JPH0454382A - Non-contact mechanical seal - Google Patents

Non-contact mechanical seal

Info

Publication number
JPH0454382A
JPH0454382A JP16501690A JP16501690A JPH0454382A JP H0454382 A JPH0454382 A JP H0454382A JP 16501690 A JP16501690 A JP 16501690A JP 16501690 A JP16501690 A JP 16501690A JP H0454382 A JPH0454382 A JP H0454382A
Authority
JP
Japan
Prior art keywords
rotating ring
mechanical seal
helical grooves
contact mechanical
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16501690A
Other languages
Japanese (ja)
Other versions
JPH0743037B2 (en
Inventor
Yoshihide Abe
阿部 吉秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2165016A priority Critical patent/JPH0743037B2/en
Publication of JPH0454382A publication Critical patent/JPH0454382A/en
Publication of JPH0743037B2 publication Critical patent/JPH0743037B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To restrain leakage of a sealed fluid to the minimum by way of heightening a peak value of dynamic pressure of either of helical groove groups by providing a plural number of kinds of helical grooves which are different from each other in length periodically in the circumferential direction on a sealed surface of either one of or both of a rotational ring and a non-rotational ring. CONSTITUTION:A non-contact mechanical seal M is provided with a rotational ring 3 sealed and fixed on a rotary shaft 2 and a non-rotational ring 4 sealed and installed in a housing 1, and it is alternately provided with short helical grooves 8 and long helical grooves 9 in the circumferential direction which are two kinds of the helical grooves extending inward from the outer peripheral edge of the rotational ring 3, having angles of advance in the relative rotational direction and different in length. A dumb breadth ratio of the short helical grooves 8 is set as about 0.2-0.5 and that of the long helical grooves 9 as about 0.5-0.8. The most suitable value of this dumb breadth ratio varies in accordance with another parameter, but as a more favorable value, the dumb breadth ratio of the short helical grooves 8 is about 0.3 and that of the long helical grooves about 0.6. Consequently, it is possible to restrain leakage of a sealed liquid to the minimum as the peak value of dynamic pressure of either of the helical groove groups becomes much higher than the time of normal driving.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、非接触メカニカルシールの改良に係わり、更
に詳しくはガスタービンやコンプレフサ等の流体機器の
軸封装置として高周速条件下で使用する非接触メカニカ
ルシールに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the improvement of non-contact mechanical seals, and more specifically, to use under high circumferential speed conditions as shaft seal devices for fluid equipment such as gas turbines and compressors. Regarding non-contact mechanical seals.

〔従来の技術〕[Conventional technology]

従来、コンプレッサ等における回転軸とハウジング間を
密封する非接触メカニカルシールは既に提供されている
。例えば、特公平1−22509号公報には、第10図
に示す如く、回転軸に密封固定した回転リングaとハウ
ジングに密封装着し且つ押圧手段にて軸方向へ付勢した
非回転リングングbとの対面する各シール面の何れか一
方のシール面Cに、第12図に示す如く相対的回転方向
に対して前進角を有する同一長さの多数の螺線溝dを円
周方向に一定間隔で設けて封入流体をシール面間に圧送
してなる非接触メカニカルシールが提供されている。
Conventionally, non-contact mechanical seals that seal between a rotating shaft and a housing in a compressor or the like have already been provided. For example, Japanese Patent Publication No. 1-22509 discloses, as shown in FIG. 10, a rotating ring a sealed and fixed to a rotating shaft, and a non-rotating ring b sealed and attached to a housing and urged in the axial direction by a pressing means. As shown in FIG. 12, a large number of spiral grooves d of the same length and having an advancing angle with respect to the relative rotation direction are formed on one of the seal surfaces C facing the seal surface C. Non-contact mechanical seals have been provided in which sealed fluid is pumped between sealing surfaces that are spaced apart.

