JPH0453254B2 - - Google Patents

Info

Publication number
JPH0453254B2
JPH0453254B2 JP60035655A JP3565585A JPH0453254B2 JP H0453254 B2 JPH0453254 B2 JP H0453254B2 JP 60035655 A JP60035655 A JP 60035655A JP 3565585 A JP3565585 A JP 3565585A JP H0453254 B2 JPH0453254 B2 JP H0453254B2
Authority
JP
Japan
Prior art keywords
pattern
image
autocorrelation
core material
same shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60035655A
Other languages
Japanese (ja)
Other versions
JPS61194337A (en
Inventor
Koichiro Myagi
Junkichi Kino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP60035655A priority Critical patent/JPS61194337A/en
Publication of JPS61194337A publication Critical patent/JPS61194337A/en
Publication of JPH0453254B2 publication Critical patent/JPH0453254B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は自己相関画像を利用して、同じ形状
の繰り返しパターンの良否を判定する技術に関
し、近年広く使用される光フアイバの芯材の曲
り、キズ、異状凹凸などを検出するための検査手
段として利用される技術に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a technology for determining the quality of repeating patterns of the same shape using autocorrelation images, and is concerned with the technology for determining the quality of repeating patterns of the same shape by using autocorrelation images. , relates to technology used as an inspection means for detecting scratches, abnormal irregularities, etc.

〔従来の技術〕 この発明は、同一出願人の先願に係る発明(特
願昭58−191691号(特開昭60−84666号)の「相
関装置」)を応用した発明である。
[Prior Art] This invention is an invention that applies the invention related to the earlier application of the same applicant (the "correlation device" of Japanese Patent Application No. 58-191691 (Japanese Unexamined Patent Publication No. 60-84666)).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

光フアイバの芯材の曲り、キズ、凹凸などを流
れ作業の生産工程の中で検査したいという要望が
強いが、それに応える適当な技術は得られないま
まとなつている。とくに、流れ作業の中でのパタ
ーン認識と、良品のもつ基準パターンとの比較照
合ができないでいるのが現状である。この発明は
こういつた問題を解決するための手段を提供する
ためになされたものである。
There is a strong desire to inspect the core material of optical fibers for bends, scratches, irregularities, etc. during the assembly line production process, but the appropriate technology to meet this requirement remains lacking. In particular, the current situation is that it is not possible to recognize patterns in assembly lines and compare them with reference patterns of good products. This invention has been made to provide a means for solving these problems.

〔問題点を解決するための手段〕[Means for solving problems]

この問題点を解決するためにこの発明では二つ
の特徴的な事実を利用する。
In order to solve this problem, the present invention utilizes two characteristic facts.

第1は、光フアイバの芯材の曲り、キズ、凹凸
等を検出するために、芯材の溝が一定のピツチを
有するら線状に回転した構造を有していることに
着目し、溝に平行な光束を照射し、その透過光が
作る影絵のパターンをとらえて、テレビカメラで
撮像する。この影絵パターンは、正規の良品芯材
では同じ形状の繰り返しパターンが得られるが、
溝の内部にゴミが付着していたり、キズがあるた
めに生ずる形の不整、あるいは芯材の不整凹凸な
どを明瞭に反映するという事実である。
First, in order to detect bends, scratches, irregularities, etc. in the core material of an optical fiber, we focused on the fact that the grooves in the core material have a spirally rotated structure with a certain pitch. A parallel beam of light is irradiated onto the object, and the shadow pattern created by the transmitted light is captured and imaged with a television camera. This shadow picture pattern can be obtained with regular good quality core materials, but
This is a fact that clearly reflects the presence of dust inside the grooves, irregularities in shape caused by scratches, or irregularities in the core material.

第2は、平行な光束の照射によつて得られた上
記パターンを流れ作業の中で良品の基準パターン
と比較するために、リアルタイムで動作する相関
器によつて自己相関パターンとする。自己相関パ
ターンは移動中の対象物に対しては、対象の周期
と形状の特徴を固定した動きのないパターンとし
て表われるという特徴(別名、自己相関演算にお
ける位相成分の消失現象)があるから、流れ作業
の対象に対しても動きを固定して観測することが
できる。ゆえに、固定された自己相関パターンを
良品の自己相関パターンと比較し、良否判定の検
査をすることが容易にできるようになる。
Second, in order to compare the pattern obtained by irradiation with a parallel light beam with a reference pattern of a good product during the assembly process, a correlator operating in real time generates an autocorrelation pattern. The autocorrelation pattern has the characteristic that, for a moving object, it appears as a motionless pattern with fixed periodicity and shape characteristics (also known as the disappearance of the phase component in autocorrelation calculations). It is also possible to fix and observe the movements of objects on assembly lines. Therefore, it becomes easy to compare the fixed autocorrelation pattern with the autocorrelation pattern of a non-defective product and perform an inspection to determine whether the product is good or bad.

