JPH0453553Y2 - - Google Patents

Info

Publication number
JPH0453553Y2
JPH0453553Y2 JP1986036666U JP3666686U JPH0453553Y2 JP H0453553 Y2 JPH0453553 Y2 JP H0453553Y2 JP 1986036666 U JP1986036666 U JP 1986036666U JP 3666686 U JP3666686 U JP 3666686U JP H0453553 Y2 JPH0453553 Y2 JP H0453553Y2
Authority
JP
Japan
Prior art keywords
optical fiber
temperature
protective tube
furnace
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1986036666U
Other languages
Japanese (ja)
Other versions
JPS62148928U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986036666U priority Critical patent/JPH0453553Y2/ja
Publication of JPS62148928U publication Critical patent/JPS62148928U/ja
Application granted granted Critical
Publication of JPH0453553Y2 publication Critical patent/JPH0453553Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は、真空熱処理炉の内部のような高温雰
囲気の温度測定に利用される光フアイバー式温度
センサーに関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical fiber temperature sensor used for measuring the temperature of a high-temperature atmosphere such as the inside of a vacuum heat treatment furnace.

[従来の技術] 光フアイバー式の温度センサーは、フアイバー
先端の受光端を目的の測温雰囲気に臨んでセツト
し、その受光端からフアイバー内を伝送される光
を外部の受光素子に導き光強度等を計測すること
により、簡単かつ精度よく温度測定が行なえるも
ので、かかる点より上記真空熱処理炉のような高
温雰囲気の温度測定手段として有用なものと考え
られている。すなわち、この種の温度センサを利
用すれば、測温雰囲気から外部に細径(通常1mm
以下)の光フアイバーを施設するだけでよく、測
温雰囲気の気密性保持が容易であるし、光高温計
や放射温度計を使用する場合のように観察窓の類
を設ける必要もない。また、熱電対のように故障
発生の頻度が高い不具合もないし、それに比較し
て遥かに高温域まで測温可能となることなどの利
点が多く挙げられる。
[Prior art] In an optical fiber temperature sensor, the light-receiving end at the tip of the fiber is set facing the target temperature measurement atmosphere, and the light transmitted within the fiber is guided from the light-receiving end to an external light-receiving element and the light intensity is measured. By measuring the above, temperature can be easily and accurately measured, and from this point of view, it is considered to be useful as a means for measuring temperature in high-temperature atmospheres such as the above-mentioned vacuum heat treatment furnace. In other words, if this type of temperature sensor is used, a small diameter (usually 1 mm)
It is only necessary to install an optical fiber (see below), which makes it easy to maintain airtightness of the temperature measurement atmosphere, and there is no need to provide an observation window as is required when using an optical pyrometer or radiation thermometer. Additionally, unlike thermocouples, they do not have the problems that frequently cause failures, and compared to thermocouples, they have many advantages, such as being able to measure temperatures up to a much higher temperature range.

[考案の解決しようとする問題点] ところが、光フアイバー式温度センサーを高温
雰囲気の温度測定に利用する場合の一つの問題点
として、石英ガラス等で形成されている光フアイ
バー(コア)が大気中で高温に長時間保持される
場合、酸化して徐々に変質し光伝送能力が経時的
に劣化することがある。また、同様に腐食性ガス
の雰囲気に光フアイバーを曝するような測温態様
の場合も同様の現象が起こる。そして、このよう
な理由で光フアイバーに光伝送能力の低下を来た
すと、勿論感度や測温精度が悪化することにな
る。
[Problems to be solved by the invention] However, one problem when using an optical fiber temperature sensor to measure temperature in a high-temperature atmosphere is that the optical fiber (core) made of quartz glass etc. If it is kept at high temperatures for a long period of time, it may oxidize and gradually change in quality, causing its optical transmission ability to deteriorate over time. Furthermore, a similar phenomenon occurs in a temperature measurement mode in which an optical fiber is exposed to a corrosive gas atmosphere. If the optical transmission capacity of the optical fiber is reduced for such reasons, the sensitivity and temperature measurement accuracy will of course deteriorate.

