JPH0453571B2 - - Google Patents

Info

Publication number
JPH0453571B2
JPH0453571B2 JP59065151A JP6515184A JPH0453571B2 JP H0453571 B2 JPH0453571 B2 JP H0453571B2 JP 59065151 A JP59065151 A JP 59065151A JP 6515184 A JP6515184 A JP 6515184A JP H0453571 B2 JPH0453571 B2 JP H0453571B2
Authority
JP
Japan
Prior art keywords
water
membrane
mixed liquid
potassium
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59065151A
Other languages
Japanese (ja)
Other versions
JPS60209291A (en
Inventor
Juji Konagaya
Koji Fukuda
Shinsuke Takegami
Masao Murano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP6515184A priority Critical patent/JPS60209291A/en
Publication of JPS60209291A publication Critical patent/JPS60209291A/en
Publication of JPH0453571B2 publication Critical patent/JPH0453571B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高分子合成膜を用いた水/水溶性有機
化合物混合液体から浸透気化法により水溶性有機
化合物を選択的に分離する方法に関するものであ
る。 水/水溶性有機化合物混合液体から水溶性有機
化合物を得る方法としては蒸留法が古くから知ら
れ、一般に広く用いられている。しかし、低濃度
有機化合物水溶液から有機化合物を得る場合や共
沸組成の有機化合物/水混合液体から有機化合物
を得る場合には多大のエネルギーを消費する欠点
がある。 この難点を克服する方法として、高分子合成膜
を用いた浸透気化法が以前から研究されている。
この分離方法は高分子膜の1次側に処理すべき液
体を供給し透過しやすい物質を2次側に蒸気とし
て透過させる方法である。この浸透気化法に用い
られる高分子膜の素材は透過させたい成分に親和
性のあるものが選ばれる。 この方法の例として膜、8(3)、177(1983)、及
びJ.Mem.Scl,10,253(1982)にはシリコーンゴ
ムを用いてエタノール/水、イソプロパノール/
水混合液からエタノール、イソプロパノールを分
離することが報告されている。しかしながら、こ
れらの方法は水に対するアルコールの分離係数が
低い欠点がある。上記の方法を改良し分離効率を
向上させるため混合液体中に塩を添加する方法が
特開昭−57−159501号公報で述べられている。こ
の方法では混合液体中に塩化リチウム、塩化マグ
ネシウム、塩化アルミニウム、ヨウ化ナトリウム
等の無機塩及び酢酸ナトリウム、乳酸カリウム等
の脂肪酸塩を添加することにより、分離効率とと
もに透過量を向上させることが可能となつたと記
されている。しかし、金属塩種間での差すなわ
ち、金属塩の配位子であるアニオンの効果には全
く言及されていない、また該アニオンがリン酸で
ある塩についても言及されていない。 本発明者らは、高分子膜を用いた有機化合物水
溶液の浸透気化分離において、水溶液系への種々
の金属塩化合物の添加効果について鋭意検討した
ところ、金属塩の配位子であるアニオンが分離効
率及び透過性能に影響を及ぼしていることを見い
出し、以下の発明に至つた。 すなわち、水及び水溶解性有機成分からなる混
合液より該有機成分を分離する浸透気化法におい
て、該混合液中にリン酸の金属塩を存在せしめる
水溶性有機化合物の分離方法である。 本発明でいう金属塩とは、金属がリチウム、ナ
トリウム、カリウム、ルビジウム、セシウムなる
アルカリ金属類から選ばれ配位子がリン酸からな
る金属塩である。具体的にはリン酸(ニ)水素ナトリ
ウム、リン酸水素(ニ)ナトリウム、リン酸ナトリウ
ム、リン酸(ニ)水素カリウム、リン酸水素(ニ)カリウ
ム、リン酸カリウム等リン酸塩が挙げられる。な
かでもリン酸(ニ)水素カリウム、リン酸水素(ニ)カリ
ウムが特に好ましい。 また、これらの化合物を側鎖に有した高分子化
合物を該混合液中に、及び該混合液と高分子膜と
の双方に存在せしめることも可能である。 塩の添加方法には特に制限を設けないが、無機
金属塩を混合液中に添加する場合は、予め該金属
塩を該混合液中に溶解する方が好ましい。この時
の塩濃度は特に制限を加えないが塩濃度が高いと
実用上好ましくない。塩濃度が低いと塩添加の効
果が減少するので0.1〜20wt%の範囲が好ましい。
添加物として高分子金属塩を用いる場合はこの範
囲とは限らない。 分離に用いられる膜は有機化合物との親和性に
すぐれた膜が好ましく、ポリエステル、ポリアミ
ド、ポリウレタン、ポリイミド、ポリオレフイン
ポリビニルアルコール、エポキシ樹脂硬化物、セ
ルロース系高分子化合物、ポリスルホン、シリコ
ーン系高分子化合物、ポリビニルアルコール、ポ
リアクリロニトリル、ポリメタリル酸エステル、
等の単独重合体及びこれらの共重合体から得られ
る膜を用いることができ、混合液の成分により適
宜選定することができる。 上記分離膜の膜厚は特に設けないが、好ましく
は0.1〜160μである。膜の強度が充分であるなら
ば可能な限り薄くしたほうが透過量が大きくなり
実用上好ましい。膜の形状は平膜の他例えば円筒
状又は中空繊維の形状として膜表面積を大きくし
て用いることもできる。 本発明における水/水溶性有機化合物混合液体
とは有機化合物が水に均一に溶解した液であり次
のようなものがあげられる。有機化合物の例とし
てはアルコール(メタノール、エタノール、プロ
パノール、イソプロパノールなど)、有機酸(ギ
酸、酢酸、プロピオン酸、酪酸など)有機酸エス
テル(酢酸メチル、酢酸エチルなど)、ケトン類
(アセトン、メチルエチルケトンなど)環状エー
テル(ジオキサン、テトラハイドロフランなど)
化合物があげられる。混合液体中に上記の化合物
が2種類以上含まれていても可能である。 本発明の水/水溶性有機化合物混合液体からの
水溶性有機化合物の分離は通常の透過気化法によ
つて行なわれ、混合液体と接触しない分離膜の反
対側の圧力は混合液体の接触する側の圧力より低
圧でなければならない。 その圧力差が大きければ大きいほど効果的であ
るが、好ましくは0.01〜100mmHgがよい。膜を透
過した物質を低圧側において蒸発されてガス状で
取り出すことが分離効率透過速度ともに良好とな
る。よつて低圧側を透過する物質の蒸気圧より低
い圧力に保つことが好ましい。低圧に保つ方法と
しては真空に引いて減圧にするか、不活性ガスを
流して低蒸気圧に保つかの方法がある。 本発明の分離方法での適用温度範囲は混合液が
熱分解を起したり、膜が変成したりしない程度の
範囲であればよいが、好ましくは0〜100℃であ
る。 以下に本発明により得られる質的効果、量的効
果について実施例、比較例に基づいて述べるが、
これらでもつて本発明が限定されるものではな
い。 実験 浸透気化実験法 水/水溶性有機化合物混合液の供給側は大気圧
下透過側は0.33mmHgの減圧下で以下の実験を行
なつた。供給側に膜の活性層面を向け、膜面上に
供給液を加え一定温度下で攪拌した。このときの
膜の有効面積は15.2cm2である。膜を透過した水と
有機化合物は液体チツ素で凝縮させて採集した。
透過液中に内部標準としてn−プロパノールを加
え、TCD−ガスクロマトグラフイ−により透過
量及び分離係数を求めた。なお、水に対するエタ
ノールの分離係数aEtoH H2Oは次の様に定義したもので
