JPH0454184Y2 - - Google Patents

Info

Publication number
JPH0454184Y2
JPH0454184Y2 JP1986179587U JP17958786U JPH0454184Y2 JP H0454184 Y2 JPH0454184 Y2 JP H0454184Y2 JP 1986179587 U JP1986179587 U JP 1986179587U JP 17958786 U JP17958786 U JP 17958786U JP H0454184 Y2 JPH0454184 Y2 JP H0454184Y2
Authority
JP
Japan
Prior art keywords
catalyst
molded body
semiconductor material
reaction
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1986179587U
Other languages
Japanese (ja)
Other versions
JPS6385630U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986179587U priority Critical patent/JPH0454184Y2/ja
Publication of JPS6385630U publication Critical patent/JPS6385630U/ja
Application granted granted Critical
Publication of JPH0454184Y2 publication Critical patent/JPH0454184Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【考案の詳細な説明】 〔技術分野〕 本考案は酸素の同位体元素である15O2と水素
とを反応させてH2 15を製造するための装置に関
する。
[Detailed Description of the Invention] [Technical Field] The present invention relates to an apparatus for producing H 2 15 by reacting 15O 2 , an oxygen isotope, with hydrogen.

〔公知技術〕[Known technology]

半減期の短い放射性同位元素を成分として含む
化合物は各種のマーキング剤や検査剤として種々
利用されるようになつている。殊に小型のサイク
ロトロンの出現により放射性同位元素が得易くな
つてからはその元素の化合物を使用直前に製造す
ることが可能となつたので、その利用範囲は急速
に拡大しつつある。本出願前に本発明者の発明に
かゝる「放射性同位液体合成用反応器」が特開昭
60−4900号(特願昭58−11902号)として公知と
なつている。この特開昭60−4900号公報には放射
性化合物の製造装置が具体的に図示説明されてい
る。
Compounds containing radioactive isotopes with short half-lives as components have come to be used in various ways as marking agents and inspection agents. In particular, since radioactive isotopes have become easier to obtain with the advent of small cyclotrons, it has become possible to produce compounds of the elements immediately before use, and the scope of their use is rapidly expanding. Prior to the filing of this application, the “Reactor for Radioisotope Liquid Synthesis” according to the invention of the present inventor was published in the Japanese Patent Application Publication No.
It is known as No. 60-4900 (Japanese Patent Application No. 58-11902). JP-A-60-4900 specifically illustrates and explains an apparatus for producing a radioactive compound.

〔本考案で解決しようとする問題点〕[Problems to be solved by this invention]

放射性同位元素中15O2は半減期が約2分と極め
て短くH2 15の合成も他の放射性同位元素よりも
より早く合成しなければならない。従つて前記公
開公報に記載の装置も使用し得るが、より反応が
完全でより安全に反応を進行させる装置が望まし
い。
Among radioactive isotopes, 15 O 2 has an extremely short half-life of approximately 2 minutes, and H 2 15 must be synthesized faster than other radioisotopes. Therefore, although the apparatus described in the above-mentioned publication can be used, it is desirable to use an apparatus that allows the reaction to proceed more completely and safely.

〔問題点の解決策〕[Solution to the problem]

本考案は上記の問題点を使用触媒を特定するこ
とにより解決したものであり、より具体的には触
媒の担体に電気抵抗の立ち上り温度が約150〜200
℃程度の無機質半導体物質粉末を多孔体として成
形し、この担体上に白金あるいはパラジウムを酸
化触媒として担持させ、この成形された半導体物
質内に加熱用導線を取りつけ通電することによ
り、合成反応を自動的に調節された温度で行い得
るようにしてこの問題を解決したものである。
The present invention solves the above problems by specifying the catalyst used, and more specifically, the catalyst carrier has an electrical resistance rise temperature of about 150 to 200.
By molding an inorganic semiconductor material powder at a temperature of about °C into a porous body, supporting platinum or palladium as an oxidation catalyst on this carrier, and attaching a heating conductor to the molded semiconductor material and energizing it, the synthesis reaction can be carried out automatically. This problem has been solved by allowing the process to be carried out at a temperature that is regulated.

