制御システムの多様化を図り得る制御弁を提供するこ
とである。
An object of the present invention is to provide a control valve that eliminates the above-mentioned problems, allows precise control, and allows diversification of control systems.

し課題を解決するための手段] 本発明の制御弁は上流側管路に接続される流入口と、下
流側管路に接続される流出口とを有する弁箱内にはこの
弁箱内を前記流入口に連通された流入室と、前記流出口
に連通された流出室とに区画する仕切り壁を形成してこ
の仕切り壁には同心状に並設されて前記流入口の開口面
積を分割した開口面積を有する少なくきも1対の分割流
液口を、アクチュエータによって駆動制御される弁棒に
対向して開口するとともに、この弁棒には1対の前記分
割流液口を同期的に開閉する1対の分割弁体を連結した
構成を有する。
Means for Solving the Problems] The control valve of the present invention includes a valve box having an inlet connected to an upstream pipe line and an outlet connected to a downstream pipe line. A partition wall is formed to divide the inflow chamber into an inflow chamber communicating with the inflow port and the outflow chamber communicated with the outflow port, and the partition walls are arranged concentrically in parallel to divide the opening area of the inflow port. At least one pair of split-flow ports having an opening area of 100 mm are opened facing a valve stem driven and controlled by an actuator, and the pair of split-flow ports are synchronously opened and closed on this valve stem. It has a configuration in which a pair of split valve bodies are connected.

[作 用コ 弁箱内に形成された仕切り壁には弁箱の流入口の開口面
積を分割した開口面積を有する少なくとも1対の分割流
液口を同心状に開口してこの1対の分割流液口をアクチ
ュエータによって駆動制御される弁棒に連結したl対の
分割弁体によって同期的に開閉し、弁箱内の複数の部位
で流液の圧力及び流量を個々に調整する。
[Function] At least one pair of divided flow ports having an opening area divided by the opening area of the inlet of the valve box are opened concentrically in the partition wall formed in the valve box to divide the pair of divided flow ports. The liquid flow ports are synchronously opened and closed by one pair of divided valve bodies connected to a valve stem driven and controlled by an actuator, and the pressure and flow rate of the liquid are individually adjusted at multiple locations within the valve box.

[発明の効果] 本発明は前記したように構成したことによって、弁箱内
へ流入した流液か縮少された開口面積を有する各分割流
液口内を分配されて流通し、各分割流液口が各分割弁体
によって個々に開閉されるので、流液の圧力や流量の急
激な変化を抑制して流液の圧力や流量を精細に調整する
ことかでき、また全体構造の大型化を抑制して全開時の
通液面積を確保することができる。
[Effects of the Invention] The present invention is configured as described above, so that the liquid flowing into the valve box is distributed and distributed through each divided flow port having a reduced opening area, and each divided flow liquid Since the ports are opened and closed individually by each split valve body, rapid changes in the pressure and flow rate of the flowing liquid can be suppressed and the pressure and flow rate of the flowing liquid can be precisely adjusted, and the overall structure can be made larger. It is possible to suppress this and secure the liquid passage area when fully opened.

また、各分割弁体をアクチュエータによって駆動制御し
て各分割流液口を開閉制御するので、制御弁を各種の制
御システムに組み込むことができ、下流圧力の一定制御
、末端圧力の一定制御、一定流量制御、上流水位乃至下
流水位の一定制御等の各種制御を経済的に遂行し得る効
果がある。
In addition, each divided valve body is driven and controlled by an actuator to control the opening and closing of each divided flow liquid port, so the control valve can be incorporated into various control systems, such as constant control of downstream pressure, constant control of terminal pressure, This has the effect of economically performing various controls such as flow rate control and constant control of upstream water level and downstream water level.

また、分割弁体対の個数及び各対の分割弁体の駆動態様
を目的に合わせて変更して流液の圧力及び流量の制御態
様を多様化することができる。
Furthermore, the number of pairs of divided valve bodies and the driving manner of each pair of divided valve bodies can be changed according to the purpose, thereby making it possible to diversify the manner of controlling the pressure and flow rate of the fluid.

[実施例] 次に、本発明が2連形の制御弁に適用された一実施例を
第1図、第2図に従って説明する。
[Embodiment] Next, an embodiment in which the present invention is applied to a double control valve will be described with reference to FIGS. 1 and 2.