ある。 aEtOH/H2O=YEtOH/YH2O/XEtOH/XH2O ただし、上式のXEtOH,XH2Oは供給液のエ
タノール、水の重量%を、またYEtOH,YH2
は透過液のエタノール、水の重量%を表す。 実施例 1 ポリジメチルシロキサン樹脂(信越化学、EK
−45−TS)をテフロン板上に厚さが64μになるよ
うに塗布し、室温で2日間放置後がポリジメチル
シロキサン膜を得た。このようにして得られた膜
を浸透気化装置セル(有効面積15.2cm2)にセツト
し、セル内に20Vol%エタノール水溶液100mlに
0.2モルのリン酸ニ水素ナトリウムを溶解した液
を加える。約30分間恒温槽内に放置後、混合液体
を攪拌しながら、混合液体の反対側を真空ポンプ
にて約0.35mmHgに吸引し分離を行なつた。 そのときの透過速度(単位Kg・m/m2・day)、
及びエタノールの水に対する分離係数aEtoH H2Oは表
1の如くであつた。 実施例 2 金属塩をK2HPO4、その添加量を0.1モルとし
た以外は実施例1と全く同様にして行なつた。透
過速度及び分離係数は表1の如くであつた。 比較例 1 実施例1と同様な方法によりポリジメチルシロ
キサン膜を合成し得られた膜は浸透気化装置セル
(有効面積15.2cm2)にセツトし、セル内に20Vol%
エタノール水溶液100mlを加え、40℃の恒温槽に
30分間放置する。次に混合液体の反対側を真空ポ
ンプにて約0.3mmHgに吸引し、分離を行なつた。
得られた結果を表1に示した。 比較例 2〜7 ナトリウム、カリウムのハロゲン化物について
実施例1と同様にして行ない、その結果を表1に
示した。 比較例 8,9 ナトリウム,カリウムの酢酸塩について実施例
1と同様にして行ないその結果を表1に示した。
The present invention relates to a method for selectively separating water-soluble organic compounds from a mixed liquid of water/water-soluble organic compounds by pervaporation using a synthetic polymer membrane. Distillation has long been known as a method for obtaining a water-soluble organic compound from a water/water-soluble organic compound mixed liquid, and is generally widely used. However, there is a drawback that a large amount of energy is consumed when obtaining an organic compound from a low concentration aqueous solution of an organic compound or when obtaining an organic compound from a mixed liquid of an organic compound/water having an azeotropic composition. As a way to overcome this difficulty, pervaporation methods using synthetic polymer membranes have been studied for some time.
This separation method is a method in which a liquid to be treated is supplied to the primary side of a polymer membrane, and substances that are easily permeable are allowed to permeate to the secondary side as vapor. The material of the polymer membrane used in this pervaporation method is selected from one that has an affinity for the component to be permeated. As an example of this method, Membrane, 8(3), 177 (1983) and J.Mem.Scl, 10, 253 (1982) use silicone rubber to
It has been reported that ethanol and isopropanol can be separated from a water mixture. However, these methods have the disadvantage that the separation coefficient of alcohol to water is low. JP-A-57-159501 describes a method of adding salt to the mixed liquid in order to improve the above-mentioned method and improve the separation efficiency. In this method, by adding inorganic salts such as lithium chloride, magnesium chloride, aluminum chloride, and sodium iodide, and fatty acid salts such as sodium acetate and potassium lactate to the mixed liquid, it is possible to improve the separation efficiency and the amount of permeation. It is written that it became. However, there is no mention at all of the difference between metal salt types, that is, the effect of the anion that is the ligand of the metal salt, and there is no mention of salts in which the anion is phosphoric acid. The present inventors conducted extensive studies on the effects of adding various metal salt compounds to the aqueous solution system in pervaporative separation of organic compound aqueous solutions using polymer membranes, and found that anions, which are ligands of metal salts, are separated. They discovered that this has an effect on efficiency and permeation performance, leading to the following invention. That is, in a pervaporation method that separates an organic component from a mixed solution consisting of water and a water-soluble organic component, this is a method for separating