〔発明の構成〕[Structure of the invention]

即ち本考案は、電気抵抗の立上り温度が約150
〜200℃の間にある無機質半導体物質粉末を多数
の透孔を有する成形体に成形し、この透孔の内面
に白金もしくはパラジウムの如き酸化触媒を担持
させ、かつ成形体の半導体物質内と前記触媒面と
には夫々加熱用導線を取りつけて反応容器内に収
容したことを特徴とするH2 15O合成用反応装置
を要旨としており、半導体物質としてはチタン酸
バリウムが好ましい。
In other words, in this invention, the rise temperature of electrical resistance is approximately 150
An inorganic semiconductor material powder at a temperature between ~200°C is molded into a molded body having a large number of through holes, an oxidation catalyst such as platinum or palladium is supported on the inner surface of the through holes, and an oxidation catalyst such as platinum or palladium is supported within the semiconductor material of the molded body and The gist of the present invention is a reaction apparatus for synthesizing H 2 15 O, which is characterized in that a heating conductor is attached to each catalyst surface and housed in a reaction vessel, and barium titanate is preferably used as the semiconductor material.

〔構成の説明〕[Explanation of configuration]

以下本考案を図に基づいて説明する。第1図は
本考案装置の側断面図であり、本考案の要部以外
の部分も図示している。また第2図は本考案装置
に用いられる成形触媒の平面図であり、成形した
触媒と加熱用導線との関係位置を示すものであ
る。第1図で示された本考案の装置は前述した特
開昭60−4900号公報に記載の図面の第1図、第2
図A〜Cと一見近似しているが、外部加熱手段が
ないこと及び特定された構造の自己加熱性触媒を
用いていることで前記公報に記載された装置とは
本質的に相違している。
The present invention will be explained below based on the drawings. FIG. 1 is a side sectional view of the device of the present invention, and also shows parts other than the essential parts of the present invention. FIG. 2 is a plan view of the shaped catalyst used in the device of the present invention, showing the relative position of the shaped catalyst and the heating conductor. The device of the present invention shown in FIG. 1 is shown in FIGS.
Although it looks similar to Figures A to C at first glance, it is essentially different from the device described in the above publication because it does not have an external heating means and uses a self-heating catalyst with a specified structure. .

さて第1図において1は反応容器であり、その
底部には流体は透過する触媒止め2が設けられ触
媒は反応容器外に出ないようになつている。3は
反応器で生成したH2 15Oを凝縮露化させるため
の漏斗状容器、4はそれに続く蛇管を示してい
る。また5は漏斗状容器に水あるいはパージ用不
活性ガスを注入して3の漏斗状容器壁に凝縮した
H2 15Oを含む水を流去するための導管である。
In FIG. 1, reference numeral 1 denotes a reaction vessel, and a catalyst stopper 2 through which fluid passes is provided at the bottom of the vessel, so that the catalyst does not come out of the reaction vessel. Reference numeral 3 indicates a funnel-shaped container for condensing and exposing H 2 15 O produced in the reactor, and 4 indicates a flexible pipe connected to the funnel-shaped container. In addition, in 5, water or inert gas for purging was injected into the funnel-shaped container and condensed on the wall of the funnel-shaped container in 3.
This is a conduit for draining water containing H 2 15 O.

また第1図および第2図において6は触媒成形
体を示し、この触媒成形体には孔の内面に触媒金
属が担持されている気体透過性孔、即ち触媒反応
孔6′が多数触媒の軸方向に設けられている。更
に触媒成形体には一対の加熱用導線7,7′が取
り付けられており、また半導体物質に電圧を与え
ることができる様になつている(但し電源は示さ
れていない)。
Further, in FIGS. 1 and 2, reference numeral 6 indicates a catalyst molded body, and this catalyst molded body has many gas-permeable pores, in other words, catalytic reaction pores 6', in which a catalyst metal is supported on the inner surface of the pores. It is set in the direction. Furthermore, a pair of heating conductors 7, 7' are attached to the catalyst moldings, so that a voltage can be applied to the semiconductor material (although the power source is not shown).

さて承知のように水素と酸素はその発火点以上
では急激な発熱反応を起こすが、発火点は以外に
高く550℃にも達する。従つて酸素及び水素を反
応させるためには、酸素や水素濃度が極めて低い
場合であつてもその発火点に達する程の加熱手段
や補助的な触媒も使用する必要がある。
As we know, hydrogen and oxygen undergo a rapid exothermic reaction above their ignition point, but the ignition point is even higher, reaching 550°C. Therefore, in order to cause oxygen and hydrogen to react, it is necessary to use a heating means and an auxiliary catalyst that can reach the ignition point even when the concentration of oxygen or hydrogen is extremely low.

本考案では特別の加熱装置を使用することなく
反応温度を自動的に制御する装置を提供するもの
である。本考案においては触媒として白金あるい
はパラジウムを使用する。この両金属は100℃を
越え150℃付近において酸化触媒としての機能を
急激に発揮し初めるが、余り高い温度では触媒被
毒が生ずるので好ましくはない。そのため本考案
では触媒の加熱制御を担体物質の電気抵抗の立ち
上り温度が約150〜200℃のものを成形しこの問題
を解決することに成功したもである。現在のとこ
ろ最も好ましい物質としてはチタン酸バリウムで
あるが、無機質の混合物などで同様の効果を奏し
得るものがある程度想定され得るので、本考案の
触媒担体はチタン酸バリウム(説明はこれについ
て行うが)に限られるものではない。
The present invention provides a device that automatically controls the reaction temperature without using a special heating device. In the present invention, platinum or palladium is used as a catalyst. Both metals rapidly begin to function as oxidation catalysts at temperatures exceeding 100°C and around 150°C, but excessively high temperatures are not preferred because catalyst poisoning occurs. Therefore, in the present invention, we succeeded in solving this problem by controlling the heating of the catalyst by molding a carrier material whose electrical resistance rises at a temperature of about 150 to 200°C. Currently, the most preferred substance is barium titanate, but since it can be assumed that some inorganic mixtures may have similar effects, the catalyst support of the present invention is barium titanate (although the explanation will be based on this substance). ).

チタン酸バリウムの電気抵抗の立上りは170〜
180℃にある。従つてこれを成形し定圧の電流を
通すると、この成形物は170〜180℃で熱の発生は
止まり定温となり温度低下が生ずれば又電流が通
じて、ほぼ成形体は170℃付近に保たれる。
The rise in electrical resistance of barium titanate is 170~
It is at 180℃. Therefore, when this is molded and a constant pressure current is passed through it, the molded product stops generating heat at 170 to 180°C and becomes a constant temperature, and when the temperature drops, the current is passed again and the molded product is kept at about 170°C. dripping

従つて不活性キヤリアーガスで稀められた15O2
を含む酸素含有ガス及び同じく不活性キヤリアー
ガスで稀められたH2ガスが管8及び9から反応
器1内の触媒反応孔内へ送られると直ちに反応し
H2 15Oを含んだ水が生成する。この反応は発熱
反応であるが、酸素と水素の量が少ないのでその
熱はガス体である反応生成物の昇温に消費される
ので過熱の恐れがなく、過熱されれば触媒成形体
は発熱を停止するので、触媒反応孔内の温度を
100〜150℃の間に常に保つことができ温度制御は
自動的に行なわれることになる。しかも反応温度
が低いので触媒の被毒は生じない。
15 O 2 thus diluted with an inert carrier gas
An oxygen-containing gas containing H 2 gas, also diluted with an inert carrier gas, is passed through tubes 8 and 9 into the catalytic reaction holes in reactor 1 and reacts immediately.
Water containing H 2 15 O is produced. This reaction is an exothermic reaction, but since the amount of oxygen and hydrogen is small, the heat is consumed to raise the temperature of the gaseous reaction product, so there is no risk of overheating, and if it is overheated, the catalyst molded body will generate heat. The temperature inside the catalytic reaction hole is
Temperature control can be maintained automatically between 100 and 150°C. Moreover, since the reaction temperature is low, no poisoning of the catalyst occurs.

〔考案の効果〕[Effect of idea]

本考案によればこの種装置に必要な加熱手段が
不要になるので装置は簡単となり、又反応の温度
制御が自動となる利点がある。
According to the present invention, there is no need for heating means required in this type of apparatus, so the apparatus is simple, and there is an advantage that temperature control of the reaction is automatic.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の側断面説明図であり、第2図
は触媒成形体の平面図である。 1……反応容器、2……触媒止め、3……漏斗
容器、4……蛇管、5……導管、6……触媒成形
体、6′……触媒反応孔、7,7′……加熱用導
線、8……酸素供給管、9……水素供給管。
FIG. 1 is an explanatory side cross-sectional view of the present invention, and FIG. 2 is a plan view of a catalyst molded body. 1... Reaction container, 2... Catalyst stop, 3... Funnel container, 4... Corrugated tube, 5... Conduit, 6... Catalyst molded body, 6'... Catalyst reaction hole, 7, 7'... Heating 8...Oxygen supply pipe, 9...Hydrogen supply pipe.

Claims (1)

【実用新案登録請求の範囲】 1 電気抵抗の立上り温度が約150〜200℃の間に
ある無機質半導体物質粉末を多数の透孔を有す
る成形体に成形し、この透孔の内面に白金もし
くはパラジウムの如き酸化触媒を担持させ、か
つ成形体の半導体物質内には加熱用導線を取り
つけて反応容器内に収容したことを特徴とする
H2 15O合成用反応装置。 2 無機半導体物質がチタン酸バリウムである実
用新案登録請求の範囲第1項に記載の装置。
[Claims for Utility Model Registration] 1. An inorganic semiconductor material powder whose electric resistance rises between approximately 150 and 200°C is molded into a molded body having many through holes, and platinum or palladium is added to the inner surface of the through holes. The molded body is characterized in that it supports an oxidation catalyst such as the following, a heating conductor is attached to the semiconductor material of the molded body, and the molded body is housed in a reaction vessel.
Reactor for H 2 15 O synthesis. 2. The device according to claim 1, wherein the inorganic semiconductor material is barium titanate.
JP1986179587U 1986-11-20 1986-11-20 Expired JPH0454184Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986179587U JPH0454184Y2 (en) 1986-11-20 1986-11-20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986179587U JPH0454184Y2 (en) 1986-11-20 1986-11-20

Publications (2)

Publication Number Publication Date
JPS6385630U JPS6385630U (en) 1988-06-04
JPH0454184Y2 true JPH0454184Y2 (en) 1992-12-18

Family

ID=31122779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986179587U Expired JPH0454184Y2 (en) 1986-11-20 1986-11-20

Country Status (1)

Country Link
JP (1) JPH0454184Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997028085A1 (en) * 1996-01-29 1997-08-07 Fujikin Incorporated Method for generating moisture, reactor for generating moisture, method for controlling temperature of reactor for generating moisture, and method for forming platinum-coated catalyst layer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS604900A (en) * 1983-06-23 1985-01-11 住友重機械工業株式会社 Reactor for synthesizing radioisotope liquid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS604900A (en) * 1983-06-23 1985-01-11 住友重機械工業株式会社 Reactor for synthesizing radioisotope liquid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997028085A1 (en) * 1996-01-29 1997-08-07 Fujikin Incorporated Method for generating moisture, reactor for generating moisture, method for controlling temperature of reactor for generating moisture, and method for forming platinum-coated catalyst layer

Also Published As

Publication number Publication date
JPS6385630U (en) 1988-06-04

Similar Documents

Publication Publication Date Title
US5082647A (en) Production of hydrogen peroxide
Zuniga et al. Kinetic oscillations during the isothermal oxidation of hydrogen on platinum wires
US1043580A (en) Catalytic body.
JP3651779B2 (en) Method for producing hydrogen peroxide
ZA864767B (en) Production of synthesis gas using convective reforming
DK0395856T3 (en) Process for Preparation of Carrier Catalysts for Oxidation of Carbon Monoxide
WO1998002377A1 (en) Process for preparing hydrogen-containing gas for fuel cell
JPH0454184Y2 (en)
Gonzalez et al. Heats of Adsorption of Oxygen on Nickel, Platinum and Silver1
ES8201518A1 (en) Manufacture of ethylene glycol from synthesis gas
US3804595A (en) Apparatus for producing gaseous moisture calibration standards
Halsey Jr Catalysis on Non‐Uniform Surfaces
Falconer et al. Surface interactions on alumina-supported iridium catalysts: Oxygen and carbon monoxide
Asakura et al. Spectroscopic studies on the surface structures of ruthenium catalysts derived from Ru3 (CO) 12/γ-Al2O3 or SiO2
Bohlbro The kinetics of the water-gas conversion IV. Influence of alkali on the rate equation
GB1470643A (en) Carrying out of highly exothermic chemical reactions
Speros et al. Realization of quantitative differential thermal analysis. II. A solid-gas reaction
Stenberg et al. Aspects of the graphical determination of the volumetric mass-transfer coefficient (kLa) in liquid-phase hydrogenation in a slurry reactor
AU2012205625B2 (en) Process and apparatus for treating a gas stream
JP7085530B2 (en) Hydrogen production equipment and hydrogen production method
CN2333439Y (en) Composite iodine steam generator
ES432035A1 (en) Multi-step chemical and radiation process
ES2023527B3 (en) CATALYTIC SYSTEM, PROCESS OF PREPARATION AND APPLICATION IN THE MANUFACTURE OF ALDEHYDE.
JPS63195105A (en) Production of c15o2 or c15o
JPS5815002A (en) Thermochemical producing cycle for hydrogen using methyl iodide as circulating substance