それによって、圧力変動や温度変動により回転リングa
や非回転リングわが変形してシール面Cの平行度が損な
われた場合に、非回転リングbに互いのシール面が平行
になる方向の偶力を発生させて自動的に安定なシール面
間隔に調整することができるものである。即ち、第10
図に点線で示した正常状態の非回転リングbが時計方向
に変形して実線で示した状態になると、第11図に示す
如く外周部においては圧力が減少しくP+)、内周部に
おいては圧力が増加しくP2 ) 、更に図示しない押
圧手段とのバランスにより非回転リングbに反時計方向
の偶力C1を発生させて互いのシール面が平行となるよ
うに自己整合させることができるが、この場合において
シール面における圧力のピーク値は減少するので、負荷
能力が減少し自己整合させる時ギャップが不安定になる
といった問題を有していた。
Thereby, due to pressure fluctuations and temperature fluctuations, the rotating ring a
If the parallelism of the seal surfaces C is lost due to deformation of the non-rotating ring or the non-rotating ring, a couple is generated in the non-rotating ring B in the direction of making the seal surfaces parallel to each other, automatically maintaining a stable seal surface spacing. It can be adjusted to That is, the 10th
When the non-rotating ring b in the normal state shown by the dotted line in the figure deforms clockwise to the state shown by the solid line, the pressure decreases at the outer circumference (P+) and at the inner circumference as shown in Fig. 11. As the pressure increases (P2), a counterclockwise force couple C1 is generated in the non-rotating ring b by balance with a pressing means (not shown), so that the sealing surfaces can be self-aligned so that they are parallel to each other. In this case, the peak value of the pressure at the sealing surface decreases, resulting in a problem that the load capacity decreases and the gap becomes unstable during self-alignment.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明が前述の状況に鑑み、解決しようとするところは
、封入流体を長さの異なる複数種類の螺線溝群によりシ
ール面に圧送し、シール面における動圧のピーク値を半
径方向の異なる複数位置に形成し、回転リングや非定回
転リングの変形に対して自己整合させる偶力を発生させ
るとともに、何れか−の螺線溝群による動圧のピーク値
が更に大きくなるように設定した非接触メカニカルシー
ルを提供する点にある。
In view of the above-mentioned situation, the present invention aims to solve the problem by force-feeding the sealed fluid to the sealing surface through a plurality of spiral groove groups with different lengths, and adjusting the peak value of the dynamic pressure on the sealing surface to different radial directions. They are formed at multiple positions to generate a self-aligning force couple against the deformation of the rotating ring or non-constant rotating ring, and are set so that the peak value of the dynamic pressure due to either spiral groove group becomes even larger. The purpose of this invention is to provide a non-contact mechanical seal.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、前述の課題解決の為に、回転軸に密封固定し
た回転リングとハウジングに軸方向可動となして密封装
着し且つ押圧手段にて軸方向へ付勢した非回転リングと
の対接するシール面に相対的回転方向に対して前進角を
有する螺線溝を設けて封入流体をシール面間に圧送して
なる非接触メカニカルシールにおいて、回転リングと非
回転リングの何れか一方若しくは両方のシール面に、そ
の外周縁若しくは内周縁を基端として延び、相対的回転
方向に対して前進角を有し且つ溝の長さの異なる複数種
類の螺線溝を円周方向に周期的に設けてなる非接触メカ
ニカルシールを構成した。
In order to solve the above-mentioned problems, the present invention provides a structure in which a rotating ring that is sealed and fixed to a rotating shaft and a non-rotating ring that is movable in the axial direction and sealed in the housing and that is urged in the axial direction by a pressing means are brought into contact with each other. In a non-contact mechanical seal in which a spiral groove having an advancing angle with respect to the direction of relative rotation is provided on the sealing surface to force the sealed fluid between the sealing surfaces, either one or both of the rotating ring and the non-rotating ring A plurality of types of spiral grooves are periodically provided on the sealing surface in the circumferential direction, extending from the outer peripheral edge or the inner peripheral edge as the base end, having an advancing angle with respect to the relative rotation direction, and having different groove lengths. A non-contact mechanical seal has been constructed.

また、前記端線溝として溝の長さの異なる二種類の螺線
溝を用い、一方の短鯉線溝のダム巾比を約0.2〜0.
5、他方の長螺線溝のダム中止を約0.5〜0.8に設
定した。
Further, two types of spiral grooves having different groove lengths are used as the end line groove, and the dam width ratio of one of the short carp line grooves is set to about 0.2 to 0.
5. The dam stop of the other long spiral groove was set to about 0.5 to 0.8.

更に、溝の長さの異なる二種類の螺線溝を用い、一方の
短蝦線溝のダム中止を約0.3、他方の長螺線溝のダム
巾比を約0.6に設定した。
Furthermore, two types of spiral grooves with different groove lengths were used, and the dam stop of one short spiral groove was set to approximately 0.3, and the dam width ratio of the other long spiral groove was set to approximately 0.6. .

そして、溝の長さの異なる二種類の螺線溝を円周方向に
交互に設けた。
Two types of spiral grooves having different groove lengths were provided alternately in the circumferential direction.

〔作用〕[Effect]

以上の如き内容からなる本発明の非接触メカニカルシー
ルは、回転リングと非回転リングの何れか一方若しくは
両方のシール面に、その外周縁若しくは内周縁を基端と
して延び、相対的回転方向に対して前進角を有し且つ溝
の長さの異なる複数種類の螺線溝を円周方向に周期的に
設けたことにより、長さの異なるそれぞれの螺線溝群の
相対的回転による流体輸送作用によって封入流体をシー
ル面間に圧送して、該シール面の半径方向の異なる位置
に動圧のピーク値を有する圧力分布を形成し、もって回
転リングや非回転リングの変形に基づくシール面の平行
からのずれを是正する偶力を非回転リングに発生させる
ものであり、またその際に何れか−の螺線溝群の動圧の
ピーク値が更に高くなって封入流体の漏洩を最小限に抑
制するのである。
The non-contact mechanical seal of the present invention having the above-mentioned contents extends on the sealing surface of one or both of the rotating ring and the non-rotating ring, with the outer circumferential edge or the inner circumferential edge as the base end, and the non-contact mechanical seal extends with respect to the relative rotation direction. By periodically providing multiple types of spiral grooves with advancing angles and different lengths in the circumferential direction, a fluid transport effect is achieved by the relative rotation of each group of spiral grooves with different lengths. The sealed fluid is pumped between the seal surfaces to form a pressure distribution with peak values of dynamic pressure at different positions in the radial direction of the seal surface, and the parallelism of the seal surfaces due to the deformation of the rotating ring or non-rotating ring is thereby created. A force couple is generated in the non-rotating ring to correct the deviation from the ring, and at this time, the peak value of the dynamic pressure in either spiral groove group becomes even higher, minimizing the leakage of the sealed fluid. It suppresses it.