〔実施例〕〔Example〕

第1図はこの発明の同じ形状の繰り返しパター
ンの良否を判定する方法を、光フアイバの芯材の
検査装置として実施した例の構成図を示す。被測
定物の芯材1は図示のように長さ方向にら線の形
状をしており、それが長さ方向矢印2に向つて移
動している流れ作業がおこなわれている。光学的
パターン検出器3は、平行光束を良否を判定すべ
き被測定物品(もしくは参照すべき基準となる物
品)に照射して同じ形状の繰り返しパターンを得
るための装置であり、たとえばHe−Neレーザを
光源とする光学系と、芯材の影絵を撮影するテレ
ビカメラとからなる。この検出器中を被測定物
(もしくは参照物)である芯材が矢印方向に移動
し、得られたテレビ画像がリアルタイムで作動す
る相関器(望ましくは音響光学的相関器)4に送
られる。相関器は平行光束が作つた同じ形状が繰
り返されるパターンを、パターンの繰り返し方向
に走査して得られたテレビ信号を直接入力するこ
とが可能であり、しかもリアルタイムでその自己
相関画像となるべき相関出力信号を出力すること
ができる。参照用物品から得られた自己相関画像
について、各位置における画像の輝度に従つて参
照用物品の特徴点をあらかじめ抽出し、記憶して
おくとよい。この記憶が特徴点メモリ5にされて
いる。良否を判定すべき物品から得られた自己相
関画像についても、各位置における画像の輝度に
従つて、特徴点が抽出され、特徴点メモリ5の記
憶内容と特徴点比較器6において比較照合され、
変化が認められるか否かの良否判定結果が表示器
7に表示される。
FIG. 1 shows a configuration diagram of an example in which the method of determining the quality of repeating patterns of the same shape according to the present invention is implemented as an inspection apparatus for the core material of an optical fiber. As shown in the figure, the core material 1 of the object to be measured has a spiral shape in the length direction, and assembly work is being performed in which the core material 1 moves in the direction of the longitudinal arrow 2. The optical pattern detector 3 is a device for obtaining a repeating pattern of the same shape by irradiating a parallel light beam onto an article to be measured (or an article to be referred to as a reference) to determine the quality. It consists of an optical system that uses a laser as a light source and a television camera that takes a shadow picture of the core material. A core material, which is an object to be measured (or a reference object), moves in the direction of the arrow in this detector, and the obtained television image is sent to a correlator (preferably an acousto-optic correlator) 4 that operates in real time. The correlator can directly input the television signal obtained by scanning a pattern in which the same shape is repeated in the repeating direction of the parallel light beam in the pattern repeating direction, and can also directly input the television signal obtained by scanning the pattern in the repeating direction of the pattern, which is created by parallel light beams.Moreover, it is possible to directly input the television signal obtained by scanning the pattern in which the same shape is repeated, which is created by parallel light beams. An output signal can be output. Regarding the autocorrelation image obtained from the reference article, feature points of the reference article may be extracted and stored in advance according to the brightness of the image at each position. This memory is stored in the feature point memory 5. Regarding the autocorrelation image obtained from the article to be judged as good or bad, feature points are extracted according to the brightness of the image at each position, and are compared with the stored contents of the feature point memory 5 in the feature point comparator 6,
The quality determination result as to whether or not a change is observed is displayed on the display 7.