配水管路内を流通する流液の圧力及び流量をコントロー
ルするために装設された制御弁Vにおいて、配水管路の
途中に接続されたほぼ横形円筒状の弁箱1上には回転動
作を昇降動作に変換する伝動機構2a、2aがそれぞれ
内設された1対のヨーク2,2が設置され、右側のヨー
ク2上にはサーボモータ等の制御モータ4が付設されて
制御モータ4によって回転駆動される減速機3Aが設置
されるとともに、左側のヨーク2上には制御モータ4の
出力軸に連結された入力軸によってモータ付減速機3A
と同期して回転駆動される減速機3Bが設置され、両伝
動機構2aの下端には並行状に垂設されて下端部が弁箱
I内に突入された1対の弁棒5,5の上端部かそれぞれ
連結されている。
In a control valve V installed to control the pressure and flow rate of liquid flowing in a water distribution pipe, a valve box 1 having a substantially horizontal cylindrical shape connected in the middle of the water distribution pipe has a rotary motion. A pair of yokes 2, 2 each having a transmission mechanism 2a, 2a for converting the movement up and down is installed, and a control motor 4 such as a servo motor is attached to the right yoke 2, and the control motor 4 rotates the yoke. A speed reducer 3A to be driven is installed, and a motorized speed reducer 3A is mounted on the left yoke 2 by an input shaft connected to an output shaft of a control motor 4.
A speed reducer 3B is installed which is rotated in synchronization with the transmission mechanism 2a, and a pair of valve rods 5, 5 are installed vertically in parallel at the lower ends of both transmission mechanisms 2a and have their lower ends thrust into the valve box I. The upper ends are connected to each other.

弁箱1の左右端部には上流側管路に接続された流入口1
aと、下流側管路に接続された流出口1bとがそれぞれ
開口されるとともに、弁箱l内には上下に離隔してそれ
ぞれ水平状に形成された上下水平部6a、6aと、断面
が円弧状に形成されて雨水平部6aの左端部にそれぞれ
連接された湾曲部6bと、雨水平部6aの右端部と弁箱
1の上下内壁面とに傾斜状態でそれぞれ連接された上下
1対の傾斜部6c、6cとを有する仕切り壁6が形設さ
れている。
At the left and right ends of the valve box 1, there is an inlet 1 connected to the upstream pipe line.
a and an outflow port 1b connected to the downstream pipe line are opened, and in the valve box l there are upper and lower horizontal parts 6a, 6a which are vertically spaced apart and formed horizontally, respectively, and a cross section. A curved part 6b formed in an arc shape and connected to the left end of the rain horizontal part 6a, and a pair of upper and lower parts connected in an inclined state to the right end of the rain horizontal part 6a and the upper and lower inner wall surfaces of the valve box 1, respectively. A partition wall 6 having inclined portions 6c, 6c is formed.

弁箱1内には流入口1aに連通された流入室14と、流
出口1bに連通された流出室15とが仕切り壁6によっ
て区画形成されている。
Inside the valve box 1, an inflow chamber 14 communicating with the inflow port 1a and an outflow chamber 15 communicating with the outflow port 1b are defined by a partition wall 6.

仕切り壁6の上下水平部6aにはそれぞれ上下同心状に
並設された2対のリング状の環体7A。
In the upper and lower horizontal parts 6a of the partition wall 6, two pairs of ring-shaped annular bodies 7A are arranged vertically and concentrically.

7Bが取付けられ、仕切り壁6には両弁棒5にそれぞれ
対向して同心状に並設されて流入口1aの開口面積を分
割した開口面積をそれぞれ有する上下2対の分割流液口
9A、9Bが開口され、本例ては各分割流液口9A、9
Bの開口面積は流入口1aの開口面積の約1/4に設定
されている。
7B is attached to the partition wall 6, two pairs of upper and lower divided flow liquid ports 9A are arranged concentrically in parallel facing both the valve rods 5, and each have an opening area that is divided from the opening area of the inlet 1a. 9B is opened, and in this example, each divided flow liquid port 9A, 9
The opening area of B is set to about 1/4 of the opening area of the inlet 1a.

上側の両環体7Aの上端面には上分割流液口9Aの出口
部9bの回りに周設された下弁座8Aかそれぞれ水平状
に形成されるとともに、下側の両環体7Bの内周面の上
端縁には上分割流液口9Bの出口部の回りに周設された
下弁座8Bかそれぞれ下弁座8Aと同心状に形成されて
いる。
Lower valve seats 8A are formed horizontally around the outlet portion 9b of the upper divided flow port 9A on the upper end surfaces of both upper annular bodies 7A, and lower valve seats 8A are formed horizontally on the upper end faces of both upper annular bodies 7B. At the upper end edge of the inner circumferential surface, lower valve seats 8B are formed around the outlet of the upper divided flow port 9B and are concentric with the lower valve seats 8A.