a water-soluble organic compound in which a metal salt of phosphoric acid is present in the mixed solution. The metal salt as used in the present invention is a metal salt in which the metal is selected from alkali metals such as lithium, sodium, potassium, rubidium, and cesium, and the ligand is phosphoric acid. Specific examples include phosphates such as sodium (di)hydrogen phosphate, sodium (di)hydrogen phosphate, sodium phosphate, potassium (di)hydrogen phosphate, potassium (di)hydrogen phosphate, and potassium phosphate. . Among these, potassium (di)hydrogen phosphate and potassium (di)hydrogen phosphate are particularly preferred. It is also possible to make a polymer compound having these compounds in its side chain exist in the mixed solution and in both the mixed solution and the polymer membrane. There are no particular restrictions on the method of adding the salt, but when adding an inorganic metal salt to the mixed solution, it is preferable to dissolve the metal salt in the mixed solution in advance. The salt concentration at this time is not particularly limited, but a high salt concentration is not preferred in practice. If the salt concentration is low, the effect of salt addition decreases, so a range of 0.1 to 20 wt% is preferable.
When using a polymeric metal salt as an additive, this range is not limited. The membrane used for separation is preferably a membrane that has excellent affinity with organic compounds, such as polyester, polyamide, polyurethane, polyimide, polyolefin in polyvinyl alcohol, cured epoxy resin, cellulose polymer compound, polysulfone, silicone polymer compound, polyvinyl alcohol, polyacrylonitrile, polymethacrylic acid ester,
Membranes obtained from homopolymers such as and copolymers thereof can be used, and can be appropriately selected depending on the components of the mixed liquid. The thickness of the separation membrane is not particularly determined, but is preferably 0.1 to 160μ. If the membrane has sufficient strength, it is practically preferable to make it as thin as possible, as this increases the amount of permeation. The shape of the membrane may be a flat membrane, for example, a cylindrical shape or a hollow fiber shape to increase the surface area of the membrane. The water/water-soluble organic compound mixed liquid in the present invention is a liquid in which an organic compound is uniformly dissolved in water, and examples include the following. Examples of organic compounds include alcohols (methanol, ethanol, propanol, isopropanol, etc.), organic acids (formic acid, acetic acid, propionic acid, butyric acid, etc.), organic acid esters (methyl acetate, ethyl acetate, etc.), and ketones (acetone, methyl ethyl ketone, etc.). ) cyclic ethers (dioxane, tetrahydrofuran, etc.)
Examples include compounds. It is also possible for the mixed liquid to contain two or more of the above compounds. Separation of the water-soluble organic compound from the water/water-soluble organic compound mixed liquid of the present invention is performed by a normal pervaporation method, and the pressure on the opposite side of the separation membrane that does not come into contact with the mixed liquid is the side that is in contact with the mixed liquid. The pressure must be lower than that of the The larger the pressure difference, the more effective it is, but preferably 0.01 to 100 mmHg. Both separation efficiency and permeation rate are improved by evaporating the substance that has passed through the membrane on the low-pressure side and taking