JPH0454306A - Heat-resistant bolt - Google Patents

Heat-resistant bolt

Info

Publication number
JPH0454306A
JPH0454306A JP16531390A JP16531390A JPH0454306A JP H0454306 A JPH0454306 A JP H0454306A JP 16531390 A JP16531390 A JP 16531390A JP 16531390 A JP16531390 A JP 16531390A JP H0454306 A JPH0454306 A JP H0454306A
Authority
JP
Japan
Prior art keywords
bolt
cfrc
carbon
carbon fiber
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16531390A
Other languages
Japanese (ja)
Other versions
JP2607737B2 (en
Inventor
Kiyoshi Takei
武居 精
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohwada Carbon Industrial Co Ltd
Original Assignee
Ohwada Carbon Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohwada Carbon Industrial Co Ltd filed Critical Ohwada Carbon Industrial Co Ltd
Priority to JP2165313A priority Critical patent/JP2607737B2/en
Publication of JPH0454306A publication Critical patent/JPH0454306A/en
Application granted granted Critical
Publication of JP2607737B2 publication Critical patent/JP2607737B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To prevent reduction of the tightening force of a bolt after a tempera ture rise by difference of a counter material by disposing yarn of integration of woven sheets consisting of warps and wefts of carbon fibers or carbon fiber- reinforced carbon composite material consisting of carbon fibers crossing each other along the shaft axis of the bolt, and setting the cross section in the verti cal direction to be as predetermined. CONSTITUTION:Phenol resin is impregnated in plain weave organization of polyachrylonitrile lone fibers, the organizations are put together in a die, and they are heated. The obtained matter is then baked in a vacuum furnace, it is put in mixed liquid of phenol resin and methanol, and it is pressurized and impregnated in vacuum to produce carbon fiber-reinforced composite material and a bolt is manufactured there of. In this case, the cross section in the vertical direction of the bolt shaft core is set at a value determined by an expression based on a root cross section of a screw, a differential expantsion coefficient to a counter material, tension resiliency coefficents for both, a temperature rise, etc. Elastic deformation or cutting differential expansion coefficient to the counter material to be tightened 4 eliminated, and a sufficient tightening force can be maintained after temperature rise.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は真空炉、非酸化雰囲気炉、高温高圧プレス機、
宇宙機器などの非酸化雰囲気での高温の条件下にさらさ
れる構造物の部品を締結する耐熱ボルトに間するもので
ある。
[Detailed description of the invention] Industrial fields of application The present invention is applicable to vacuum furnaces, non-oxidizing atmosphere furnaces, high temperature and high pressure press machines,
It is used for heat-resistant bolts that fasten parts of structures that are exposed to high temperatures in non-oxidizing atmospheres, such as space equipment.

従来の技術 従来、真空炉あるいは窒素アルゴンを利用した雰囲気炉
あるいはセラミック超硬合金を製造する際に用いる高温
高圧・プレス機などは、発熱体および内部構造物は耐熱
材料て゛作られている。これらを締結するのに、人造黒
鉛によるボルトが使われているが、引張強度が小さく衝
′S強度が低いため折損が多く、且つ締結力ら小さく、
事故の原因となっていた。しかるに最近炉が大型となっ
て各部品の重量も大きくなり、強度のあるボルト材が要
望されるに至った。
BACKGROUND OF THE INVENTION Conventionally, the heating elements and internal structures of vacuum furnaces, atmospheric furnaces using nitrogen and argon, and high-temperature, high-pressure press machines used in the production of ceramic cemented carbide are made of heat-resistant materials. Bolts made of artificial graphite are used to fasten these, but they have low tensile strength and low impact strength, so they often break, and the fastening force is low.
It had caused an accident. However, recently, furnaces have become larger and the weight of each part has also increased, creating a demand for stronger bolt materials.

上記のような問題を改首するために近年開発された炭素
繊維強化炭素複合材(以下CFRCという)は−膜内に
人造黒鉛に比べ引張強度が約10倍、衝撃強度が約5倍
と著しく高性能であり、高温に耐える高性能の、ボルト
の材料として注目されている。
Carbon fiber-reinforced carbon composite materials (hereinafter referred to as CFRC), which have been developed in recent years to solve the above-mentioned problems, have remarkable tensile strength and impact strength of about 10 times and about 5 times that of artificial graphite. It is attracting attention as a high-performance bolt material that can withstand high temperatures.

このようなCFRCは炭素繊維の織物の表面あるいは1
本の炭素繊維の糸または多数にシート状に並べた炭素繊
維の表面を炭素結合剤となるべきピッチあるいは熱硬化
性樹脂で被覆し、得られたシートを積み重ねて積層物を
形成させた後、これを加熱加圧して硬化物を作り、次い
で非酸化性雰囲気で1000℃以上の温度で焼成する。
Such CFRC can be applied to the surface of carbon fiber fabric or
After coating the surface of a real carbon fiber thread or a large number of carbon fibers arranged in a sheet shape with pitch or a thermosetting resin to serve as a carbon binder, and stacking the obtained sheets to form a laminate, This is heated and pressed to form a cured product, which is then fired at a temperature of 1000° C. or higher in a non-oxidizing atmosphere.

その際、樹脂が熱分解し、水、アミン、炭(P:、水素
の形て゛ガス化し、多孔なMmになるため、さらに樹脂
液中に浸漬し、真空加圧などにより含浸し焼成すると言
う工程を繰り返し、緻密化する〔特開昭63−2429
67号参照〕、このようにして作られたCFRCによる
ボルトはam張係数が一般人造黒鉛の線膨張係数に比べ
て小さい、したがって第1図に示す如く人造黒鉛材によ
る仮1aおよび1bををCFRCのボルト2およびナツ
ト3a、3bにより締結し昇温すると、ボルトの締結に
よる引張加重に加えて温度が上昇するに従いCFRCの
ボルトより人造黒鉛材による板が大きく膨張しようとす
るため、CFRCのボルトに引張荷重がかかる。
At that time, the resin thermally decomposes and gasifies into water, amine, charcoal (P:, hydrogen) and becomes porous Mm, so it is further immersed in the resin liquid, impregnated with vacuum pressure, etc., and fired. Repeating the process and making it more precise
67], the tensile coefficient of the CFRC bolts made in this way is smaller than the linear expansion coefficient of general artificial graphite. Therefore, as shown in Fig. 1, temporary 1a and 1b made of artificial graphite material are When the bolts 2 and nuts 3a and 3b are tightened and the temperature rises, the plate made of artificial graphite material tends to expand more than the CFRC bolt as the temperature rises in addition to the tensile load due to the tightening of the bolt. Tensile load is applied.

したがって最初室温で確実に締結されていたのにかかわ
らず、昇温して室温に戻したとき切断されたりゆるんで
締結の用をなさないなどの問題が生じていた4、tたね
じ部が基材層間剥離により欠けて破片が喰い込むのを防
ぎ、締結時にねじ山に対するせん断応力、軸方向の引張
り力や圧迫力を考慮したCFRCのボルト〔実開昭63
−49013号参照〕は締結後昇温によつ熱膨張による
引張荷重による切断や塑性変形があるため、実用1ヒが
困足であった。
Therefore, even though the screws were initially fastened securely at room temperature, when the temperature rose and returned to room temperature, problems such as breakage or loosening occurred, making the fastening useless. CFRC bolts that prevent chipping due to delamination of material layers and bite into fragments, and take into account shear stress on threads, axial tensile force, and compressive force when tightening [Utility Model No. 63]
No. 49013] was not suitable for practical use because it caused breakage and plastic deformation due to tensile load due to thermal expansion due to temperature rise after fastening.

発明が解決しようとする課題 本発明はこのような課題を解決するものでCFRCのボ
ルトと締結する相手材との膨張係数の差によりボルトが
塑性変形したり切断したりすることなく昇温後も充分な
締結力を維持するCFRCのボルトを提供することを目
的とするものである。
Problems to be Solved by the Invention The present invention is intended to solve such problems.The purpose of the present invention is to solve these problems by making it possible for the CFRC bolt to retain its strength even after the temperature rises without causing plastic deformation or breakage due to the difference in coefficient of expansion between the bolt and the mating material to which it is fastened. The object of the present invention is to provide a CFRC bolt that maintains sufficient fastening force.

課題を解決するための手段 この課題を解決するために本発明は、炭素繊維による経
糸、緯糸からなる繕物状シートを集積するか、または一
方向に炭素繊維を配列したシートを炭素m雄が直交する
ように交互に方向を変えて集積して作られた炭素繊維強
化炭素複合材(CFRC)からなり、シート面に平行な
炭素繊維からなる糸をボルトの細心方向に配置し、ボル
トの軸心方向に垂直な方向の断面積が(1)式を満足す
るものである。
Means for Solving the Problems In order to solve this problem, the present invention consists of accumulating mending sheets made of warps and wefts made of carbon fibers, or by stacking carbon fiber sheets with carbon fibers arranged in one direction. It is made of carbon fiber-reinforced carbon composite material (CFRC) made by stacking the carbon fibers in alternating directions so that they are perpendicular to each other, and the threads made of carbon fibers parallel to the sheet surface are arranged in the fine direction of the bolt. The cross-sectional area in the direction perpendicular to the core direction satisfies equation (1).

但し、A1=CFRCのボルトのねじの谷部の断面積 
− A2 =ナツトまたはワッシャーがm結物に接する面M
aJ C=CFRCのボルトの線膨張係数とそれで締結する物
の線膨張係数の差 /に’ Et =CFRCのボルトの引張弾性係数々/− 22=CFRCのボルトで締結する物の圧縮弾性係数 
贈/d σ1 =CFRCの引張強度 klr/dG =締結す
る力 嘘 T =昇温度 ℃ β =0.7〜2.5係数 前記CFRCに用いる炭素繊維は炭素繊維でも黒鉛質炭
素繊維の何れでも良く、またアクリルニトリル系、レイ
ヨン系、ピッチ系、リグニン系あるいは熱硬化性If脂
系の炭素繊維の何れでも用いることができる。
However, A1 = cross-sectional area of the thread root of the CFRC bolt
- A2 = Surface M where the nut or washer contacts the m connection
aJ C = Difference between linear expansion coefficient of CFRC bolt and linear expansion coefficient of the object fastened with it/' Et = Tensile elastic modulus of CFRC bolt /- 22 = Compressive elastic modulus of the object fastened with CFRC bolt
σ1 = Tensile strength of CFRC klr/dG = Tightening force T = Temperature rise °C β = 0.7 to 2.5 coefficient The carbon fiber used in the CFRC may be either carbon fiber or graphitic carbon fiber. Also, any of acrylonitrile-based, rayon-based, pitch-based, lignin-based, or thermosetting If resin-based carbon fibers can be used.

本発明に用いられる炭素繊維からなるシートとしては織
物、編物、不織布、多くの長繊維を平行に並べたブリプ
レラグを含む。
Sheets made of carbon fibers used in the present invention include woven fabrics, knitted fabrics, nonwoven fabrics, and brippure rugs in which many long fibers are arranged in parallel.

ボルトに使用するCFRCの好ましい手順は炭素繊維に
よるm物にフェノール樹脂を含浸し、金型に合わせて裁
断し、それを数十枚〜数百枚重ねて100 kIr/−
以上の加圧と120℃〜200℃の加温により炭素繊維
強化WMF、複合材を作る。これを真空または窒素ガス
、アルゴンガスなどの非酸化雰囲気で約1000℃に焼
成し、それにピッチまたはフェノール*a、フラン樹脂
を含浸する。この焼成含浸を数回繰り返し、用途によっ
ては2000℃以上にして黒鉛化する。一般にCFRC
は材料製造方法などにより機械特性も線膨張係数も興な
る。炭素繊維のシートに垂直方向の線膨張係数は一般炭
素材料と殆ど同程度で5〜6 x 10−’/ ” K
あるが、炭素繊維の方向に対しては1.5 xlo−’
/” Kと人造黒鉛に比べて小さい、I!I械的性的強
度素m維シートの積層の方向は一般炭素材料よりも弱い
、CFRCによる高温用ボルトはその軸方向を炭素繊維
の方向と同じにすることによりボルトに必要な引張強度
を高くすることができるためこれが望ましい、即ち、ボ
ルトにしたときCFRCの高い引張強度を利用するため
炭素繊維の方向に使うことは線膨張係数が人造黒鉛に比
べて小さい方向を利用することになる。
The preferred procedure for CFRC used in bolts is to impregnate carbon fiber material with phenol resin, cut it to fit the mold, and stack dozens to hundreds of sheets to produce 100 kIr/-.
Carbon fiber-reinforced WMF and composite materials are produced by the above pressurization and heating at 120°C to 200°C. This is fired at about 1000° C. in a vacuum or in a non-oxidizing atmosphere such as nitrogen gas or argon gas, and then impregnated with pitch, phenol*a, and furan resin. This firing and impregnation process is repeated several times, and depending on the application, the temperature is raised to 2000°C or higher to graphitize. Generally CFRC
The mechanical properties and coefficient of linear expansion vary depending on the material manufacturing method. The coefficient of linear expansion in the direction perpendicular to the carbon fiber sheet is almost the same as that of general carbon materials, 5 to 6 x 10-'/''K.
However, in the direction of carbon fiber, 1.5 xlo-'
/"K is smaller than artificial graphite, I!I Mechanical strength is weaker in the direction of lamination of fiber sheets than in general carbon materials. High-temperature bolts made of CFRC have their axial direction aligned with the direction of carbon fibers. This is desirable because the tensile strength required for bolts can be increased by making them the same.In other words, in order to utilize the high tensile strength of CFRC when made into bolts, it is better to use artificial graphite in the direction of carbon fiber, which has a linear expansion coefficient of CFRC. A direction smaller than that will be used.

他方人造黒鉛とCFRCの線膨張係数は温度により変化
し、−例を示すと第1表に示す通りであ次に本発明につ
いて詳しく述べると、第1図に示すようにCFRCのボ
ルトとナツト3a、3bで耐熱材料からなる板1a、l
bを締結した状態において、板1a、lbを固定するに
必要な力が上記(1)式のGである。CFRCの線膨張
係数が小さく耐熱材料(板1a、lb)の!!膨張係数
が大きいと、温度を上げるに従いCFRCのボルトは、
ナツトの接面A2によりCFRC自身の熱膨張以上の伸
ばされる。一方、耐熱材料自身の熱膨張はCFRCのボ
ルトとナツトにより制約され、充分に沖びない、そのた
めCFRCには締結力Gに加えてCFRCと耐熱材料と
の膨張差の力がかかり、CFRCの引張弾性係数および
耐熱材料の圧縮弾性係数に基づき弾性変形内でとどめう
るボルトの強さが必・要となる。また、ナツトの接面A
2が大きければボルトにかかる力が大きくなる。
On the other hand, the linear expansion coefficients of artificial graphite and CFRC change depending on the temperature, and an example is shown in Table 1.Next, to describe the present invention in detail, as shown in FIG. , 3b, plates 1a, l made of heat-resistant material
The force required to fix the plates 1a and lb in the state in which the plates 1a and 1b are fastened is G in the above equation (1). CFRC has a small linear expansion coefficient and is a heat-resistant material (plates 1a, lb)! ! If the coefficient of expansion is large, as the temperature increases, the CFRC bolt will
The contact surface A2 of the nut causes the CFRC to expand beyond its own thermal expansion. On the other hand, the thermal expansion of the heat-resistant material itself is restricted by the bolts and nuts of CFRC, and does not expand sufficiently. Therefore, in addition to the fastening force G, CFRC is subjected to the force of the expansion difference between CFRC and the heat-resistant material, and the CFRC's tensile strength is Based on the elastic modulus and the compressive elastic modulus of the heat-resistant material, the strength of the bolt is required to be able to remain within the elastic deformation. Also, Natsu's contact surface A
If 2 is large, the force applied to the bolt will be large.

それぞれの要因を考慮して(1)式に従うのが最適であ
る。
It is best to follow equation (1) in consideration of each factor.

βが0.7以下ではボルトは破断する。tた、CFRC
の引張強度のバラツキが平均値に対し±50%あること
があり、且つあまりβを大きくすることは不経済である
ので0.7〜2.5の範囲が適当である。
If β is less than 0.7, the bolt will break. t, CFRC
The variation in tensile strength may be ±50% with respect to the average value, and it is uneconomical to make β too large, so a range of 0.7 to 2.5 is appropriate.

作用 上記の構成により、異種材質の組み合わせで生じる熱膨
張の差によるボルトのMA傷を弾性率、強度を考慮した
ボルトの断面積を選ぶことにより防止することができる
ので、炭素繊維強化炭素複合材のボルトが高温条件で使
用する構遺物の強固な締結を可能にした。
Effect With the above configuration, it is possible to prevent MA damage on the bolt due to the difference in thermal expansion caused by the combination of different materials by selecting the cross-sectional area of the bolt in consideration of elastic modulus and strength. These bolts have made it possible to firmly fasten structures used in high-temperature conditions.

実施例 以下、本発明の実施例について説明する。Example Examples of the present invention will be described below.

実施例1 ポリアクリルニトリル系炭素長繊維による300gr/
cdの平織組織の織物〔東邦レーヨン■製〕にフェノー
ル樹脂〔住友デュルドレ社製〕を50%含浸し、200
 x200謬/11の寸法にて120枚裁断し、積み重
ねて金型に入れ、100 kr/cd170℃の条件で
ホブトブレツにて加熱加温した。その後真空炉にて20
00℃に焼成し、焼き上ったものをフェノール樹脂50
%、メタノール50%の液に入れ、真空にした後、10
kIr/aliで加圧含浸した。そして5回の焼成含浸
を繰り返して厚み30m/m 、長さ2001/m、幅
200Il/lの炭素繊維強化炭素複合材を作成した。
Example 1 300gr/polyacrylonitrile carbon long fiber
CD plain weave fabric [manufactured by Toho Rayon ■] is impregnated with 50% phenolic resin [manufactured by Sumitomo Durdret Co., Ltd.], and
120 sheets were cut to a size of x200/11, stacked, placed in a mold, and heated in a hobtoburette at 100 kr/cd at 170°C. Then in a vacuum furnace for 20
Baked at 00℃, and the baked product is coated with phenolic resin 50℃.
%, put it in a solution of 50% methanol and evacuate it, then 10
Pressure impregnation was carried out with kIr/ali. Firing and impregnation were repeated five times to produce a carbon fiber-reinforced carbon composite material having a thickness of 30 m/m, a length of 2001/m, and a width of 200 Il/l.

このようにして作ったCFRCの引張強度は1500k
g/−で、引張弾性率は6 X 10’ kl/d、線
膨張係数は300℃で1.5 X10−’/” K、1
300℃で2.1×10−’/’ Kであった。また、
このCFRCで作ったボルトで締結しようとしている人
造黒鉛(ニスイージーMGY)の圧縮弾性率は1xtO
’に!r/Jで、線膨張係数4300℃テ4.5 xl
o−’、1300”Cテ5.4xIQ−″であった。こ
のCFRCの材料でm雄の方向に長さ100m/mで厚
み2411/m 、幅24m/mの板を切断して作った
。n記(1)式において、A2 =ナツト、の接面積 
 7,1−C=CPRCと人造黒鉛との線膨張係数の差
3.3 xlO−’/″K E、=FRCの縦弾性係数 6 x10’  kIr/ad E2 =人造黒鉛の圧縮弾性gA1!!1x10’*/
ai σ> =CFRCの引張強度 1500賭/− G =ボルトにかかる荷重 3500に+r T −温度       1300℃ β  =1 としたとき、A1は3.89csiとなったので、旋盤
でこの板から長さ10(ill/11で、M−27ピツ
チ3.0s/m外径2711#e 、谷)径23.75
n/n、谷ノ[1ff4.4 dの断面円形の並目ねじ
を作った。そして、人造黒鉛(MGY>で作った40m
/mの板を2枚重ねてこれをCFRCのボルトと1辺が
32II/11の正方形のナツトで締結し、3500m
の荷重をかけて1300’Cに昇温し、2時間維持して
室温にした。ボルトを調べたところ伸びたり折損したり
することは全くなかった。
The tensile strength of CFRC made in this way is 1500k.
g/-, the tensile modulus is 6 X 10' kl/d, and the linear expansion coefficient is 1.5 X 10-'/''K, 1 at 300°C.
It was 2.1 x 10-'/'K at 300°C. Also,
The compressive elastic modulus of the artificial graphite (Niseasy MGY) that is to be fastened with this CFRC bolt is 1xtO
'to! r/J, linear expansion coefficient 4300℃te 4.5 xl
o-', 1300"Cte 5.4xIQ-". A plate having a length of 100 m/m, a thickness of 2411/m and a width of 24 m/m was cut from this CFRC material in the male direction. In formula n (1), A2 = nut, contact area
7,1-C = Difference in linear expansion coefficient between CPRC and artificial graphite 3.3 xlO-'/''KE, = Longitudinal elastic modulus of FRC 6 x10' kIr/ad E2 = Compressive elasticity gA1 of artificial graphite!! 1x10'*/
ai σ> = Tensile strength of CFRC 1500 bet/- G = Load applied to bolt 3500 + r T - Temperature 1300℃ β = 1 When A1 is 3.89 csi, the length from this plate on a lathe 10 (ill/11, M-27 pitch 3.0s/m outer diameter 2711#e, valley) diameter 23.75
A coarse thread with a circular cross section of n/n, Tanino [1ff4.4d] was made. And 40m made of artificial graphite (MGY>)
3500m by stacking two boards of /m and fastening them with CFRC bolts and square nuts of 32II/11 on one side.
The temperature was raised to 1300'C by applying a load of 1000°C, and the temperature was maintained for 2 hours until the temperature reached room temperature. When I inspected the bolts, I found no signs of stretching or breaking.

比教例1 実施例1に示すCFRCの材料で繊維の方向に長す10
0−/−T、厚ミ201/Il、巾201/11 〕[
ヲ(IJ断じてM−20、ピッチ2.5、谷径17.2
94の並目ねじを持つボルトを作り、40m/sの厚み
の実施例1に示す人造黒鉛からなる板2枚を40+e/
mの1辺を持つ厚み15Il/lのナツトで締結力20
00krで締結した。
Example 1 CFRC material shown in Example 1 with length in the fiber direction 10
0-/-T, thickness 201/Il, width 201/11] [
wo (IJ Absolutely M-20, pitch 2.5, valley diameter 17.2
A bolt with a coarse thread of 94 mm was made, and two plates made of artificial graphite shown in Example 1 with a thickness of 40 m/s were
A tightening force of 20 with a nut of thickness 15 Il/l with one side of m
We concluded the deal for 00kr.

そして1500℃に昇温しなとこるボルトが切断しな。And if the temperature rises to 1500℃, the bolt will break.

発明の効果 以上の説明からも本発明によれば、CFRCのボルトと
締結する相手材との膨張係数の差によりボルトが塑性変
形したり切断しなりすることなく、昇温後も充分な締結
力を維持することができる。
Effects of the Invention From the above explanation, according to the present invention, the bolt does not undergo plastic deformation or breakage due to the difference in expansion coefficient between the CFRC bolt and the mating material to be fastened, and sufficient fastening force is maintained even after the temperature rises. can be maintained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はボルト、ナツトによる締結状態を示す断面図で
ある。 la、lb・・・板、2・・・ボルト、3a、3b・・
・ナツト。 1.1. /&  4L 代理人   森  本  義  弘
FIG. 1 is a sectional view showing a state of fastening with bolts and nuts. la, lb...plate, 2...bolt, 3a, 3b...
・Natsuto. 1.1. /& 4L Agent Yoshihiro Morimoto

Claims (1)

【特許請求の範囲】 1、炭素繊維による経糸、緯糸からなる織物状シートを
集積するか、または一方向に炭素繊維を配列したシート
を炭素繊維が直交するように交互に方向を変えて集積し
て作られた炭素繊維強化炭素複合材(CFRC)からな
り、シート面に平行な炭素繊維からなる糸をボルトの軸
心方向に配置し、ボルトの軸心方向に垂直な方向の断面
積が(1)式を満足するボルト。 ▲数式、化学式、表等があります▼・・・(1) 但し、A_1=CFRCのボルトのねじの谷部の断面積
cm^2 A_2=ナットまたはワッシャーが締結物に接する面積
cm^2 C=CFRCのボルトの線膨張係数とそれで締結する物
の線膨張係数の差/K゜ E_1=CFRCのボルトの引張弾性係数kg/cm^
2 E_2=CFRCのボルトで締結する物の圧縮弾性係数
kg/cm^2 σ_1=CFRCの引張強度kg/cm^2G=締結す
る力kg T=昇温度℃ β=0.7〜2.5係数
[Claims] 1. A woven sheet consisting of warps and wefts made of carbon fibers is accumulated, or sheets in which carbon fibers are arranged in one direction are accumulated by alternating the directions so that the carbon fibers are perpendicular to each other. The carbon fiber reinforced carbon composite material (CFRC) is made by arranging carbon fiber threads parallel to the sheet surface in the axial direction of the bolt, so that the cross-sectional area in the direction perpendicular to the bolt axial direction is ( 1) A bolt that satisfies the formula. ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(1) However, A_1 = Cross-sectional area of the thread valley of the CFRC bolt cm^2 A_2 = Area where the nut or washer contacts the fastener cm^2 C= Difference between linear expansion coefficient of CFRC bolt and linear expansion coefficient of the object fastened with it/K゜E_1=tensile elastic modulus of CFRC bolt kg/cm^
2 E_2 = Compressive elastic modulus of the material to be fastened with CFRC bolts kg/cm^2 σ_1 = Tensile strength of CFRC kg/cm^2 G = Tightening force kg T = Temperature rise °C β = 0.7 to 2.5 coefficient
JP2165313A 1990-06-22 1990-06-22 Heat resistant bolt Expired - Lifetime JP2607737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2165313A JP2607737B2 (en) 1990-06-22 1990-06-22 Heat resistant bolt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2165313A JP2607737B2 (en) 1990-06-22 1990-06-22 Heat resistant bolt

Publications (2)

Publication Number Publication Date
JPH0454306A true JPH0454306A (en) 1992-02-21
JP2607737B2 JP2607737B2 (en) 1997-05-07

Family

ID=15809960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2165313A Expired - Lifetime JP2607737B2 (en) 1990-06-22 1990-06-22 Heat resistant bolt

Country Status (1)

Country Link
JP (1) JP2607737B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11986926B2 (en) 2016-06-24 2024-05-21 Applied Materials, Inc. Slurry distribution device for chemical mechanical polishing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6367419A (en) * 1986-09-05 1988-03-26 タイオダイズ・カンパニ−・インコ−ポレ−テツド Connector member

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6367419A (en) * 1986-09-05 1988-03-26 タイオダイズ・カンパニ−・インコ−ポレ−テツド Connector member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11986926B2 (en) 2016-06-24 2024-05-21 Applied Materials, Inc. Slurry distribution device for chemical mechanical polishing

Also Published As

Publication number Publication date
JP2607737B2 (en) 1997-05-07

Similar Documents

Publication Publication Date Title
EP1852252B2 (en) High-temperature resistant composite material
US3657061A (en) Reinforced carbon and graphite bodies
EP1305268B1 (en) Carbon-matrix composites compositions and methods related thereto
US10549503B2 (en) Carbon fiber-reinforced carbon composite and method of manufacturing the same
KR100447840B1 (en) Manufacturing method for carbon-carbon composites
US5418063A (en) Carbon-carbon composite and method of making
CA2124158C (en) High modulus carbon and graphite articles and method for their preparation
EP2554526A1 (en) Carbon/carbon composite material and method of manufacture for same
JP6211881B2 (en) Carbon fiber and method for producing the same
WO2015064733A1 (en) Coil spring
EP0280233B1 (en) Method for producing carbon-carbon composite materials
JP6623011B2 (en) Carbon fiber reinforced carbon composite and method for producing carbon fiber reinforced carbon composite
JPH0454306A (en) Heat-resistant bolt
US5935359A (en) Process for producing carbonaceous preform
JP4245725B2 (en) High temperature pressure molding furnace member made of carbon fiber reinforced carbon composite material and method for producing the same
JP3983459B2 (en) Carbon fiber reinforced carbon composite screw
JP2008044201A (en) Carbon fiber sheet and its manufacturing method
JPH0255393B2 (en)
EP0806285B1 (en) Fiber structure for fiber reinforced composite material and method of making fiber reinforced composite material
JP7320578B2 (en) Screw part made of two-dimensional carbon/carbon composite material laminated with anisotropic nonwoven fabric
JP4420371B2 (en) Manufacturing method of screw member made of C / C material
CN113373505A (en) Single crystal furnace thermal field heat preservation cylinder and preparation method thereof
CN112848385A (en) Preparation method of graphite film heat conduction reinforced composite material
JPH07300373A (en) Carbon fiber-reinforced carbon material having high thermal conductivity in one direction
JPH0352426B2 (en)