2対の分割流液口9A、9Bを一斉に開閉制御するため
に弁箱1内に装入されて制御モータ4によって同期的に
駆動制御される1対の複合弁機構12.12は弁棒5の
下端に組付けられて上分割流液口9Aを開閉する上分割
弁体16と上分割弁体16に取付けられて垂下された連
結棒18を介して上分割弁体16に連結されて上分割流
液口9Bを開閉する上分割弁体17とをそれぞれ備えて
いる。
A pair of compound valve mechanisms 12 and 12 are inserted into the valve body 1 and driven and controlled synchronously by the control motor 4 in order to open and close the two pairs of divided flow ports 9A and 9B all at once. The upper divided valve body 16 is attached to the lower end of the upper divided flow port 9A to open and close the upper divided flow port 9A, and the upper divided valve body 16 is connected to the upper divided valve body 16 via a hanging connecting rod 18 attached to the upper divided valve body 16. The upper divided valve body 17 opens and closes the upper divided flow port 9B.

上分割弁体16において、弁棒5の下端には有蓋円筒状
でボス部20aが上端に突出形成された第1弁体20が
ボス部20aに螺嵌された取付ねし23を介して共同上
下動可能に取付けられ、この第1弁体20の周縁部には
円筒状で下弁座8の内径DIより拡大された内径D2を
有する嵌合部21が形成され、この嵌合部21の下端に
は内方へ若干突出された掛止縁22が周状に形成されて
いる。
In the upper divided valve body 16, a first valve body 20, which has a closed cylindrical shape and has a boss portion 20a projecting from the upper end, is connected to the lower end of the valve stem 5 via a mounting screw 23 screwed into the boss portion 20a. The first valve body 20 is attached to be movable up and down, and a cylindrical fitting part 21 having an inner diameter D2 larger than the inner diameter DI of the lower valve seat 8 is formed on the peripheral edge of the first valve body 20. At the lower end, a circumferential retaining edge 22 is formed that projects slightly inward.

第1弁体20の下方に設置されて嵌合部21の内径D2
と等しい外径を有する第2弁体24は第1弁体20の嵌
合部21内に上下方向への摺動可能に密嵌されている。
The inner diameter D2 of the fitting part 21 is installed below the first valve body 20.
The second valve body 24 having an outer diameter equal to that is tightly fitted into the fitting portion 21 of the first valve body 20 so as to be slidable in the vertical direction.

この第2弁体24は外周縁か掛止縁22に掛止された状
態で第1弁体2oに結合されたピストン25と、上分割
流液口9A内を流通する流液の流量を設定するために上
分割流液口9A内に密嵌状に嵌挿されて弁座8の内径D
1と等しい外径を有する羽根部26とを備え、第2弁体
24は弁棒5の下端に外嵌されたスプリング29で閉止
方向側へ付勢されている。ピストン25の下面には弾性
材で円輪板状に形成されたシール部材27が添設され、
シール部材27及び羽根部26はピストン25の下面の
中心部に突設されたねじ部25aに上端部か螺嵌された
連結棒18によってピストン25に締結されている。
This second valve body 24 is hooked to the outer peripheral edge or the locking edge 22, and sets the flow rate of the liquid flowing through the piston 25 coupled to the first valve body 2o and the upper divided flow liquid port 9A. In order to
1, and the second valve body 24 is biased toward the closing direction by a spring 29 fitted onto the lower end of the valve stem 5. A seal member 27 made of an elastic material and formed in the shape of a circular plate is attached to the lower surface of the piston 25.
The seal member 27 and the vane portion 26 are fastened to the piston 25 by a connecting rod 18 whose upper end is screwed into a threaded portion 25a protruding from the center of the lower surface of the piston 25.

シール部材27の下面でピストン25の下面の外周縁付
近には下弁座8Aに接離するシール面28か環状に形成
される一方、羽根部26には第2弁体24か上方へ移動
するに伴って羽根部26を貫流する流液の流量が漸増す
るようにそれぞれほぼ逆V形状で切欠幅が上方から下方
へ漸増した形状を有し、周方向へ等間隔で配列された複
数個の切欠部26aが凹設されている。
On the lower surface of the sealing member 27, near the outer peripheral edge of the lower surface of the piston 25, a sealing surface 28 is formed in an annular shape that approaches and separates from the lower valve seat 8A, while on the vane portion 26 there is formed a sealing surface 28 that moves upwardly. In order to gradually increase the flow rate of the liquid flowing through the blade portion 26 as the flow rate increases, a plurality of grooves each having a substantially inverted V shape with a notch width gradually increasing from above to below are arranged at equal intervals in the circumferential direction. A notch 26a is recessed.