本考案は、上記問題点に着目し、長時間高温の
大気中や腐食性ガス中で使用しても、光フアイバ
ーの変質による性能劣化を来たすことのない改良
された温度センサーを提供するものである。
The present invention focuses on the above-mentioned problems and provides an improved temperature sensor that does not deteriorate in performance due to deterioration of the optical fiber even when used in high-temperature atmosphere or corrosive gas for long periods of time. be.

[問題点を解決するための手段] 本考案は、この目的を達成するために、光フア
イバーの先端部所要長を、内部を真空排気した保
護管に挿填するとともに、光フアイバの受光端
を、該保護管先端に設けたターゲツトの内面に近
接させて炉内位置に配置したことを特徴としてい
る。
[Means for Solving the Problems] In order to achieve this objective, the present invention inserts the required length of the tip end of the optical fiber into a protective tube whose inside is evacuated, and also inserts the light receiving end of the optical fiber into a protective tube whose inside is evacuated. , is characterized in that it is placed in the furnace close to the inner surface of the target provided at the tip of the protective tube.

[作用] このように光フアイバーの先端部を保護管に挿
填し、その内部を真空排気した状態で測温すれ
ば、加熱される光フアイバーの先端部を酸素を含
む大気や有害な測温雰囲気ガスと接触を遮断する
ことができ、光フアイバーの酸化や腐食に起因す
る性能低下を確実に防止することができる。
[Function] In this way, if the tip of the optical fiber is inserted into the protective tube and the temperature is measured while the inside is evacuated, the heated tip of the optical fiber will not be exposed to oxygen-containing atmosphere or harmful temperature measurement. It is possible to cut off contact with atmospheric gases, and it is possible to reliably prevent performance deterioration due to oxidation and corrosion of the optical fiber.

その上、このものは保護管の内部を真空排気
し、光の透過を妨げるガスを存在させないので、
光フアイバの光伝送効率をさらに向上させること
ができる。
In addition, this product evacuates the inside of the protective tube and eliminates the presence of gas that blocks the transmission of light.
The optical transmission efficiency of the optical fiber can be further improved.

[実施例] 以下、本考案の一実施例を図面を参照して説明
して行く。
[Example] Hereinafter, an example of the present invention will be described with reference to the drawings.

図面は、一例として真空熱処理炉の炉内温度の
測定に利用される光フアイバー式温度センサーに
本考案を適用した場合を概略図示している。図に
おいて、1は真空熱処理炉で、炉殻2の内面に断
熱材3を内張して構成されている。この真空炉1
は、内部にヒータ4を備え該ヒータ4で炉内の処
理物を加熱昇温する。
The drawing schematically shows, as an example, a case where the present invention is applied to an optical fiber temperature sensor used for measuring the temperature inside a vacuum heat treatment furnace. In the figure, reference numeral 1 denotes a vacuum heat treatment furnace, which is constructed by lining the inner surface of a furnace shell 2 with a heat insulating material 3. This vacuum furnace 1
is equipped with a heater 4 inside, and the heater 4 heats and raises the temperature of the processed material in the furnace.