〔実施例〕 次に添付図面に示した実施例に基づき更に本発明の詳細
な説明する。
[Example] Next, the present invention will be further described in detail based on the example shown in the accompanying drawings.

第1図は本発明に係る非接触メカニカルシールMの全体
構造を示し、ハウジング1と、該ハウジング1の開放端
を貫通する回転軸2との間に設けている。ここで、図中
Aは大気圧(低圧)側、Bは高圧(シール圧)側を示し
ている。
FIG. 1 shows the overall structure of a non-contact mechanical seal M according to the present invention, which is provided between a housing 1 and a rotating shaft 2 passing through the open end of the housing 1. Here, in the figure, A indicates the atmospheric pressure (low pressure) side, and B indicates the high pressure (seal pressure) side.

本実施例の非接触メカニカルシールMは、前記回転軸2
に密封固定した回転リング3と、前記ハウジング1に密
封装着した非回転リング4を備え、該回転リング3と非
回転リング4の互いのシール面5,6を対接させ、そし
て非回転リング4は密封状態で軸方向可動となすととも
に、ハウジング1に関係づけた押圧手段7にて各シール
面5.6が接近する軸方向に付勢している。そして、第
2図に示す如く前記回転リング3の外周縁から内方へ延
び、相対的回転方向に対して前進角を有する長さの異な
る二種類の螺線溝、即ち短蝦線溝8と長螺線溝9を円周
方向に交互に設けている。
The non-contact mechanical seal M of this embodiment has the rotating shaft 2
A rotating ring 3 is hermetically fixed to the housing 1, and a non-rotating ring 4 is hermetically attached to the housing 1. are movable in the axial direction in a sealed state, and each sealing surface 5.6 is biased in the axial direction toward each other by a pressing means 7 associated with the housing 1. As shown in FIG. 2, there are two types of spiral grooves extending inward from the outer peripheral edge of the rotating ring 3 and having different lengths and having advancing angles with respect to the relative rotational direction, that is, short spiral grooves 8. Long spiral grooves 9 are provided alternately in the circumferential direction.

前記回転リング3は、前記回転軸2に同軸外挿した固定
スリーブ10に同軸外挿するとともに、該固定スリーブ
10の一端から延びたフランジ部11に前記シール面5
とは反対側面を当止し、そしてフランジ部11を回転軸
2に形成した段部12に当止状態で前記固定スリーブI
Oに外嵌した締着スリーブ13と該固定スリーブ10の
端部を回転軸2に畷合した保持ナンド14で締付けるこ
とにより、固定スリーブ10とともに回転軸2に固定し
、そして回転軸2とフランジ部11間、回転リング3と
固定スリーブ10間及び回転リング3とフランジ部11
間にそれぞれOリング15゜16.17を介装して密封
している。
The rotating ring 3 is coaxially inserted into a fixed sleeve 10 that is coaxially inserted into the rotating shaft 2, and the sealing surface 5 is attached to a flange portion 11 extending from one end of the fixed sleeve 10.
The fixed sleeve I is rested on the opposite side thereof, and the flange portion 11 is rested on the stepped portion 12 formed on the rotating shaft 2.
By tightening the end of the fixing sleeve 10 and the fixing sleeve 13 fitted on the outer part of the fixing sleeve 10 with the holding nand 14 fitted to the rotating shaft 2, the fixing sleeve 10 is fixed to the rotating shaft 2, and the rotating shaft 2 and the flange are fixed together. between the rotating ring 3 and the fixed sleeve 10, and between the rotating ring 3 and the flange portion 11.
An O-ring 15° 16.17° is inserted between them to seal them.

前記非回転リング4は、前記ハウジング1に密封固定し
た環状の保持装置18によって所定位置に軸方向可動と
なして密封保持するとともに、押圧手段7にて前記回転
リング3のシール面5と、当該非回転リング4のシール
面6が接近する方向へ付勢している。ここで、前記保持
装置18は、外周一端をハウジングlの段部19に当止
するとともに、他端を固定スリーブ20に当止して軸方
向の移動を規制し、更にハウジング1と保持装置18の
外周間には0リング21を介装し、また内周縁から軸方
向へ延びた環状の摺動部22の外周と前記非回転リング
4の内周間にOリング23を介装して該非回転リング4
を密封状態で軸方向可動となしている。そして、前記保
持装置18に一端を係着した複数のコイルばね等の弾性
部材からなる押圧手段7の他端を環状のディスク24を
介して前記非回転リング4のシール面6とは反対側端に
関係づけ、該非回転リング4を前記回転リング3の方向
へ弾性付勢して、両シール面5.6が互いに接近する方
向へ常時押圧力が作用するようになしている。
The non-rotating ring 4 is movable in the axial direction and hermetically held at a predetermined position by an annular holding device 18 that is hermetically fixed to the housing 1, and is pressed against the sealing surface 5 of the rotary ring 3 by a pressing means 7. The sealing surface 6 of the non-rotating ring 4 is biased in the approaching direction. Here, the holding device 18 has one end of its outer periphery abutted against a stepped portion 19 of the housing l, and the other end abutted against a fixed sleeve 20 to restrict movement in the axial direction. An O-ring 21 is interposed between the outer periphery of the non-rotating ring 4, and an O-ring 23 is interposed between the outer periphery of the annular sliding portion 22 extending in the axial direction from the inner periphery and the inner periphery of the non-rotating ring 4. Rotating ring 4
is movable in the axial direction in a sealed state. Then, the other end of the pressing means 7 made of an elastic member such as a plurality of coil springs whose one end is engaged with the holding device 18 is connected to the end opposite to the sealing surface 6 of the non-rotating ring 4 via an annular disk 24. , the non-rotating ring 4 is elastically biased in the direction of the rotating ring 3, so that a pressing force is always applied in the direction in which both sealing surfaces 5.6 approach each other.