ピストン25の上面の外周縁25bと、第1弁体20の
蓋部の下面の外周縁20bとの間にはシール面28が下
弁座8Aから離隔したときに上方への第2弁体24の遊
動を許容する隙間30が形成されるとともに、第1弁体
20の内部にはピストン25によって密閉された内圧弁
室31が形成されている。
When a sealing surface 28 is separated from the lower valve seat 8A between the outer circumferential edge 25b of the upper surface of the piston 25 and the outer circumferential edge 20b of the lower surface of the lid portion of the first valve body 20, the second valve body 24 moves upwardly. A gap 30 is formed to allow movement of the first valve element 20, and an internal pressure valve chamber 31 sealed by a piston 25 is formed inside the first valve body 20.

第2弁体24には内圧弁室31内と上分割流液口9Aの
入口部9aとを連通ずる連通孔32が垂直状に貫設され
、内圧弁室31内には連通孔32を通じて内圧弁室31
内へ流入した流液か充満される。
A communication hole 32 that communicates the inside of the internal pressure valve chamber 31 with the inlet portion 9a of the upper divided flow port 9A is vertically provided in the second valve body 24. Pressure valve chamber 31
It is filled with liquid that has flowed into it.

弁棒5及び第1弁体20か上昇端へ移動したときには第
2弁体24は第1弁体2oとの間の隙間30か最大とな
った状態で第1弁体20とともに上昇端へ移動してシー
ル面28か下弁座8Aの上方へ変位しかつ羽根部26の
下端部が上分割流液口9A内に嵌挿されて上分割流液口
9Aの流通面積か最大となり、弁棒5及び第1弁体2o
が下降するに伴って羽根部26と上分割流液口9Aとの
相対位置か変化して上分割流液口9Aの流通面積が漸減
する。
When the valve stem 5 and the first valve body 20 move to the rising end, the second valve body 24 moves to the rising end together with the first valve body 20 with the gap 30 between it and the first valve body 2o reaching its maximum. Then, the seal surface 28 is displaced upward of the lower valve seat 8A, and the lower end of the vane portion 26 is fitted into the upper divided flow port 9A, and the flow area of the upper divided flow port 9A becomes maximum, and the valve stem 5 and the first valve body 2o
As the flow rate lowers, the relative position between the blade portion 26 and the upper divided flow port 9A changes, and the flow area of the upper divided flow port 9A gradually decreases.

弁棒5及び第1弁体20か下降端へ移動してセンサノ指
令によって停止すると、ピストン25のシール面28が
下弁座8Aに弾性的に密接してピストン25が反閉止方
向側へスプリング29の弾発力に抗して押動され、第2
弁体24が反閉止方向側へ弾性変位して一旦停止し、内
圧弁室31内の流液の一部が連通孔32を通じて上分割
流液口9Aの入口部9aへ流出する。第2弁体24が反
閉止方向側へ押動されて停止すると、内圧弁室31内の
液圧が上分割流液口9Aの入口部9a側の液圧と均等と
なるまで流液か上分割流液口9Aの入口部9aから連通
孔32を通して内圧弁室31内へ流入する。ピストン2
5の外径すなわち第1弁体20の嵌合部21の内径D2
は羽根部26の外径すなわち弁座8の内径DIより拡大
されており、ピストン25を押下げる押圧面積は羽根部
26を押上げる押圧面積より増大されているので、ピス
トン25を押下げる液圧と羽根部26を押下げる液圧と
の差圧によってピストン25が閉止方向側へ自動的に押
圧されてシール面28が弁座8に一定の接圧で圧接し、
上分割流液口9Aが第2弁体24によって密閉状に閉止
される。
When the valve stem 5 and the first valve body 20 move to the lower end and stop in response to a sensor command, the sealing surface 28 of the piston 25 comes into elastic contact with the lower valve seat 8A, and the piston 25 moves toward the anti-closing direction by the spring 29. The second
The valve body 24 is elastically displaced toward the opposite closing direction and temporarily stops, and a portion of the liquid in the internal pressure valve chamber 31 flows out through the communication hole 32 to the inlet portion 9a of the upper divided flow port 9A. When the second valve body 24 is pushed in the anti-closing direction and stopped, the liquid continues to rise until the liquid pressure in the internal pressure valve chamber 31 becomes equal to the liquid pressure on the inlet portion 9a side of the upper divided liquid flow port 9A. The liquid flows from the inlet portion 9a of the divided flow liquid port 9A into the internal pressure valve chamber 31 through the communication hole 32. piston 2
5, that is, the inner diameter D2 of the fitting portion 21 of the first valve body 20
is larger than the outer diameter of the vane 26, that is, the inner diameter DI of the valve seat 8, and the pressing area that pushes down the piston 25 is larger than the pressing area that pushes up the vane 26, so the hydraulic pressure that pushes down the piston 25 The piston 25 is automatically pushed in the closing direction by the differential pressure between the pressure and the hydraulic pressure pushing down the vane portion 26, and the sealing surface 28 is pressed against the valve seat 8 with a constant contact pressure.
The upper divided flow liquid port 9A is hermetically closed by the second valve body 24.