第2図は光学的パターン検出器3の具体的構成
例を示し、aは上面図、bは正面図である。He
−Neレーザ光源31からの光線を二つのレンズ
32,33によつて平行光束に拡大し、光束の輝
度を平滑化するのに必要なフイルタ34を置い
て、被測定物の芯材1の溝の方向と、該平行光束
の方向がほぼ一致するように芯材に照射してい
る。この方向からの光の投影によつて芯材は同じ
形状が繰り返されるパターンを作る。芯材によつ
て作られる一部遮光された同じ形状の繰り返しパ
ターンをレンズ35によつて収束し、テレビカメ
ラの撮像管36によつて光束のパターン投影像を
得る。この光束のパターンは芯材の溝の影絵であ
り、投影像をパターンが繰り返される方向に走査
した電気信号として得られる。
FIG. 2 shows a specific example of the structure of the optical pattern detector 3, in which a is a top view and b is a front view. He
- The light beam from the Ne laser light source 31 is expanded into a parallel beam by two lenses 32 and 33, and a filter 34 necessary for smoothing the brightness of the beam is placed in the groove of the core material 1 of the object to be measured. The core material is irradiated so that the direction of the parallel light beam almost coincides with the direction of the parallel light beam. By projecting light from this direction, the core material creates a repeating pattern of the same shape. A repeating pattern of the same shape that is partially shielded by the core material is focused by a lens 35, and a pattern projection image of the light beam is obtained by an image pickup tube 36 of a television camera. This pattern of light flux is a silhouette of the grooves in the core material, and is obtained as an electrical signal by scanning the projected image in the direction in which the pattern is repeated.

〔作用〕[Effect]

第3図は第2図の光学的パターン検出器により
光フアイバの芯材の溝からパターン投影像を検出
した結果を示す。aとcとでは平行光束を照射す
る角度θを芯材中子のピツチに合わせたか(b図
参照)、θを少し増加させてパターンを実質的に
拡大したかの違いであるが、いずれにしても、テ
レビの走査方向に同じ形状のパターンが繰り返さ
れた影絵が得られている。
FIG. 3 shows the results of detecting a projected pattern image from the groove of the core material of the optical fiber using the optical pattern detector shown in FIG. The difference between a and c is whether the angle θ at which the parallel light beam is irradiated was adjusted to the pitch of the core material core (see figure b), or the pattern was substantially enlarged by increasing θ a little. However, a silhouette with the same pattern repeated in the scanning direction of the television is obtained.

第4図は芯材にピツチのずれがあるものについ
て前記光学的パターン検出器により検出したパタ
ーン投影像である。a,bの二つの被測定物につ
いて、いずれも右端の溝のピツチが大きくあらわ
れていることが観察される。
FIG. 4 is a pattern projection image detected by the optical pattern detector for a core material having a pitch deviation. It is observed that the pitch of the groove at the right end of the two objects to be measured, a and b, is large.

第5図はゴミが付着した場合の光フアイバの溝
のパターン投影図b,cをゴミの付着していない
正常のものaと並べて示した。ゴミによる溝の不
整形状が認められる。
FIG. 5 shows projected patterns b and c of the grooves of the optical fiber when dust is attached, side by side with a normal one without dust. Irregular shapes of grooves due to debris are observed.

第6図は光学的パターン検出器によつて得られ
た電気信号を相関器に加えて、自己相関画像に変
形し、特徴点を輝度の位置によつて抽出する手順
を示すための図である。aは第3図に相当する正
常な芯材のパターン投影図で、明るい部分で直接
溝の形状に関係ない部分を遮光してある。この正
常な芯材の自己相関画像はb図に示すようなもの
となる。走査の方向はパターンが繰り返される方
向、すなわち、a図矢印の方向とし、相関の定義
区間は画面の横幅一杯にとつてある。b図から明
らかなように相関出力画面は当然に左右対称に出
現し、この画像は入力画像の横方向の移動に対し
ては不変に保たれるのが、自己相関画像の特徴と
される。しかしながら、入力画像にピツチずれな
どの画像の変形が生じた場合には、自己相関画像
も変形する。この変形が最も顕著に現われる部分
を実験的に確認しておき、その部分(位置)に正
常な物品からの投影図では常に信号が現れるか、
現れないかという特徴の判断基準とする。たとえ
ばb図では○印が信号がある特徴点であり、●印
が信号がない特徴点である。この特徴点の位置と
信号の有無の情報は容易にメモリ内に記憶でき
る。被測定物としてピツチにずれのある場合(第
4図相当)の例をパターン投影図について同様に
c図に示し、自己相関画像について同様にd図に
示した。○印、●印についても同様である。d図
では本来信号の無い●印位置が輝度を有している
から、参照図面パターンとは異なり、また○印位
置が輝度を有せず、これも参照図形パターンと相
違しており、形状異常と判定される。
FIG. 6 is a diagram illustrating a procedure for adding an electrical signal obtained by an optical pattern detector to a correlator, transforming it into an autocorrelation image, and extracting feature points by the position of brightness. . FIG. 3A is a pattern projection diagram of a normal core material corresponding to FIG. 3, in which bright parts that are not directly related to the shape of the grooves are shaded. The autocorrelation image of this normal core material is as shown in figure b. The scanning direction is the direction in which the pattern is repeated, that is, the direction of the arrow in Figure A, and the correlation definition section is set to fill the entire width of the screen. As is clear from Figure b, the correlation output screen naturally appears symmetrically, and this image remains unchanged despite the horizontal movement of the input image, which is a feature of the autocorrelation image. However, if image deformation such as pitch shift occurs in the input image, the autocorrelation image will also be deformed. Experimentally confirm the part where this deformation is most noticeable, and check whether a signal always appears at that part (position) in the projection view from a normal object.
The criterion for determining the characteristics is whether or not it appears. For example, in figure b, the ○ marks are feature points with signals, and the ● marks are feature points with no signals. The position of this feature point and information on the presence or absence of a signal can be easily stored in memory. An example of a case where the object to be measured has a deviation in pitch (corresponding to FIG. 4) is similarly shown in Fig. c for a pattern projection diagram, and Fig. d for an autocorrelation image. The same applies to ○ marks and ● marks. In figure d, the ● mark position, which originally has no signal, has brightness, which is different from the reference drawing pattern, and the ○ mark position does not have brightness, which is also different from the reference figure pattern, indicating a shape abnormality. It is determined that