尚、前記非回転リング4は、回転時に完全0こ接触しな
いのではなく、回転軸2が静止状態から回転を始めて初
期の段階では接触抵抗により回転リング3と摺動し、回
転軸2が一定回転数以上になった場合には互いのシール
面5.6が滑るので非回転リング4は摺動を略停止する
が、それはシール面5.6間に介在する流体の粘性によ
りその摺動が略停止する回転数は異なる。また、圧力差
によりいかなる時も完全に摺動しないようにすることも
できる。
It should be noted that the non-rotating ring 4 does not make complete zero contact during rotation, but rather slides against the rotating ring 3 due to contact resistance in the initial stage when the rotating shaft 2 starts rotating from a stationary state, so that the rotating shaft 2 remains constant. When the number of rotations exceeds the rotation speed, the seal surfaces 5.6 slip and the non-rotating ring 4 almost stops sliding, but this is due to the viscosity of the fluid interposed between the seal surfaces 5.6. The number of revolutions at which the motors almost stop differs. Moreover, it is also possible to completely prevent sliding at any time due to the pressure difference.

また、本実施例では、回転リング3と非回転リング4を
一対備えた非接触メカニカルシールMの例を示したが、
これらを複数用いて軸方向に互いに関係づけて配列させ
たタンデム型のものも採用し得るのである。
Further, in this embodiment, an example of a non-contact mechanical seal M including a pair of rotating ring 3 and non-rotating ring 4 was shown.
It is also possible to adopt a tandem type in which a plurality of these are arranged in relation to each other in the axial direction.

第2図は本発明の回転リング3のシール面5に形成した
螺線溝のパターンの一例を示し、図示したものは短螺線
溝8と長螺線a9の二!M類の螺線溝を回転リング3の
外周縁から内方へ相対的回転方向に対して前進角を設け
て円周方向に交互に形成したものであり、傾線溝を形成
しないシアル面は平坦となしている。
FIG. 2 shows an example of a spiral groove pattern formed on the sealing surface 5 of the rotary ring 3 of the present invention, and the pattern shown is a short spiral groove 8 and a long spiral groove a9. Type M spiral grooves are formed inward from the outer peripheral edge of the rotary ring 3 alternately in the circumferential direction at an advancing angle with respect to the relative rotational direction. It is flat.

次に、ダム重比を次式により定義する。Next, the dam gravity ratio is defined by the following equation.

ここで、ODはシール面5,6の共通部分の外形、ID
は内径、GDは傾線溝の溝領域と平坦領域との境界で形
成される輪郭円の直径であり、GDは短甥線溝8の場合
にはSGD、長螺線溝9の場合にはLGDの値が入る。
Here, OD is the outer shape of the common part of the seal surfaces 5 and 6, and ID
is the inner diameter, GD is the diameter of the contour circle formed at the boundary between the groove area of the inclined groove and the flat area, GD is SGD in the case of the short spiral groove 8, and SGD in the case of the long spiral groove 9. The value of LGD is entered.

(1)式は傾線溝をシール面の外周側を基端として形成
した場合に通用する式であり、(2)は内周側を基端と
して形成した場合に通用する式であり、本発明において
は短螺線溝8のダム巾比を約0.2〜0.5、長螺線溝
9のダム巾比を約0.5〜0゜8に設定している。この
ダム巾比の最適値は、他のパラメータによって変化する
が、より好ましい値としては短喀線18のダム巾比は約
0.3、長螺線溝9のダム巾比は約0.6である。
Equation (1) is a formula that is valid when the inclined groove is formed with the outer peripheral side of the sealing surface as the base end, and (2) is a formula that is valid when the inclined groove is formed with the inner peripheral side as the base end. In the present invention, the dam width ratio of the short spiral groove 8 is set to about 0.2 to 0.5, and the dam width ratio of the long spiral groove 9 is set to about 0.5 to 0.8. The optimum value of this dam width ratio varies depending on other parameters, but as more preferable values, the dam width ratio of the short groove 18 is about 0.3, and the dam width ratio of the long spiral groove 9 is about 0.6. It is.

また、本発明における螺線溝は、約2〜15μmの深さ
を有し、その巾及び前進角の角度は封入流体のシール圧
力及び回転数等によって決定される。尚、本実施例では
螺線溝を回転リング3のシール面5に形成したが、非回
転リング4のシール面6に形成することも、更に両方の
シール面5゜6に形成することも原理的に可能である。
Further, the spiral groove in the present invention has a depth of about 2 to 15 μm, and its width and advance angle are determined by the sealing pressure of the sealed fluid, the rotation speed, etc. In this embodiment, the spiral groove is formed on the sealing surface 5 of the rotating ring 3, but in principle it can also be formed on the sealing surface 6 of the non-rotating ring 4, or even on both sealing surfaces 5. It is possible.

そして、当該螺線溝をシール面の表面に形成する方法は
、炭化タングステン、炭化珪素、窒化珪素、アルミナセ
ラミック、金属材等の材料で所定形状に成形した後、シ
ール面となる面に螺線溝を化学的、物理的若しくは電気
化学的な手法を用いて形成する。例えば、エツチング、
粉末を吹きつけるブラスト及び各種めっき処理によって
形成することができる。
The method of forming the spiral groove on the surface of the sealing surface is to form a material such as tungsten carbide, silicon carbide, silicon nitride, alumina ceramic, or metal material into a predetermined shape, and then form a spiral groove on the surface that will become the sealing surface. The grooves are formed using chemical, physical, or electrochemical methods. For example, etching,
It can be formed by powder blasting and various plating treatments.

尚、螺線溝のパターンは、第2図に示したものに限定さ
れず、各種のパターンを採用し得る。例えば、第3図に
示す如く、短蜆線溝8が二本、長螺線a9が一本の基本
パターンを円周方向に形成したものや、逆に第4図に示
す如く、短蛯線溝8が一本、長螺線溝9が二本の基本パ
ターンを円周方向に形成したものがあり、また第5図に
示す如く、短螺線溝8と長螺線溝9との溝巾を変えたも
のがある。更に、以上のパターンを組合わせたものも可
能であり、溝の長さの異なる三種類以上の螺線溝との組
合わせたものも可能である。
Note that the pattern of the spiral groove is not limited to that shown in FIG. 2, and various patterns may be employed. For example, as shown in FIG. 3, a basic pattern with two short spiral grooves 8 and one long spiral a9 is formed in the circumferential direction, or conversely, as shown in FIG. There is a basic pattern in which one groove 8 and two long spiral grooves 9 are formed in the circumferential direction, and as shown in FIG. There are some with different widths. Furthermore, a combination of the above patterns is also possible, and a combination of three or more types of spiral grooves with different groove lengths is also possible.

次に、本実施例の非接触メカニカルシールMにおいて、
非回転リング4はその内周において圧力を受けるので、
バランスはBDをバランス直径とすれば、 で表され、その値は0.5〜1.5に設定している。
Next, in the non-contact mechanical seal M of this embodiment,
Since the non-rotating ring 4 is subjected to pressure on its inner circumference,
The balance is expressed as follows, where BD is the balance diameter, and the value is set to 0.5 to 1.5.

しかして、前記回転軸2が高速回転すると回転リング3
のシール面5に形成された回転方向に対して前進角を有
する短螺線溝8及び長螺線溝9により所定のシール圧を
有する封入流体をシール面5.6間に圧送し、それによ
り該シール面の半径方向の内外部<Vt線溝の終端近傍
)においてシール圧より高い動圧が発生し、その動圧に
よって非回転リング4は前記押圧手段7の押圧力に抗し
て軸方向へ移動し、流体による動圧と該押圧手段7の押
圧力とが釣り合った状態、即ちシール面5゜6間に平行
なギャップを有する非接触状態になる。
Therefore, when the rotating shaft 2 rotates at high speed, the rotating ring 3
The sealed fluid having a predetermined sealing pressure is pumped between the sealing surfaces 5 and 6 by short spiral grooves 8 and long spiral grooves 9 having an advancing angle with respect to the rotational direction, and thereby A dynamic pressure higher than the sealing pressure is generated on the inside and outside in the radial direction of the sealing surface (<near the end of the Vt line groove), and this dynamic pressure causes the non-rotating ring 4 to move in the axial direction against the pressing force of the pressing means 7. The sealing surfaces 5 and 7 move to a state where the dynamic pressure caused by the fluid and the pressing force of the pressing means 7 are balanced, that is, a non-contact state where there is a parallel gap between the sealing surfaces 5.6.

この状態において、封入流体はシール面5,6間から回
転軸2と非回転リング4との間に流れ、大気側へ若干漏
洩する。この漏洩は、原理的に避けられないが、本発明
の短螺線溝8と長螺線溝9の二種類の螺線溝群からなる
ものは、シール面の半径方向の内外部にそれぞれの作用
により動圧のピークを形成するので、封入流体の密封性
に優れている。当然、溝の長さの異なる更に多種類の螺
線溝群を形成した場合には、それに応してシール面にお
ける動圧のピーク位置が増えるのである。ここで、回転
数が低い始動初期又は停止直前においては、動圧が減少
するが、各シール面5.6の平坦部が密着するので、封
入流体の漏洩量は少ない。
In this state, the sealed fluid flows between the sealing surfaces 5 and 6 between the rotating shaft 2 and the non-rotating ring 4, and leaks slightly to the atmosphere. Although this leakage is unavoidable in principle, the structure of the present invention, which consists of two types of spiral groove groups, short spiral grooves 8 and long spiral grooves 9, has separate internal and external sections in the radial direction of the sealing surface. Because the action forms a dynamic pressure peak, it has excellent sealing performance for the enclosed fluid. Naturally, if more types of spiral groove groups with different groove lengths are formed, the peak position of the dynamic pressure on the sealing surface increases accordingly. Here, although the dynamic pressure decreases at the beginning of startup when the rotational speed is low or just before stopping, the flat portions of each sealing surface 5.6 are in close contact with each other, so the amount of leakage of the sealed fluid is small.

通常の運転状態においては、非回転リング4は第6図及
び第8図に示した点線位置にあり、その状態ではそれぞ
れ第7図及び第9図に点線で示した圧力分布を形成する
。この圧力分布において、縦軸はシール面の半径方向の
位置に対応し、上部にピーク値を有する分布は短端線溝
8により、下部にピーク値を有する分布は長螺線溝9に
よるものである。
In normal operating conditions, the non-rotating ring 4 is in the dotted line position shown in FIGS. 6 and 8, and in that state forms the pressure distribution shown in dotted lines in FIGS. 7 and 9, respectively. In this pressure distribution, the vertical axis corresponds to the position in the radial direction of the sealing surface, the distribution with the peak value at the top is due to the short-end groove 8, and the distribution with the peak value at the bottom is due to the long spiral groove 9. be.

そこで、運転中に非回転リング4が熱的変動や圧力変動
によってそれ自身が変形し若しくは回転リング3に対し
て相対的に変形して、シール面6が第6図に実線で示す
如く内側へ曲がったとすると、その結果、新たな圧力分
布は第7図に実線で示すようになり、動圧と前記押圧手
段7の押圧力との作用によってシール面6の半径方向内
外部において、短螺線溝8により圧力P。、とP。2が
発生し、長螺線溝9により圧力PitとPi2が発生し
、PCIIとpHの合力と、Po2とpH2の合力とに
よって、非回転リング4の断面における重心Wの周りに
設定された平行位置に戻そうとする反時計方向の偶力C
4が生じる。
Therefore, during operation, the non-rotating ring 4 deforms itself or deforms relative to the rotating ring 3 due to thermal fluctuations and pressure fluctuations, and the sealing surface 6 moves inward as shown by the solid line in FIG. As a result, the new pressure distribution becomes as shown by the solid line in FIG. Pressure P due to groove 8. , and P. 2 is generated, pressures Pit and Pi2 are generated by the long spiral groove 9, and a parallel force is set around the center of gravity W in the cross section of the non-rotating ring 4 by the resultant force of PCII and pH and the resultant force of Po2 and pH2. Counterclockwise couple C trying to return to position
4 occurs.

また、シール面6が外側へ曲がった場合にも、第8図及
び第9図に示す如く、平行位置に戻そうとする時計方向
の偶力C2が生じる。
Furthermore, even when the sealing surface 6 bends outward, a clockwise couple C2 is generated which tends to return it to the parallel position, as shown in FIGS. 8 and 9.

ここで、第7図及び第9図に示す如く、非回転リング4
のシール面6の変形により短螺線溝8と長螺線溝9によ
る動圧の一方のピーク値は減少するが、他方は逆に増加
するので、シール面5.6間の総合的な圧力の低下は生
じず、その結果、封入流体の漏洩量を従来の同一長さの
螺線溝を用いたものと比較して、極めて少な(抑制でき
るのである。
Here, as shown in FIGS. 7 and 9, the non-rotating ring 4
Due to the deformation of the sealing surface 6, the peak value of one of the dynamic pressures due to the short spiral groove 8 and the long spiral groove 9 decreases, but the other increases, so the overall pressure between the sealing surfaces 5 and 6 decreases. As a result, the amount of leakage of the sealed fluid can be extremely reduced (suppressed) compared to conventional spiral grooves of the same length.

〔発明の効果〕〔Effect of the invention〕

以上にしてなる本発明の非接触メカニカルシールによれ
ば、回転軸に密封固定した回転リングとハウジングに軸
方向可動となして密封装着し且つ押圧手段にて軸方向へ
付勢した非回転リングとの対接するシール面に相対的回
転方向に対して前進角を有する螺線溝を設けて封入流体
をシール面間に圧送してなる非接触メカニカルシールに
おいて、回転リングと非回転リングの何れか一方若しく
は両方のシール面に、その外周縁若しくは内周縁を基端
として延び、相対的回転方向に対して前進角を有し且つ
溝の長さの異なる複数種類の螺線溝を円周方向に周期的
に設けてなるので、長さの異なるそれぞれの螺線溝群の
相対的回転による流体輸送作用によって封入流体をシー
ル面間に圧送して、該シール面の半径方向の異なる位置
に動圧のピーク値を有する圧力分布を形成することがで
き、それにより非回転リング等の変形によるシール面の
平行からのずれを是正する偶力を非回転リングに発生さ
せることができることは勿論、その際に何れか−の螺線
溝群の動圧のピーク値が通常運転時より更に高くなって
封入流体の漏洩を最小限に抑制することができるのであ
る。
According to the above-described non-contact mechanical seal of the present invention, the rotating ring is hermetically fixed to the rotating shaft, the non-rotating ring is movable in the axial direction and is sealed in the housing, and is urged in the axial direction by the pressing means. In a non-contact mechanical seal in which a spiral groove having an advancing angle with respect to the relative rotation direction is provided on the sealing surfaces facing each other to force the sealed fluid between the sealing surfaces, either a rotating ring or a non-rotating ring. Or, on both seal surfaces, multiple types of spiral grooves extending from the outer peripheral edge or the inner peripheral edge as the base end, having advancing angles with respect to the relative rotation direction, and having different groove lengths are periodically arranged in the circumferential direction. Since the spiral grooves have different lengths, the fluid transport effect caused by the relative rotation of each group allows the sealed fluid to be pumped between the seal surfaces, and dynamic pressure is applied to different positions in the radial direction of the seal surfaces. It goes without saying that it is possible to form a pressure distribution with a peak value, thereby generating a force couple in the non-rotating ring that corrects the deviation of the sealing surfaces from parallelism due to deformation of the non-rotating ring, etc. The peak value of the dynamic pressure in either spiral groove group becomes higher than that during normal operation, and leakage of the sealed fluid can be suppressed to a minimum.

また、前記螺線溝として溝の長さの異なる二種類の螺線
溝を用い、一方の短蝦線溝のダム中止を約0.2〜0.
5、他方の長螺線溝のダム巾比を約0.5〜0.8に設
定したことにより、好ましくは短螺線溝のダム中止を約
0.3、長螺線溝のダム巾比を約0.6に設定したこと
により、シール面において非回転リングの断面における
重心位置に対して半径方向内外部に動圧のピークを発生
させることができ、シール面の平行を従来の単一滴長さ
のものと比較して更に安定化させることができるのであ
る。
Further, two types of spiral grooves having different groove lengths are used as the spiral groove, and the dam stop of one of the short spiral grooves is about 0.2 to 0.2 mm.
5. By setting the dam width ratio of the other long spiral groove to about 0.5 to 0.8, it is preferable that the dam width ratio of the short spiral groove is set to about 0.3 and the dam width ratio of the long spiral groove. By setting 0.6 to approximately 0.6, it is possible to generate peaks of dynamic pressure on the sealing surface in the radial direction inside and outside of the center of gravity in the cross section of the non-rotating ring. This allows for greater stability compared to longer lengths.

そして、溝の長さの異なる二種類の螺線溝を円周方向に
交互に設けたことにより、円周方向の動圧の分布を均一
にできる。
By providing two types of spiral grooves with different groove lengths alternately in the circumferential direction, the distribution of dynamic pressure in the circumferential direction can be made uniform.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の非接触メカニカルシールを回転軸とハ
ウジング間に装着した状態の要部断面図、第2図は本発
明の螺線溝のパターンの一例を示す端面図、第3図〜第
5図は同じく螺線溝の他のパターンを示す端面図、第6
図は非回転リングが時計方向へ変形した状態の簡略側面
図、第7図は第6図の状態のシール面間の圧力分布図、
第8図は非回転リングが反時計方向へ変形した状態の簡
略側面図、第9図は第8図の状態のシール面間の圧力分
布図、第10図は従来の非接触メカニカルシールにおい
て非回転リングが時計方向へ変形した状態の簡略側面図
、第11+Ff!Jは第10図の状態のシール面間の圧
力分布図、第12図は同じ〈従来の螺線溝のパターンを
示す端面図である。 M:非接触メカニカルシール、P O(+  P 02
 ’短螺線溝による圧力、P 11+  P 12 ’
長螺線溝による圧力、C1+C2’偶力、W:断面にお
ける重心、1:ハウジング、2:回転軸、3:回転リン
グ、4:非回転リング、5:シール面、6:シール面、
7:押圧手段、8:短蝦線溝、9:長螺線溝、10:固
定スリーブ、11:フランジ部、12:段部、13:締
着スリーブ、14:保持ナツト、15:Oリング、16
:Oリング、17:Oリング、18:保持装置、19:
段部、20:固定スリーブ、21:0リング、22:摺
動部、23:Oリング、24:ディスク。
FIG. 1 is a cross-sectional view of the main part of the non-contact mechanical seal of the present invention installed between the rotating shaft and the housing, FIG. 2 is an end view showing an example of the spiral groove pattern of the present invention, and FIGS. Figure 5 is an end view showing another pattern of spiral grooves;
The figure is a simplified side view of the non-rotating ring deformed clockwise, Figure 7 is a pressure distribution diagram between the sealing surfaces in the state of Figure 6,
Fig. 8 is a simplified side view of the non-rotating ring deformed counterclockwise, Fig. 9 is a pressure distribution diagram between the seal surfaces in the state shown in Fig. 8, and Fig. 10 shows the non-contact mechanical seal in the conventional non-contact mechanical seal. A simplified side view of the rotating ring deformed clockwise, No. 11+Ff! J is a pressure distribution diagram between the seal surfaces in the state shown in FIG. 10, and FIG. 12 is an end view showing the same conventional spiral groove pattern. M: Non-contact mechanical seal, P O (+ P 02
'Pressure due to short spiral groove, P 11+ P 12'
Pressure due to long spiral groove, C1 + C2' couple, W: center of gravity in cross section, 1: housing, 2: rotating shaft, 3: rotating ring, 4: non-rotating ring, 5: sealing surface, 6: sealing surface,
7: Pressing means, 8: Short helical groove, 9: Long helical groove, 10: Fixed sleeve, 11: Flange portion, 12: Step portion, 13: Fastening sleeve, 14: Holding nut, 15: O ring, 16
: O-ring, 17: O-ring, 18: Holding device, 19:
Stepped portion, 20: Fixed sleeve, 21: O-ring, 22: Sliding portion, 23: O-ring, 24: Disc.

Claims (1)

【特許請求の範囲】 1)回転軸に密封固定した回転リングとハウジングに軸
方向可動となして密封装着し且つ押圧手段にて軸方向へ
付勢した非回転リングとの対接するシール面に相対的回
転方向に対して前進角を有する螺線溝を設けて封入流体
をシール面間に圧送してなる非接触メカニカルシールに
おいて、回転リングと非回転リングの何れか一方若しく
は両方のシール面に、その外周縁若しくは内周縁を基端
として延び、相対的回転方向に対して前進角を有し且つ
溝の長さの異なる複数種類の螺線溝を円周方向に周期的
に設けたことを特徴とする非接触メカニカルシール。 2)溝の長さの異なる二種類の螺線溝を用い、一方の短
螺線溝のダム巾比を約0.2〜0.5、他方の長螺線溝
のダム巾比を約0.5〜0.8に設定してなる請求項第
1項記載の非接触メカニカルシール。 3)溝の長さの異なる二種類の螺線溝を用い、一方の短
螺線溝のダム巾比を約0.3、他方の長螺線溝のダム巾
比を約0.6に設定してなる請求項第1項記載の非接触
メカニカルシール。 4)溝の長さの異なる二種類の螺線溝を円周方向に交互
に設けてなる請求項第1項又は第2項又は第3項記載の
非接触メカニカルシール。
[Claims] 1) A rotary ring that is hermetically fixed to the rotary shaft and a non-rotating ring that is movable in the axial direction and is hermetically mounted on the housing and is urged in the axial direction by a pressing means. In a non-contact mechanical seal in which a spiral groove having an advancing angle with respect to the rotational direction is provided to force the sealed fluid between the sealing surfaces, the sealing surface of either or both of the rotating ring and the non-rotating ring includes: It is characterized by having multiple types of spiral grooves periodically provided in the circumferential direction, extending from the outer peripheral edge or the inner peripheral edge as the base end, having an advancing angle with respect to the relative rotation direction, and having different groove lengths. Non-contact mechanical seal. 2) Using two types of spiral grooves with different groove lengths, the dam width ratio of one short spiral groove is approximately 0.2 to 0.5, and the dam width ratio of the other long spiral groove is approximately 0. The non-contact mechanical seal according to claim 1, wherein the non-contact mechanical seal is set to .5 to 0.8. 3) Using two types of spiral grooves with different groove lengths, set the dam width ratio of one short spiral groove to approximately 0.3 and the dam width ratio of the other long spiral groove to approximately 0.6. The non-contact mechanical seal according to claim 1, comprising: 4) The non-contact mechanical seal according to claim 1, 2 or 3, wherein two types of spiral grooves having different groove lengths are provided alternately in the circumferential direction.
JP2165016A 1990-06-23 1990-06-23 Non-contact mechanical seal Expired - Lifetime JPH0743037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2165016A JPH0743037B2 (en) 1990-06-23 1990-06-23 Non-contact mechanical seal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2165016A JPH0743037B2 (en) 1990-06-23 1990-06-23 Non-contact mechanical seal

Publications (2)

Publication Number Publication Date
JPH0454382A true JPH0454382A (en) 1992-02-21
JPH0743037B2 JPH0743037B2 (en) 1995-05-15

Family

ID=15804240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2165016A Expired - Lifetime JPH0743037B2 (en) 1990-06-23 1990-06-23 Non-contact mechanical seal

Country Status (1)

Country Link
JP (1) JPH0743037B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160097456A1 (en) * 2014-10-06 2016-04-07 John Crane Group Corporation Mechanical seal with hydro-pad face profile

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02236067A (en) * 1989-03-03 1990-09-18 Nippon Pillar Packing Co Ltd Non-contact end face type mechanical seal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02236067A (en) * 1989-03-03 1990-09-18 Nippon Pillar Packing Co Ltd Non-contact end face type mechanical seal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160097456A1 (en) * 2014-10-06 2016-04-07 John Crane Group Corporation Mechanical seal with hydro-pad face profile
WO2016057394A1 (en) * 2014-10-06 2016-04-14 John Crane Group Corporation Mechanical seal with hydro-pad face profile
US10753476B2 (en) 2014-10-06 2020-08-25 John Crane Group Corporation Mechanical seal with hydro-pad face profile

Also Published As

Publication number Publication date
JPH0743037B2 (en) 1995-05-15

Similar Documents

Publication Publication Date Title
US6655693B2 (en) Non-contacting gas compressor seal
US7997858B2 (en) Arrangement for sealing off a gap between a first component and a second component
US5626347A (en) Coning resistant face seal having a &#34;U&#34; shape
JP2001012610A (en) Face seal structure
EP3816490A1 (en) Seal ring
US5388843A (en) Fluid film seal
US5531458A (en) Face seal with angled grooves
JPH09292034A (en) Mechanical seal
JPH05164249A (en) Non-contact mechanical seal
JPH0454382A (en) Non-contact mechanical seal
JPH11236976A (en) Sliding material
US5897118A (en) Mechanical seal for a compressor and centrifugal compressor comprising the mechanical seal
JP3079562B2 (en) Two-way non-contact mechanical seal
JPH05149442A (en) Seal for rotation
US4348029A (en) Seal-ring type shaft-sealing device
EP0629799A1 (en) Pressure balanced compliant seal device having a flexible annular member
US4384727A (en) Circumferential ring seal assembly
JPH09273636A (en) Mechanical seal
JPH11230370A (en) Labyrinth seal
JPS6116208A (en) Labyrinth seal device
RU1822914C (en) Shaft seal
WO2020218286A1 (en) Sliding component
JPH04134963U (en) gas seal device
JPH06265026A (en) Slide ring for shaft sealing device
JP2002349209A (en) Seal structure for turbine

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090515

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100515

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110515

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110515

Year of fee payment: 16