上分割弁体17の中心部には連結棒18の下端部が貫挿
されるとともに、上分割弁体17は下部が弁箱1の下壁
部に取付けられた支持部材34によって上下スライド可
能に支持されて上端部が連結棒18の下端のねじ部18
aに螺嵌された弁体押え35によって連結棒18に締結
されている。
The lower end of the connecting rod 18 is inserted through the center of the upper divided valve body 17, and the lower part of the upper divided valve body 17 is supported by a support member 34 attached to the lower wall of the valve box 1 so as to be vertically slidable. and the upper end is the threaded part 18 at the lower end of the connecting rod 18.
It is fastened to the connecting rod 18 by a valve body retainer 35 screwed into the valve body a.

上分割弁体1下の上端部の外周面には下弁座8Bに接離
するシール面17aか傾斜状に形成されるとともに、シ
ール面17aの下方には第2弁体24の羽根部26とほ
ぼ等形状の羽根部17bが形成されている。
A sealing surface 17a that approaches and separates from the lower valve seat 8B is formed in an inclined shape on the outer circumferential surface of the upper end of the lower part of the upper divided valve body 1, and below the sealing surface 17a is a blade portion 26 of the second valve body 24. A blade portion 17b having a substantially equal shape is formed.

上分割弁体17は連結棒18を介して上分割弁体16の
第2弁体24に共同上下動可能に連結され、上下分割流
液口9A、9Bは第2弁体24及び上分割弁体17によ
って同期的に開閉される。
The upper divided valve body 17 is connected to the second valve body 24 of the upper divided valve body 16 via a connecting rod 18 so as to be able to move vertically together, and the upper and lower divided flow ports 9A and 9B are connected to the second valve body 24 and the upper divided valve body. It is opened and closed synchronously by the body 17.

制御モータ4はこの制御モータ4を回転制御して弁箱l
内を流通する流液の圧力及び流量をコントロールする制
御装置に接続され、この制御装置には制御弁Vより下流
の下流側管路内の流液の圧力を検出する圧力センサや、
制御弁Vより上流の上流側管路内の流液の流量を検出す
る流量センサや、上流側管路内の流液の圧力と上流側管
路内の流液の圧力との差圧を検出する差圧センサや、上
流側管路もしくは下流側管路に接続された水槽内の水位
を検出する水位センサ等の検出信号と、各分割流液口1
1A、11Bの開度を検出する開度センサの検出信号等
が入力され、制御装置の出力部がこれらの検出信号に基
づいて出力信号を発信して制御モータ4が回転制御され
る。
The control motor 4 controls the rotation of the control motor 4 to rotate the valve box l.
It is connected to a control device that controls the pressure and flow rate of the fluid flowing through the control valve V, and this control device includes a pressure sensor that detects the pressure of the fluid in the downstream pipe line downstream of the control valve V.
A flow sensor detects the flow rate of liquid in the upstream pipe line upstream from the control valve V, and detects the differential pressure between the pressure of the liquid in the upstream pipe line and the pressure of the liquid in the upstream pipe line. A detection signal from a differential pressure sensor that detects the water level, a water level sensor that detects the water level in the water tank connected to the upstream pipe line or the downstream pipe line, and each divided flow liquid port 1.
Detection signals from opening sensors that detect the opening degrees of the openings 1A and 11B are inputted, and the output section of the control device issues an output signal based on these detection signals to control the rotation of the control motor 4.

続いて、上記した構成をもつ実施例の作用と効果を説明
する。
Next, the operation and effects of the embodiment having the above configuration will be explained.

本例では上流側管路に接続される流入口1aと、下流側
管路に接続される流出口1bとを有する弁箱1内にはこ
の弁箱I内を流入口1aに連通された流入室14と、流
出口1bに連通された流出室15とに区画する仕切り壁
6を形成してこの仕切り壁6には同心状に並設されて流
入口1aの開口面積を分割した開口面積を有する2対の
分割流液口9A、9Bを、制御モータ4によって駆動制
御される1対の弁棒5にそれぞれ対向して開口するとと
もに、この両弁棒5には1対の分割流液口9A、9Bを
同期的に開閉する1対の分割弁体16゜17をそれぞれ
連結しである。
In this example, the valve box 1 has an inlet port 1a connected to the upstream pipe line and an outlet port 1b connected to the downstream pipe line. A partition wall 6 is formed to partition the chamber 14 and an outflow chamber 15 that communicates with the outflow port 1b. Two pairs of divided flow ports 9A and 9B are opened to face a pair of valve rods 5 that are driven and controlled by a control motor 4, respectively, and both valve rods 5 have a pair of divided flow ports 9A and 9B. A pair of split valve bodies 16 and 17 which open and close 9A and 9B synchronously are connected to each other.