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明では、同じ形状
の繰り返しパターンを平行光束を照射して得てか
ら、そのパターンの自己相関画像をリアルタイム
で作動する相関器によつて得、自己相関画像の各
位置における輝度に従つて参照物品と被測定物品
の特徴点とを抽出し、比較照合する構成としたか
ら、従来測定できないとされていた、例えば光フ
アイバの芯材の異常がリアルタイムで、生産作業
の流れの中で測定できるようになつた。しかも自
己相関画像のもつ、位置の不変性、特徴点の明確
な出現という二つの特徴を巧みに利用することが
できた。
As explained above, in this invention, a repeating pattern of the same shape is obtained by irradiating a parallel light beam, and then an autocorrelation image of the pattern is obtained by a correlator operating in real time, and each position of the autocorrelation image is Since the feature points of the reference article and the article to be measured are extracted and compared according to the luminance of Now we can measure things in the flow. Furthermore, we were able to skillfully utilize two features of autocorrelation images: invariance of position and clear appearance of feature points.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を用いた芯材検査装置の
一実施例の基本的な構成図を示す。第2図は第1
図の実施例に使用する光学的パターン検出器の構
成を示す図で、a図は上面図、bは正面図を示
す。第3図は正常な芯材の溝を光学的パターン検
出器で検出したパターン図で、aとcはパターン
の投影図、bとdは投影の状況を説明するための
図を示す。第4図a,bはいずれも異常のある芯
材の溝のパターン投影図を示す。第5図aは正常
な芯材の溝のパターン投影図を、b,cはゴミの
付着した溝のパターン投影図をそれぞれ示す。第
6図は光学的パターン検出器によつて得られた電
気信号を相関器に加えて、自己相関画像に変形
し、特徴点を輝度の位置によつて抽出する手順を
示す。 図において1は被測定物の芯材、2は移動方
向、3は光学的パターン検出器、4は相関器、5
は特徴点メモリ、6は特徴点比較器、7は表示器
を示す。
FIG. 1 shows a basic configuration diagram of an embodiment of a core material inspection apparatus using the method of the present invention. Figure 2 is the first
FIG. 2 is a diagram showing the configuration of an optical pattern detector used in the embodiment shown in the figure, in which figure a shows a top view and figure b shows a front view. FIG. 3 is a pattern diagram of grooves in a normal core material detected by an optical pattern detector, a and c are projection diagrams of the pattern, and b and d are diagrams for explaining the projection situation. FIGS. 4a and 4b both show projected patterns of grooves in the core material with abnormalities. FIG. 5a shows a projected pattern of grooves in a normal core material, and FIG. 5b and c show projected patterns of grooves with dust attached, respectively. FIG. 6 shows a procedure for applying the electrical signal obtained by the optical pattern detector to a correlator, transforming it into an autocorrelation image, and extracting feature points according to their brightness positions. In the figure, 1 is the core material of the object to be measured, 2 is the moving direction, 3 is the optical pattern detector, 4 is the correlator, and 5
6 is a feature point memory, 6 is a feature point comparator, and 7 is a display device.