it out in gaseous form. Therefore, it is preferable to maintain the low pressure side at a pressure lower than the vapor pressure of the substance passing through. There are two ways to keep the pressure low: by pulling a vacuum to reduce the pressure, or by flowing an inert gas to keep the vapor pressure low. The applicable temperature range for the separation method of the present invention may be within a range that does not cause thermal decomposition of the mixed liquid or denaturation of the membrane, but is preferably 0 to 100°C. The qualitative and quantitative effects obtained by the present invention will be described below based on Examples and Comparative Examples.
The present invention is not limited by these. Experiments Pervaporation Experimental Method The following experiment was conducted under atmospheric pressure on the supply side of the water/water-soluble organic compound mixture and under reduced pressure of 0.33 mmHg on the permeate side. With the active layer side of the membrane facing the supply side, the supply liquid was added onto the membrane surface and stirred at a constant temperature. The effective area of the membrane at this time is 15.2 cm 2 . The water and organic compounds that permeated the membrane were condensed with liquid nitrogen and collected.
N-propanol was added to the permeate as an internal standard, and the permeation amount and separation coefficient were determined by TCD-gas chromatography. The separation coefficient a of ethanol with respect to water, a EtoH H2O , is defined as follows. aEtOH/H 2 O=YEtOH/YH 2 O/XEtOH/XH 2 O However, in the above formula, XEtOH ,
represents the weight percent of ethanol and water in the permeate. Example 1 Polydimethylsiloxane resin (Shin-Etsu Chemical, EK
-45-TS) was coated on a Teflon plate to a thickness of 64 μm, and after being left at room temperature for 2 days, a polydimethylsiloxane film was obtained. The membrane thus obtained was set in a pervaporation device cell (effective area 15.2 cm 2 ), and 100 ml of a 20 Vol% ethanol aqueous solution was added to the cell.
Add a solution containing 0.2 mol of sodium dihydrogen phosphate. After leaving the mixture in a constant temperature bath for about 30 minutes, while stirring the mixed liquid, the other side of the mixed liquid was sucked to about 0.35 mmHg using a vacuum pump to perform separation. The permeation rate at that time (unit: Kg・m/m 2・day),
and the separation coefficient a of ethanol to water, a EtoH H2 O, were as shown in Table 1. Example 2 The same procedure as in Example 1 was carried out except that the metal salt was K 2 HPO 4 and the amount added was 0.1 mol. The permeation rate and separation coefficient were as shown in Table 1. Comparative Example 1 A polydimethylsiloxane membrane was synthesized by the same method as in Example 1, and the resulting membrane was set in a pervaporation device cell (effective area: 15.2 cm 2 ), and 20 Vol% was contained in the cell.
Add 100ml of ethanol aqueous solution and place in a constant temperature bath at 40℃.
Leave for 30 minutes. Next, the other side of the mixed liquid was suctioned to approximately 0.3 mmHg using a vacuum pump to perform separation.
The results obtained are shown in Table 1. Comparative Examples 2 to 7 The same procedure as in Example 1 was conducted using sodium and potassium halides, and the results are shown in Table 1. Comparative Examples 8 and 9 The same procedure as in Example 1 was conducted using sodium and potassium acetates, and the results are shown in Table 1.