従って、弁箱1内へ流入した流液が縮少された開口面積
を有する各分割流液口9A、9B内を分配されて流通し
、各分割流液口9A、9Bが各分割弁体16.17によ
って個々に開閉されるので、流液の圧力や流量の急激な
変化を抑制して流液の圧力や流量を精細に調整すること
かでき、また全体構造の大型化を抑制して全開時の通液
面積を確保することができる。
Therefore, the liquid flowing into the valve box 1 is distributed and distributed through each of the divided flow ports 9A and 9B having a reduced opening area, and each divided flow port 9A and 9B is connected to each divided valve body 16. .17, the pressure and flow rate of the flowing liquid can be precisely adjusted by suppressing sudden changes in the pressure and flow rate of the flowing liquid, and it is also possible to prevent the overall structure from increasing in size and to open and close the flowing liquid individually. It is possible to secure the area through which liquid passes through.

また、全閉時には上分割弁体I6の第2弁座20及びこ
の第2弁体20に連結された上分割弁体17か上下分割
流液口9A、9Bの上下弁座8A。
When fully closed, the second valve seat 20 of the upper divided valve body I6 and the upper divided valve body 17 connected to the second valve body 20 or the upper and lower valve seats 8A of the upper and lower divided flow ports 9A and 9B.

8Bにそれぞれ一定の接圧で圧接して各分割流液口9A
、9Bを密閉するので、全閉時の液密性能を良化するこ
とができる。
Each divided flow liquid port 9A is connected to 8B with a constant contact pressure.
, 9B, the liquid-tight performance when fully closed can be improved.

さらに、各分割弁体16,17を制御モータ4によって
駆動制御して各分割流液口9A、9Bを開閉制御するの
で、制御弁Vを各種の制御システムに組み込むことがで
き、下流圧力の一定制御、末端圧力の一定制御、一定流
量制御、上流水位乃至下流水位の一定制御等の各種制御
を経済的に遂行し得る効果がある。
Furthermore, since each divided valve body 16, 17 is driven and controlled by the control motor 4 to control the opening and closing of each divided flow liquid port 9A, 9B, the control valve V can be incorporated into various control systems, and the downstream pressure can be maintained constant. It has the effect of economically performing various controls such as constant control of terminal pressure, constant flow rate control, and constant control of upstream water level and downstream water level.

また、分割弁体対の個数及び各対の分割弁体の駆動態様
を目的に合わせて変更して流液の圧力及ひ流量の制御態
様を多様化することかできる。
Furthermore, the number of pairs of divided valve bodies and the driving manner of each pair of divided valve bodies can be changed to suit the purpose, thereby making it possible to diversify the manner of controlling the pressure and flow rate of the fluid.

なお、上記実施例では両弁棒5及び雨後合弁機構12を
共通の制御モータ4によって同期的に駆動制御するよう
に構成したか、両弁棒5及び雨後合弁機構12を別個の
制御モータによって経時的に駆動制御し、例えば一方の
複合弁機構12か一方の上下分割流液口9A、9Bを全
開する位置へ上動した時点で、他方の複合弁機構12が
上動を開始するようにしてもよい。
In the above embodiment, both valve rods 5 and the post-rain joint valve mechanism 12 are configured to be driven and controlled synchronously by a common control motor 4, or both valve stems 5 and the post-rain joint valve mechanism 12 are controlled over time by separate control motors. For example, when one of the combined valve mechanisms 12 moves upward to a position where the upper and lower divided flow ports 9A and 9B are fully opened, the other combined valve mechanism 12 starts moving upward. Good too.

また、雨後合弁機構12を制御モータ4に代えてエアシ
リンダや油圧シリンダ等の他のアクチュエータによって
駆動制御するようにしてもよい。
Further, the after-rain joint mechanism 12 may be driven and controlled by another actuator such as an air cylinder or a hydraulic cylinder instead of the control motor 4.

次に、制御弁Vの他例について説明すると、第3図に示
す1連形の制御弁Vでは弁箱IAの仕切り壁6Aには上
下1対の分割流液口9A、9Bが開口され、弁箱IA内
には両分側流液口9A、9Bを同期的に開閉する上下1
対の分割弁体16゜17が装入されている。
Next, to explain another example of the control valve V, in the single control valve V shown in FIG. 3, a pair of upper and lower split flow ports 9A and 9B are opened in the partition wall 6A of the valve box IA, Inside the valve box IA are upper and lower ports 1 that synchronously open and close both side flow ports 9A and 9B.
A pair of split valve bodies 16° and 17 are inserted.