そして、真空炉1に光フアイバー5とシリコン
フオトセルのような受光センサー10等を組み合
せて構成される光フアイバー式温度センサーを付
設している。光フアイバー5は、炉内に挿入され
て直接高温雰囲気に曝される炉内部分と、当該部
分から熱伝導により加熱される炉外部分の双方を
含む受光端5aからの必要な長さに相当する先端
部5Aを中空の保護管6の内部に挿填して、この
保護管6と共に炉壁2,3に挿着してセツトされ
ている。保護管6は、ステンレス鋼やインコネル
等の耐熱材料で形成されているとともに、先端に
炉内温度に応じて発光するコーン状のターゲツト
部6aを基端に底版部6bをそれぞれ一体に蓋着
してなり、その内部が気密構造となつている。そ
して、この保護管6に対し、光フアイバー5はそ
の底版部6bから気密に差し込んで内部を軸方向
に挿通され、先端の受光端5aを前記ターゲツト
部6aの背面と適当な間隔を置いた部位に位置決
めして固定している。この間隔は、この場合破線
で示すように、光フアイバー5の受光端5aに占
める視野がターゲツト部6aに全背面を越えない
距離に設定される。
An optical fiber type temperature sensor is attached to the vacuum furnace 1, which is constructed by combining an optical fiber 5 and a light receiving sensor 10 such as a silicon photocell. The optical fiber 5 has a length corresponding to the required length from the light receiving end 5a, which includes both the inner part of the furnace that is inserted into the furnace and is directly exposed to the high-temperature atmosphere, and the outer part of the furnace that is heated by heat conduction from that part. The distal end portion 5A is inserted into a hollow protective tube 6, and the protective tube 6 and the protective tube 6 are inserted into the furnace walls 2 and 3 and set. The protection tube 6 is made of a heat-resistant material such as stainless steel or Inconel, and has a cone-shaped target portion 6a at the tip that emits light depending on the temperature inside the furnace, and a base end and a bottom plate portion 6b, each integrally covered with a lid. The interior has an airtight structure. The optical fiber 5 is airtightly inserted into the protection tube 6 from the bottom plate portion 6b and passed through the inside in the axial direction, and the light receiving end 5a at the tip is placed at an appropriate distance from the back surface of the target portion 6a. It is positioned and fixed. In this case, this interval is set to such a distance that the field of view occupied by the light-receiving end 5a of the optical fiber 5 does not exceed the entire back surface of the target portion 6a, as shown by the broken line.

そして、上記の如く内部に光フアイバー5を挿
填して炉壁2,3に挿着される保護管6には、そ
の基端側の一側に内部と連通する排気管7が連結
されており、この排気管7を開閉切換自在のコツ
ク8を介して真空ポンプ9の吸込口9aに接続し
ている。また、前記排気管7は、その分岐管部7
aにバルブ11を介し適宜の不活性ガスを貯留す
るガスタンク12のガス供給口12aと連通され
るようになつている。
The protection tube 6, which is inserted into the furnace walls 2 and 3 with the optical fiber 5 inserted therein as described above, has an exhaust pipe 7 connected to one side of its proximal end that communicates with the inside. This exhaust pipe 7 is connected to a suction port 9a of a vacuum pump 9 via a socket 8 which can be switched open and closed. Further, the exhaust pipe 7 has a branch pipe portion 7 thereof.
a is connected through a valve 11 to a gas supply port 12a of a gas tank 12 that stores an appropriate inert gas.

しかして、かかる温度センサーによる炉内温度
の測定を行なうときには、光フアイバー5の先端
部5Aと共に保護管6を炉内に挿入し、その先端
のターゲツト部6aを測温雰囲気に臨む適当な部
位に配置する。すると、保護管6のターゲツト部
6aは測温雰囲気の温度に対応して発光し、この
ターゲツト部6からの光をその背面に臨む受光端
5aから光フアイバー5が受光する。そして、光
フアイバー5内を伝送される光は、最終的にその
末端から波長選択フイルター10aを通して受光
センサー10に伝えられ、前記ターゲツト部6a
の放射率をフアクターとして温度計測される。
Therefore, when measuring the temperature inside the furnace using such a temperature sensor, the protective tube 6 is inserted into the furnace together with the tip 5A of the optical fiber 5, and the target portion 6a at the tip is placed at an appropriate location facing the temperature measurement atmosphere. Deploy. Then, the target portion 6a of the protection tube 6 emits light in accordance with the temperature of the temperature measuring atmosphere, and the optical fiber 5 receives the light from the target portion 6 from the light receiving end 5a facing the back side thereof. The light transmitted within the optical fiber 5 is finally transmitted from the end thereof to the light receiving sensor 10 through the wavelength selection filter 10a, and the light is transmitted to the light receiving sensor 10 from the end thereof through the wavelength selection filter 10a.
Temperature is measured using emissivity as a factor.

このさい保護管6の内部は、前記真空ポンプ9
の作動下にその排気管7のコツク8を開にして排
気し、真空に置換しておく。また、真空処理後前
記ガスタンク12からバルブ11を開放して不活
性ガスを導入し、保護管6の内部を不活性ガスで
置換しておいてもよい。かくして、保護管6の内
部を真空又は不活性ガス雰囲気に置換した状態で
測温するようにすれば、真空炉1から直接又は間
接に加熱される内部に挿填した光フアイバー5の
先端部5Aを非反応性の雰囲気下に置くことがで
きる。つまり、光フアイバー5の熱影響部を大気
や炉内ガスと完全に隔離して測温することができ
るため、酸化や腐食によるフアイバーコアの変質
劣化を蒙らず、それ故に反復あるいは長時間の使
用に供してもその測温性能の低下を来すことがな
くなる。
At this time, the inside of the protection tube 6 has the vacuum pump 9
While operating the exhaust pipe 7, the exhaust pipe 7 is opened to evacuate the air and the air is replaced with a vacuum. Alternatively, after the vacuum treatment, the valve 11 may be opened from the gas tank 12 to introduce an inert gas to replace the inside of the protective tube 6 with the inert gas. In this way, if the temperature is measured while the inside of the protective tube 6 is replaced with a vacuum or an inert gas atmosphere, the tip 5A of the optical fiber 5 inserted into the inside that is heated directly or indirectly from the vacuum furnace 1 can be placed under a non-reactive atmosphere. In other words, since the temperature can be measured while completely isolating the heat-affected zone of the optical fiber 5 from the atmosphere and the gas in the furnace, the fiber core does not suffer from deterioration due to oxidation or corrosion, and therefore it can be used repeatedly or over a long period of time. Even if it is used, its temperature measurement performance will not deteriorate.

そして、このように保護管6内を真空排気して
行う方が、保護管6内にガスを充満させて測定を
行う場合に比べて、非反応性の雰囲気の実現を容
易にし、しかも散乱等の原因となるガスを存在さ
せないことで光フアイバー5の光伝送効率を高め
るので、結果的に温度センサーとしての感度や精
度の一層の向上をもたらすことになる。
By evacuating the inside of the protective tube 6 in this way, it is easier to create a non-reactive atmosphere than when measuring by filling the inside of the protective tube 6 with gas. Since the light transmission efficiency of the optical fiber 5 is increased by eliminating the presence of the gas that causes this, the sensitivity and accuracy of the temperature sensor are further improved.

なお、図示の実施例では、便宜上保護管6を相
対的に大寸法のものとして示すが、これは直径1
mm以下の光フアイバー(コア)5を通せばよいも
のであるから、実質的には殆ど径大化することが
なく、光フアイバー式の場合の施設の簡便さを損
なうものではない。そして、この保護管6は、も
とより同時に光フアイバー5の受光端5aへ外乱
光が入るのを遮断する役目と、光フアイバー5の
先端部5Aの取扱に必要な機械的強度を付与する
役目とを果している。
In the illustrated embodiment, the protection tube 6 is shown as having a relatively large size for convenience, but this has a diameter of 1
Since it is sufficient to pass through the optical fiber (core) 5 of mm or less, there is virtually no increase in diameter, and the simplicity of the facility in the case of the optical fiber type is not impaired. The protection tube 6 has the functions of simultaneously blocking disturbance light from entering the light-receiving end 5a of the optical fiber 5, and providing mechanical strength necessary for handling the tip 5A of the optical fiber 5. I am accomplishing it.

また、図示例では保護管6に対し光フアイバー
5の先端部5Aを遊嵌状に挿填しているが、これ
は保護管6の内径をより小さくしたり、あるいは
充填物を詰めて相互のなじみを良くすることもで
きる。
In addition, in the illustrated example, the distal end 5A of the optical fiber 5 is loosely inserted into the protective tube 6, but this may be done by making the inner diameter of the protective tube 6 smaller or by filling it with a filler so that it can be inserted into the protective tube 6. It can also improve familiarity.

[考案の効果] 以上のように本考案によると、光フアイバー先
端部の所要長を内部を真空排気した保護管に挿填
しているので、光フアイバーの酸化や腐蝕に起因
する性能低下を有効に防止することができ、同時
に、光フアイバーの光伝送効率を高めて温度セン
サーとしての感度や精度を有効に向上させること
が可能になる。
[Effects of the invention] As described above, according to the invention, the required length of the tip of the optical fiber is inserted into a protective tube whose inside is evacuated, which effectively prevents performance degradation caused by oxidation and corrosion of the optical fiber. At the same time, it is possible to increase the light transmission efficiency of the optical fiber and effectively improve the sensitivity and accuracy of the temperature sensor.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本考案の一実施例を示す光フアイバー式
温度センサーの断面概要図である。 1……真空熱処理炉、2……炉殻、3……断熱
材、4……ヒータ、5……光フアイバー、5a…
…受光端、5A……先端部、6……保護管、6a
……ターゲツト、6b……底版部、7……排気
管、7a……分岐管部、8……コツク、9……真
空ポンプ、10……受光センサ、10a……波長
選択フイルタ、11……バルブ、12……ガスタ
ンク。
The drawing is a schematic cross-sectional view of an optical fiber temperature sensor showing an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...Vacuum heat treatment furnace, 2...Furnace shell, 3...Insulating material, 4...Heater, 5...Optical fiber, 5a...
...Light receiving end, 5A...Tip, 6...Protective tube, 6a
...Target, 6b...Bottom plate part, 7...Exhaust pipe, 7a...Branch pipe part, 8...Kotoku, 9...Vacuum pump, 10...Light receiving sensor, 10a...Wavelength selection filter, 11... Valve, 12...Gas tank.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 光フアイバーの先端部を、内部を真空排気した
保護管に挿填するとともに、光フアイバーの受光
端を、該保護管先端に設けたターゲツトの内面に
近接させて炉内位置に配置したことを特徴とする
光フアイバー式温度センサー。
The tip of the optical fiber is inserted into a protective tube whose inside is evacuated, and the light-receiving end of the optical fiber is placed in the furnace close to the inner surface of the target provided at the tip of the protective tube. Fiber optic temperature sensor.
JP1986036666U 1986-03-12 1986-03-12 Expired JPH0453553Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986036666U JPH0453553Y2 (en) 1986-03-12 1986-03-12

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986036666U JPH0453553Y2 (en) 1986-03-12 1986-03-12

Publications (2)

Publication Number Publication Date
JPS62148928U JPS62148928U (en) 1987-09-21
JPH0453553Y2 true JPH0453553Y2 (en) 1992-12-16

Family

ID=30847283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986036666U Expired JPH0453553Y2 (en) 1986-03-12 1986-03-12

Country Status (1)

Country Link
JP (1) JPH0453553Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3255942B2 (en) 1991-06-19 2002-02-12 株式会社半導体エネルギー研究所 Method for manufacturing inverted staggered thin film transistor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57196339U (en) * 1981-06-08 1982-12-13
JPS6080729A (en) * 1983-10-10 1985-05-08 Seiichi Okuhara Light receiving part of optical temperature measuring device

Also Published As

Publication number Publication date
JPS62148928U (en) 1987-09-21

Similar Documents

Publication Publication Date Title
JP2780866B2 (en) Light irradiation heating substrate temperature measurement device
JPH0453553Y2 (en)
US4525080A (en) Apparatus for accurately measuring high temperatures
JP2563440B2 (en) Semiconductor wafer processing equipment
US3452598A (en) Immersion radiation pyrometer device
JPH0453554Y2 (en)
JP2004327653A (en) Vacuum processing equipment
JPH04242095A (en) Heating temperature measuring device in microwave high electric field
JP3204605B2 (en) How to calibrate an optical fiber thermometer
JP3844332B2 (en) Hot displacement measuring device and measuring method
US3278341A (en) Thermocouple device for measuring the temperature of molten metal
JPH07270256A (en) Temperature calibration device
CN114964533A (en) Temperature measuring device and temperature measuring method for semiconductor equipment
JPH03210437A (en) Infrared sensor and its manufacture
JP3464731B2 (en) Gas temperature measuring device having a light guide with black body film
JP2000046653A (en) Radiation thermometer
JPS61178624A (en) Surface temperature measurement method and device
KR100308210B1 (en) Temperature measuring device of chemical vapor deposition chamber
JPH0517143Y2 (en)
JPH0633387Y2 (en) thermocouple
JPH0662333U (en) Temperature measuring device
JPH06109551A (en) Cooling device for temperature measurement
JPS61182539A (en) Detecting part of radiation temperature
JP2000346708A (en) Radiation temperature measuring device
JP2001208611A (en) Temperature measuring method and device