【表】 実施例 3 塩化ナトリウム、臭化ナトリウム、ヨウ化ナト
リウム、塩化カリウム、臭化カリウム、ヨウ化カ
リウム、リン酸水素(ニ)カリウム、リン酸(ニ)水素ナ
トリウムの各2グラム当量金属/1−20Vol%
エタノール水溶液の混合液体を調製した。ヘツド
スペースガスフロマトグラフイー(パーキンエル
マー社製)により各混合液体中の水、エタノール
活量{A(H2O),A(EtoH)}を測定した。その
活量比{A(EtoH)/A(H2O)}(これは水に対
するエタノールの動きやすさの度合いを示す)と
実施例1,2・比較例1〜7における分離係数
aEtoH H2Oとの関係を第1図に示した。ナトリウム、カ
リウムのハロゲン化物については活量比と分離係
数に一次の関係があるが、リン酸水素(ニ)カリウ
ム、リン酸(ニ)水素ナトリウムはこの関係よりずれ
ている。すなわち、エタノール水溶液中のリン酸
塩類にはハロゲン化物とは異なつたエタノール選
択透過作用があることを意味している。
[Table] Example 3 2 gram equivalent metals each of sodium chloride, sodium bromide, sodium iodide, potassium chloride, potassium bromide, potassium iodide, potassium (di)hydrogen phosphate, and sodium (di)hydrogen phosphate/ 1-20Vol%
A liquid mixture of an aqueous ethanol solution was prepared. The water and ethanol activities {A(H 2 O), A(EtoH)} in each mixed liquid were measured using headspace gas chromatography (manufactured by PerkinElmer). Its activity ratio {A(EtoH)/A(H 2 O)} (this indicates the degree of ease of movement of ethanol with respect to water) and the separation coefficient in Examples 1 and 2 and Comparative Examples 1 to 7
a The relationship between EtoH and H2O is shown in Figure 1. For sodium and potassium halides, there is a linear relationship between the activity ratio and the separation coefficient, but potassium(di)hydrogenphosphate and sodium(di)hydrogenphosphate deviate from this relationship. This means that phosphates in the ethanol aqueous solution have a different ethanol selective permeability effect than halides.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は水、エタノールの活量比と分離係数と
の関係を示すものである。
FIG. 1 shows the relationship between the activity ratio of water and ethanol and the separation coefficient.

Claims (1)

【特許請求の範囲】 1 水及び水溶性有機成分からなる混合液より、
該有機成分を分離する浸透気化法において、前記
混合液中にリン酸の金属塩を存在せしめることを
特徴とする水溶性有機化合物の分離方法。 2 金属がリチウム、ナトリウム、カリウム、ル
ビジウム、セシウムからなる群から選ばれる特許
請求の範囲第1項の分離方法。
[Claims] 1. From a mixed liquid consisting of water and a water-soluble organic component,
A method for separating water-soluble organic compounds, characterized in that in the pervaporation method for separating the organic components, a metal salt of phosphoric acid is made to exist in the mixed liquid. 2. The separation method according to claim 1, wherein the metal is selected from the group consisting of lithium, sodium, potassium, rubidium, and cesium.
JP6515184A 1984-04-03 1984-04-03 Separation of water-soluble organic compound Granted JPS60209291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6515184A JPS60209291A (en) 1984-04-03 1984-04-03 Separation of water-soluble organic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6515184A JPS60209291A (en) 1984-04-03 1984-04-03 Separation of water-soluble organic compound

Publications (2)

Publication Number Publication Date
JPS60209291A JPS60209291A (en) 1985-10-21
JPH0453571B2 true JPH0453571B2 (en) 1992-08-27

Family

ID=13278589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6515184A Granted JPS60209291A (en) 1984-04-03 1984-04-03 Separation of water-soluble organic compound

Country Status (1)

Country Link
JP (1) JPS60209291A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61404A (en) * 1984-06-14 1986-01-06 Agency Of Ind Science & Technol Separation of water-organic liquid mixture
JPH0626651B2 (en) * 1986-03-28 1994-04-13 工業技術院長 Liquid mixture separation method
DE3804236A1 (en) * 1988-02-11 1989-08-24 Gft Ges Fuer Trenntechnik METHOD FOR REDUCING THE ALCOHOL CONTENT OF ALCOHOLIC BEVERAGES
CN106110891A (en) * 2016-08-05 2016-11-16 常熟市圆启晶体材料有限公司 A kind of potassium dihydrogen phosphate filtration system and filter method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57159501A (en) * 1981-03-24 1982-10-01 Kuraray Co Ltd Separation of mixed liquid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57159501A (en) * 1981-03-24 1982-10-01 Kuraray Co Ltd Separation of mixed liquid

Also Published As

Publication number Publication date
JPS60209291A (en) 1985-10-21

Similar Documents

Publication Publication Date Title
US4737325A (en) Composite semipermeable membrane and process for preparation thereof
US9085476B2 (en) Pervaporation membranes highly selective for volatile solvents present in fermentation broths
US3750735A (en) Removal of water from liquid mixtures containing formaldehyde using a porous polymeric membrane
US3780147A (en) Method for making high flow porous reverse osmosis membranes containing lipids
GB1482914A (en) Semi-permeable polymeric membranes
US6325218B1 (en) Polyion complex separation membrane with a double structure
JPH0371169B2 (en)
US4877533A (en) Separation of water from organic fluids
JPH0453571B2 (en)
WO1993022040A1 (en) Separating membrane made from polyion complex
US4851120A (en) Anionic polysaccharide separation membranes
JPS63130105A (en) Production of permselective composite membrane
GB2174619A (en) Composite separation membranes
JPS5892402A (en) Preparation of composite membrane having selective permeability of organic substance
JPH0423569B2 (en)
JPS6260924B2 (en)
JPS61167405A (en) Separation of liquid mixture
JP4045342B2 (en) Method for membrane separation of fermented ethanol
JPH0365152B2 (en)
JPS61404A (en) Separation of water-organic liquid mixture
JPH0427893B2 (en)
JPH01242124A (en) Gas-separating membrane
JPH05154365A (en) Water permselective type osmotic gasification film
JPH0584433A (en) Composite membrane and method for separation of liquid mixture using that
KR102010402B1 (en) Molecular additive, manufacturing method for water-treatment membrane using by the same and water-treatment membrane comprising the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term