Claims (1)

【特許請求の範囲】[Claims] 1 同じ形状の繰り返しパターンを有する物品の
参照物品に平行光束を照射して、同じ形状の繰り
返しパターンの投撮像を得る段階と;該投影像を
パターンが繰り返される方向に走査して電気信号
に変換し、相関器に入力して参照用自己相関画像
を得る段階と;該参照用自己相関画像の各位置に
おける輝度に従つて参照物品の特徴点の位置を記
憶する段階と;良否を判定すべき物品に平行光束
を照射して、同じ形状の繰り返しパターンの投影
像を得る段階と;この投影像をパターンが繰り返
される方向に走査して電気信号に変換し、相関器
に入力して判定用自己相関画像を得る段階と、該
判定用自己相関画像の各位置における輝度に従つ
て判定物品の特徴点の位置を検出し、その特徴点
の位置と前記記憶された参照物品の特徴点の位置
とを比較する段階とから成る同じ形状の繰り返し
パターンの良否を判定する方法。
1. Obtaining a projected image of a repeated pattern of the same shape by irradiating a reference article with a parallel light beam onto a reference article having a repeated pattern of the same shape; scanning the projected image in the direction in which the pattern is repeated and converting it into an electrical signal. and inputting it into a correlator to obtain a reference autocorrelation image; storing the positions of the feature points of the reference article according to the brightness at each position of the reference autocorrelation image; and determining whether it is good or bad. A step of irradiating the object with a parallel light beam to obtain a projected image of a repeating pattern of the same shape; scanning this projected image in the direction in which the pattern is repeated and converting it into an electrical signal, inputting it to a correlator and transmitting it to the judgment self. a step of obtaining a correlation image, detecting the position of a feature point of the judgment article according to the brightness at each position of the autocorrelation image for judgment, and comparing the position of the feature point with the stored position of the feature point of the reference article; A method for determining the acceptability of repeating patterns of the same shape, which comprises the steps of comparing.
JP60035655A 1985-02-25 1985-02-25 Method for judging quality of repeating pattern of same shape Granted JPS61194337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60035655A JPS61194337A (en) 1985-02-25 1985-02-25 Method for judging quality of repeating pattern of same shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60035655A JPS61194337A (en) 1985-02-25 1985-02-25 Method for judging quality of repeating pattern of same shape

Publications (2)

Publication Number Publication Date
JPS61194337A JPS61194337A (en) 1986-08-28
JPH0453254B2 true JPH0453254B2 (en) 1992-08-26

Family

ID=12447889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60035655A Granted JPS61194337A (en) 1985-02-25 1985-02-25 Method for judging quality of repeating pattern of same shape

Country Status (1)

Country Link
JP (1) JPS61194337A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016157289A1 (en) * 2015-03-27 2016-10-06 三菱電機株式会社 Detector
WO2021014645A1 (en) * 2019-07-25 2021-01-28 三菱電機株式会社 Inspection device and method, program, and recording medium

Also Published As

Publication number Publication date
JPS61194337A (en) 1986-08-28

Similar Documents

Publication Publication Date Title
CN1115556C (en) Method and apparatus for following and inspecting edge or border
KR100513111B1 (en) Method and arrangement for optical inspection of a weld seam
JP3373831B2 (en) Test specimen elongation measuring method and apparatus
EP0532257B1 (en) Weld bead quality determining apparatus
JP2011089826A (en) Internal surface defect inspection apparatus of screw hole or hole
JPH0236894B2 (en)
JP2000111490A (en) Detection apparatus for coating face
JPH03295408A (en) Method and instrument for inspecting uneven surface
JP7336294B2 (en) BONDING WIRE INSPECTION DEVICE, BONDING WIRE INSPECTION METHOD, AND BONDING WIRE INSPECTION PROGRAM
JPH0453254B2 (en)
JPS6128094B2 (en)
JP5281815B2 (en) Optical device defect inspection method and optical device defect inspection apparatus
JP2010085165A (en) Surface inspection device and surface inspection method
KR20230014686A (en) Method and inspection apparatus for optically inspecting a surface
JP2002303581A (en) Panel inspection device and panel inspection method
JPH0787378A (en) Focusing detection device
JP2965370B2 (en) Defect detection device
JPH10206127A (en) Shape measuring apparatus for weld of steel strip
JP2005030848A (en) Simulation method for surface inspection and surface inspection device
JPS6325871B2 (en)
JP3340879B2 (en) Surface defect detection method and apparatus
JPH03118975A (en) Welding equipment
JPH04160304A (en) Detecting apparatus of warp in widthwise direction of plate
JPH0413070B2 (en)
JPH085350A (en) Welding groove position and shape measurement method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19930223