第4図に示す3連形の制御弁Vでは弁箱IB内の仕切り
壁6Bには3対の分割流液口9A、9Bか開口され、弁
箱IB内には共通の制御モータ4によって同期的に駆動
される3つの弁棒5にそれぞれ連結されて3対の分割流
液口9A、9Bを同期的に開閉する3対の分割弁体16
.1.7か装入されている。
In the triple type control valve V shown in FIG. 4, three pairs of split flow ports 9A and 9B are opened in the partition wall 6B in the valve box IB, and are synchronized by a common control motor 4 in the valve box IB. Three pairs of divided valve bodies 16 are connected to three valve rods 5 which are driven by each other to synchronously open and close three pairs of divided flow ports 9A and 9B.
.. 1.7 is charged.

第5図に示す3連1単動2連動形の制御弁〜゛ては弁箱
IC内の仕切り壁6Cには3対の分割流液口9A、9B
が開口され、弁箱IC内には1つの制御モータ4Aによ
って同期的に駆動される2つの弁棒5にそれぞれ連結さ
れて2対の分割流液口9A、9Bを一斉に開閉する2対
の分割弁体16゜17と、制御モータ4Bによって駆動
される弁棒5にそれぞれ連結されて1対の分割流液口9
A。
The 3-unit, 1-single-acting, 2-interlocking type control valve shown in FIG.
is opened, and inside the valve box IC are two pairs of valves connected to two valve rods 5 which are driven synchronously by one control motor 4A, and which simultaneously open and close two pairs of divided flow ports 9A and 9B. A pair of split flow liquid ports 9 are connected to the split valve bodies 16 and 17 and the valve stem 5 driven by the control motor 4B, respectively.
A.

9Bを同期的に開閉する1対の分割弁体16,17とが
装入されている。
A pair of split valve bodies 16 and 17 that open and close 9B synchronously are inserted.

第6図に示す4連形の制御弁Vでは制御モータ4によっ
て同期的に駆動制御される4つの複合弁機構が弁箱ID
内に装入されている。
In the quadruple type control valve V shown in FIG.
It is loaded inside.

上記した制御弁Vの流量制御特性と、従来のバタフライ
弁、及び仕切弁の流量制御特性を比較試験した結果では
、開度K(%)に対する流量R(%)の変化を示す第7
図の流量制御特性曲線において、1対の分割弁体16,
17を有する1連形の制御弁Vの流量制御特性曲線A1
及び2連単動形の制御弁Vの流量制御特性曲線A2(1
対の分割弁体16,17を全開位置へ移動させてから、
他の1対の分割弁体16,17を全開位置へ移動させた
場合の流量制御特性曲線)は従来のノ<タフライ弁の流
量制御特性曲線B2及び仕切弁の流量制御特性曲線B1
に比して立上がり角度が緩やかで、中低開度においてよ
り直線状に変化しており、本発明の制御弁Vが従来の制
御弁に比しとくに中低開度でより優れた流量制御特性を
具有していることが判明した。
In the results of a comparative test of the flow control characteristics of the control valve V described above and the flow control characteristics of conventional butterfly valves and gate valves, it was found that
In the flow control characteristic curve shown in the figure, a pair of split valve bodies 16,
Flow rate control characteristic curve A1 of a single control valve V having 17
and the flow rate control characteristic curve A2 (1
After moving the pair of split valve bodies 16 and 17 to the fully open position,
The flow rate control characteristic curve when the other pair of divided valve bodies 16 and 17 are moved to the fully open position) is the conventional flow rate control characteristic curve B2 of the no-tough fly valve and the flow rate control characteristic curve B1 of the gate valve.
Compared to the conventional control valve, the rising angle is gentler and changes more linearly at medium and low openings, and the control valve V of the present invention has superior flow control characteristics especially at medium and low openings compared to conventional control valves. It was found that it has.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の一実施例を示すもので、第1
図は制御弁の一部破断側面図、第2図は上分割弁体の半
開断面図、第3図、第4図、第5図、第6図はそれぞれ
制御弁の他例を示す一部破口 断側確嘘び側面図、第7図は流量制御特性曲線図である
。 J・・・弁   箱 1a・・・流入口 1b・・・流 出 口 4・・・制御モータ 5・・・弁   棒 6・・・仕切り壁 9A、 9B・・・分割流液口 16.17・・・分割弁体 ■・・・制御弁
1 and 2 show one embodiment of the present invention.
The figure is a partially cutaway side view of the control valve, Figure 2 is a half-open sectional view of the upper divided valve body, and Figures 3, 4, 5, and 6 are parts showing other examples of the control valve. FIG. 7 is a side view of the fractured side, and FIG. 7 is a flow control characteristic curve diagram. J... Valve box 1a... Inlet port 1b... Outlet port 4... Control motor 5... Valve rod 6... Partition wall 9A, 9B... Divided flow liquid port 16.17 ...Split valve body ■...Control valve

Claims (1)

【特許請求の範囲】[Claims] 上流側管路に接続される流入口と、下流側管路に接続さ
れる流出口とを有する弁箱内にはこの弁箱内を前記流入
口に連通された流入室と、前記流出口に連通された流出
室とに区画する仕切り壁を形成してこの仕切り壁には同
心状に並設されて前記流入口の開口面積を分割した開口
面積を有する少なくとも1対の分割流液口を、アクチュ
エータによって駆動制御される弁棒に対向して開口する
とともに、この弁棒には1対の前記分割流液口を同期的
に開閉する1対の分割弁体を連結したことを特徴とする
制御弁。
A valve box having an inlet connected to an upstream pipe line and an outlet connected to a downstream pipe line includes an inlet chamber communicating with the inlet, and an inlet chamber communicating with the outlet. forming a partition wall that partitions the outflow chamber into communication with the outflow chamber; and on the partition wall, at least one pair of split flow ports are arranged concentrically in parallel and have an opening area that divides the opening area of the inflow port; A control characterized in that a pair of split valve bodies are opened opposite to a valve stem driven and controlled by an actuator, and a pair of split valve bodies are connected to the valve stem for synchronously opening and closing the pair of split flow liquid ports. valve.
JP2165389A 1990-06-22 1990-06-22 Control valve Expired - Fee Related JP2548429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2165389A JP2548429B2 (en) 1990-06-22 1990-06-22 Control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2165389A JP2548429B2 (en) 1990-06-22 1990-06-22 Control valve

Publications (2)

Publication Number Publication Date
JPH0454383A true JPH0454383A (en) 1992-02-21
JP2548429B2 JP2548429B2 (en) 1996-10-30

Family

ID=15811469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2165389A Expired - Fee Related JP2548429B2 (en) 1990-06-22 1990-06-22 Control valve

Country Status (1)

Country Link
JP (1) JP2548429B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014511462A (en) * 2011-02-21 2014-05-15 エマソン エレクトリック コー. Valves, pressure sensitive devices and controllers for heating appliances
CN104806769A (en) * 2015-04-17 2015-07-29 江苏新美星包装机械股份有限公司 Inlet liquid dispersion adjustor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59133870U (en) * 1983-02-28 1984-09-07 三菱重工業株式会社 double port valve

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59133870U (en) * 1983-02-28 1984-09-07 三菱重工業株式会社 double port valve

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014511462A (en) * 2011-02-21 2014-05-15 エマソン エレクトリック コー. Valves, pressure sensitive devices and controllers for heating appliances
US8813776B2 (en) 2011-02-21 2014-08-26 Emerson Electric Co. Valves, pressure sensing devices, and controllers for heating appliances
CN104806769A (en) * 2015-04-17 2015-07-29 江苏新美星包装机械股份有限公司 Inlet liquid dispersion adjustor

Also Published As

Publication number Publication date
JP2548429B2 (en) 1996-10-30

Similar Documents

Publication Publication Date Title
US3886968A (en) Flow control device
US6135142A (en) Control valve device
JPH0454383A (en) Control valve
EP0056891B1 (en) Fluid flow control valve
US8505578B2 (en) Actuator for controlling a fluid flow
RU180213U1 (en) GAS PRESSURE REGULATOR
JP2652675B2 (en) Ball valve
CN211852899U (en) Single water route solenoid valve case
US3120854A (en) Automatic fluid pressure equalizing assembly
JPH0247326Y2 (en)
JPS6149539B2 (en)
CN108050281B (en) Variable output pressure relief system
JP2000161529A (en) Automatic adjusting valve device
JP3851378B2 (en) Automatic adjustment valve device
SU1004985A1 (en) Consumption regulator
JPS6324489Y2 (en)
CN220134713U (en) Novel adjustable differential pressure valve
JP3111274B2 (en) Automatic constant pressure valve device
SU740976A1 (en) Surging preventing system for turbocompressor
SU1096614A1 (en) Flow governor
JPH0636368Y2 (en) Diaphragm type quick exhaust valve with variable throttle
SU1350434A1 (en) Electromagnetic valve
JP2711596B2 (en) Control valve
SU1180615A1 (en) Valve
JPS62179006A (en) Control device for fluid

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees