JPH0453025A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH0453025A
JPH0453025A JP15970490A JP15970490A JPH0453025A JP H0453025 A JPH0453025 A JP H0453025A JP 15970490 A JP15970490 A JP 15970490A JP 15970490 A JP15970490 A JP 15970490A JP H0453025 A JPH0453025 A JP H0453025A
Authority
JP
Japan
Prior art keywords
lubricant
recording medium
magnetic recording
film
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15970490A
Other languages
Japanese (ja)
Inventor
Heigo Ishihara
石原 平吾
Akira Ozaki
尾嵜 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15970490A priority Critical patent/JPH0453025A/en
Publication of JPH0453025A publication Critical patent/JPH0453025A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To hold always a specified amt. of a lubricant on the front surface of the magnetic recording medium by adopting the structure in which the impregnation concn. of the lubricant in a part of the inside magnetic recording medium is higher than the impregnation concn. of the lubricant nearest the front surface of the magnetic recording medium. CONSTITUTION:The magnetic recording medium 1 is constituted by providing a magnetic film 3, a substrate 1, and a surface lubricant 4 on the film 3 or a lower layer film 2 between the film 3 and the substrate 1. The pores continuous from the front surface down to the deep part are formed in this medium. The density of the pores into which the lubricant can impregnate is so set that the the parts having the pore density higher than the pore density nearest the front surface of the magnetic recording medium exist in the deep part of the recording medium. The lubricant of the amt. sufficient to fill the pores is impregnated into the pores. The lubricant molecules impregnated into the pores of the film 3, the film 2, etc., are moved from the side of the higher concn. to the lower concn. by the concn. gradient of the lubricant molecules in the film according to the diffusion mechanism in proportion to this concn. gradient. Therefore, the parts having the higher lubricant impregnation concn. than the lubricant impregnation concn. nearest the front surface exist in the inside of the magnetic recording medium and the lubricant on the front surface is captured in the internal lubricant by this concn. gradient, by which the amt. is maintained always constant. The high mechanical reliability is obtd. in this way and the generation of head crash, etc., is prevented.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は磁気記録媒体に関し、特に磁気ディスク装置な
どの用途に好適で、耐摩耗性に優れた。 機械的信頼性の高い磁気記録媒体に関する。
[Industrial Field of Application] The present invention relates to a magnetic recording medium, and is particularly suitable for use in magnetic disk drives, etc., and has excellent wear resistance. This invention relates to magnetic recording media with high mechanical reliability.

【従来の技術】[Conventional technology]

外部記憶体として用いられる磁気ディスク等の磁気記録
媒体は、一般に種々の基板上に磁性層が形成されたもの
であるが、記録再生の際にその表面が磁気ヘッド等によ
り高速で摩擦されることがある。従来から、この摩擦に
よる性能劣化を防くために、ディスク表面に潤滑剤を付
与する方法が取られている。また、潤滑剤としては、米
国特許第3778308号に開示されるようなパーフル
オロポリエーテル等の弗素化炭素泊が磁気記録媒体の好
ましい潤滑剤として知られ、この種の潤滑剤を磁気ディ
スクの潤滑剤として適切に使用することが重要な課題と
なっている。 ところで、上記潤滑剤を磁気ディスクなどの磁気記録媒
体に適用する場合、潤滑剤が多い程磁気記録媒体の耐久
性は向上する。しかし7その一方。 磁気記録媒体表面に付与される潤滑剤の量が多すぎると
1例えば磁気ディスク装置の場合には1回転停止時にヘ
ッドとディスク表面間の吸着力が増大し2.装置駆動開
始時にディスクあるいはヘッド等が損傷したり、装置が
即動不可能になる場合がある。]:記ヘッド・ディスク
間の吸着力は、ディスク表面に存在する潤滑剤が大きく
影響をケ4えることはJ二連の通りであるが、磁性層等
を多孔質化しこの中に潤滑剤を含浸させることにより磁
性層表面の潤滑剤量を適切に制御する方法が、従来より
提案されていた(特開昭53−104202.号公報)
。また、この方法を磁性層が薄い高記録密度の媒体にま
で適用できる方法として、下層膜に潤滑剤を含浸させ該
潤滑剤を磁性膜を通し2て表面に順次供給させる方法も
提案されていた(特開昭63 193325号公報)。 r発明が解決し7ようとする課題】 上記従来技術は、潤滑剤を常に一定量磁気記録媒体表面
に保持するという観点からの配慮がまだ」−分ではなく
1機械的信頼性に関し問題があった、すなわち、磁気記
録媒体表面の潤滑剤は、ヘッドなどによる摩擦等により
損失するが、その後この表面潤滑剤は、磁性膜及び下層
膜等に含浸された潤滑剤が表面に染み出すことにより補
給される。しか17.その表面潤滑剤巣ば、含浸潤滑剤
量の減少とともに次第番コ減少し、媒体表面に上台な旦
の潤滑剤量が保持できなくなり、ヘッド・クラッシュが
起こる頻度が高まる。 本発明の目的は、磁気記録媒体表面の潤滑剤の飛散損失
が起こっても、常に一定1tI7)潤滑剤を表面に保持
できる磁気記録媒体を提案することにある。 【課題を解決するための手段) 上記目的各達成するために、磁気記録媒体内部の少なく
とも一部分の潤滑剤の含浸濃度が、磁気記録媒体表面最
近値の潤滑剤の含浸濃度より高い構造とし、7た。その
磁気記録媒体の潤滑剤の含浸プロファイルを、模型的に
第1図に示した。 一般に、磁気記録媒体は、磁性膜および基板で構成され
、必要に応じて磁性膜上に保護膜を、磁性膜と基板の間
に下層膜を設けて構成され、る6ごの磁気記録媒体中に
潤滑剤が含浸される構造の媒体では、磁気記録媒体表面
から記録媒体の深部まで連なった孔が形成され、この孔
の中に潤滑剤が含浸される。含浸される潤滑剤量は、自
ずと孔密度により制約され、孔密度に応じた潤滑剤含浸
状態のディスクが実現される。したがって、#滑剤が含
浸し得る孔の密度を、磁気記録媒体の表面最近傍の孔密
度より、記録媒体深部に孔密度が高い部分があるような
構造の磁気記録媒体をつくり。 該孔に孔を満たすに十分な量の潤滑剤を含浸させれば2
本発明の磁気ディスクが実現される。但し、潤滑剤は濃
度勾配を作るのに十分に含浸されていれば良く孔全体を
完全に満たす必要はない。 第1図に示す記号で言い替えるなら、以下のようになる
。記録媒体中の潤滑剤濃度をC(x、t)で表わすとき
、潤滑剤の飽和含浸濃度Cs (x)は?lI!l滑剤
の含浸可能な孔密度と一致する。本発明の磁気記録媒体
の構造は、磁気記録媒体表面最近値の潤滑剤飽和濃度C
5(L−)を用いて、以下のように書ける。 Cs、(x)>Cs (L−)  となるような領域x
1<x<X2 がある。 磁性膜単層の磁気記録媒体でも上記構造は実現できるが
2例えば、磁性膜の下に潤滑剤が含浸される下層膜が設
けられた磁気記録媒体の場合には、具体的には以下のよ
うな構造で実現する。該石層膜に含浸された潤滑剤の含
浸濃度が、磁気記録媒体表面最近値の潤滑剤含浸濃度よ
り高い部分があるように磁気記録媒体をつくる。もちろ
ん、下層膜の全ての領域に亙って磁性層表面最近値の潤
滑剤飽和濃度より、下層膜の潤滑剤飽和濃度が高くなる
ような磁気記録媒体でもよい。そのときの条件は以下の
式で表わせる。 Cs (x) >Cs (L−)   O<x<Lまた
だしILiは下層膜の膜厚で、上記の濃度は全て膜中の
体積割合で表わした。 [作用] 磁性膜、下層膜等の孔中に含浸された潤滑剤分子は、潤
滑剤分子の濃度勾配により、濃度の高い方から低い方へ
、その濃度勾配に比例して膜中を拡散機構に従って移動
する。 第2図及び第3図に基づいて、膜中および表面の潤滑剤
の移動機構を下層膜を有する場合について定式化する。 磁性膜および下層膜の潤滑剤の拡散方程式は、以下のよ
うに書ける。 a x、       a t i)xa t ただし、Cm、Cuは、それぞれ、磁性膜中および下層
膜中の潤滑剤濃度、 DIIl、 Duは、潤滑剤の拡
散定数である。 また、下層膜と基板の界面では、潤滑剤が基板側に流れ
込まないという条件から、下記の式が成り立つ。 X 磁性膜と下層膜の間の潤滑剤の流れが保存されるという
条件から。 ax        ax が成り立つ。 ところで、磁性膜表面では、潤滑剤の流束1′)Ill
(acm/ax、)は、磁性膜内部から染み出す潤滑剤
量と表面から内部に染み込む潤滑剤量の和になる。染み
出す潤滑剤量は2表面近傍の磁性膜の潤滑剤濃度に比例
するため、比例定数をKoとして、KoCmとなる。ま
た、染み込む潤滑剤量は、表面に存在する潤滑剤量に比
例するため、この比例定数をKi9表面表面潤滑剤量I
”sとして。 K j、 T” s  と書ける。したがって4表面の
境界条件として以下の式が成り立つ。 例えば6表面の潤滑剤がヘッドによる摩擦などにより除
去された後4表面の潤滑剤が徐々に回復する場合には9
式(5)に従って回復する。この場合、長時間経過した
後は平衡状態に達し4表面への、あるいは表面からの潤
滑剤の流れが止まるため、以下の式が成り立つ。 X したがって、平衡状態に於ける表面潤滑剤量はrs (
oo) = (Ko/Ki) Cm (L、 oo) 
    (7)となり4表面近傍の磁性膜中の潤滑剤濃
度に比例する。この結果から分かるように、磁性膜表面
近傍の潤滑剤濃度を一定に保つことが出来れば、磁気記
録媒体表面の潤滑剤量を常に一定に保つことができる。 表面潤滑剤の経時的変化を、第4図、第5図、第6図お
よび第7図に示す潤滑剤濃度分布が異なる4種類のケー
スについて、模型的に比較してみる。第4図に示すよう
な、含浸した潤滑剤濃度が内部になるに従って減少する
潤滑剤含浸プロファイルをもつ磁気記録媒体では1表面
の潤滑剤が除去されるに従って、平衡状態に到達したと
きの潤滑剤の濃度は、内部、表面ともに次第に減少する
。これに対して、第5図に示されるような、含浸した潤
滑剤濃度が内部になるに従って増加する潤滑剤含浸プロ
ファイルをもつ磁気記録媒体では。 潤滑剤の濃度は、内部では減少するが、表面では一定に
保たれる。すなわち、磁気記録媒体表面最近傍の潤滑剤
濃度は、第4図では最初から次第に減少するが、第5図
では初期には、表面潤滑剤の変化が殆ど無い。従って4
式(7)から推定されるように、第5図の方がヘッド等
による摩擦により除去される潤滑剤を、長時間・多数回
に互って一定に回復・維持することが出来る。また、第
4図および第5図は傾斜状の潤滑剤含浸プロファイルの
場合であるが、第6図および第7図に示すような階段状
の潤滑剤含浸プロファイルの構造を比較した場合にも同
様に、第7図の方が2表面潤滑剤維持効果が高い。なお
、磁性膜の耐摩耗性は磁性膜表面の空隙率に関係し、空
隙率が大きいと耐摩耗性が悪くなり限界値がある。この
意味で。 第4図と第5図、及び第6図と第7図では、表面近傍の
飽和濃度を一定にして比較している。 本発明の磁気記録媒体は、第5図および第7図に示され
るように、磁気記録媒体内部に、磁気記録媒体表面最近
傍の潤滑剤含浸濃度より、潤滑剤含浸濃度が高い部分が
存在し、その濃度勾配により、磁気記録媒体表面の潤滑
剤は、内部の潤滑剤に補足さ才1で、量が殆ど変化する
ことなく、$1.:〜定り一保持される3 [実施例) 以〜トに本発明の実施例を挙げ、更に詳細に説明する。 実施例〕 磁性層形成用の塗料(磁性塗料)は、磁性粉(CO被着
γ−Fe20.)600’ff1ji部、補強剤(α−
Al、○、)2.0重量部、エポキシ/フェノール系結
合剤(エポ゛キシ樹脂、フェノール樹脂。 ポリビニールブチラールの混合物)380重量部に溶剤
を適宜加えて、ニーダおよびボールミルによi)混練を
↑)い調整I、た、また、磁性膜を埠・孔質化するため
に、1:記磁性塗料に結合剤に対して15重屡ヅ、の熱
分解性添加物(ブテンオキシ[−とプロピレンオキシド
の共重合体)を加えて塗料を調整した。 下M膜形成用の塗料は1升磁性粉(ゴ10.)5ξ・0
重足部、−丁ボキシ/=ノ工ノール系結合剤450重量
部1ニア容剤を適宜加えて調整し、た。なお。 熱分解性添加物(ブテンオキシドとプロピL・ンオキシ
ドの共重合体)を結合剤に対1.7′−30v、r t
、%加えて塗料を調整し、八〇 磁気デ′イスクは、■−記のよう1.準佑された塗料を
用いて、ド記の手順で作成しまた。先“ず、下層膜用の
塗料をフルミニラム合金基板十に塗布[2で乾燥し7カ
。この下M膜を180℃で2時間硬化(1次硬化)【1
.所定の面粗さ・膜*(1,5μm)になるよう1こ加
、〕−川、また。次に、この下層膜手番、−磁性塗料を
塗;l’l+’ L、乾燥さゼた。王の後、磁性と膜表
面を研磨加重シ2.所定の磁性i*co。:3 l1n
1)になるように仕]・げた。更にこの磁気ディスクの
表面に、潤滑剤(パーフルオロポリエーテル:千ンテフ
[]−ス社製rフォンブリン」)を一定jil:1布し
て磁気フ′イスクを作成し、た。潤滑剤の濃度分布?q
SIMS (Sec、ondary  IonM a 
s s  S p e c: t r o s c o
 p y  )と赤外分析により評価したところ、第8
図の(a)4、示されるa′a剤勿布が得られた4、す
なオ〕も9丁層膜中の重均潤滑剤濃度IJ約1868体
積%、磁性膜中の平均潤滑剤濃度は約8.3体積%であ
った。 また、磁気ディスクの単位面積あたりの潤滑剤付着量は
、583mg/m”であった。 比較例1 下層膜形成用の塗料に対する熱分解性添加物(ブテンオ
キシドとプロピレンオキシドの共重合体)の量を結合剤
に対して、10重量%とじ、下層膜形成用6.3μmの
下層膜を形成した以外は、実施例1と同様の方法で磁気
ディスクを作成した。実施例と同様に潤滑剤の濃度およ
び付着量を評価したところ、第8図の(b)に示す潤滑
剤分布が得られた。下層膜中の平均潤滑剤濃度は約4.
6体積%、磁性膜中の平均潤滑剤濃度は約8゜1体積%
、ディスクの単位面積当りの付着量は597 m g 
/’ m”であった。 比較例2 下N膜形成用の塗料に熱分解性添加物を添加せずに、下
N膜膜厚約1.4μmの下層膜を形成し。 た以外は、実施例]と同様の方法で磁気ディスクを作成
し、た。実施例と同様に潤滑剤の濃度および付着量を評
価したところ、第8図の(c)に示す潤滑剤4)布が得
られた6下層膜中の平均潤滑剤濃度は約1.1体積%、
磁性膜中の平均潤滑剤濃度は約7.3体積%、ディスク
の単位面積当りの何着量は71.、 m、 g / m
 2であった。 ところで、磁気ディスクの表面に存在する潤滑剤量は、
ESCA (Electron  5pee−tros
eopy  for  ChemjcalA n a 
]、 y s i s )で評価できることが知られて
いる1、また、磁気ディスク表面の潤滑剤はAr+イオ
ン等を用いたスパッタにより1条件1.:よっては、磁
性膜を殆どスパッタすることなく2表面の潤滑剤を取り
去ることが出来る。 第9図に1表面潤滑剤のスパッタ回数に対する依存性、
すなわち表面潤滑剤の回復特性を示す。 上記実施例]および比較例1,2で作成した磁気ディス
ク表面をスパッタした後6−7分経過した表面の潤滑剤
を、ESCAにより分析した結果である。縦軸に示した
値は、ESCAのC(Is)ピークの潤滑剤に起因する
ピーク強度と、パイングーに起因するピーク強度の比を
示ioこの値が大きいほど表面に存在する潤滑剤の量が
多いことを示す。図から分かるように、実施例]8の磁
気ディスクは潤滑剤の回復能力が高く、繰り返し7のス
パッタに対し2.殆ど一定の値に回復することが6)か
る。これに対し、で、比較例1および比較例2の磁気デ
ィスクでは2表面の潤滑剤がスパッタにより除去さ汎る
ど2回復する表面潤滑剤量が急激に少なくなることが分
かる。この理由は、比較例2の磁気ディスクについては
、含浸した全潤滑剤量が、実施例14:比べて少ないた
めと考えらムる。 し1かし、比較例〕の磁気ディスクには、実施例1と殆
ど同量の潤滑剤が含浸されているにもかかわらず、繰り
返しのスパッタに対する表面潤滑剤の回復能力が小さい
。これは、比較例]には本発明の特徴である潤滑剤含浸
量の濃度勾配が存在しないためである。 ちなみに、実施例1の磁気ディスクの表面潤滑剤の回復
特性に関し、シミュL/ =ジョンした結果を第10図
及び第31図に示す。 式(])から(7)に示した潤
滑剤の拡散メカ7ズムl、1γ22.′こ、潤滑剤が拡
散するものと仮定【11.実験的1:”求めた拡散定数
Dm、u(但I、5.磁性膜とト層膜では同じ値りであ
ると仮定した。)およびl(o、に−iを用いてシミュ
レーションしまた7、ただし、潤滑剤の初期濃度゛は、
第10図に示されるよ・うな甲純化された形を取るもの
として近似し、た。第11図り、′示されるように2表
面の潤滑剤が一旦、全て除去されても、約1分後には表
面潤滑剤が殆ど丸通りに回復する。また、磁性膜の潤滑
剤は、F層膜の潤滑剤により第10図のように補給され
9表面近傍の潤滑剤濃度は元の状態に回復する。この現
象は、V−′!膜の潤滑剤濃度が、磁性膜の表面近傍の
潤滑剤濃度になるまで続く。このシミュL/−ジョン結
果は、初期潤滑剤濃度、拡散定数、および潤滑剤拡散モ
デルが近似であるため、実験結果と完全に一致するわけ
ではないが、実施例]の構造の特徴をよく表わしでいる
。 以、に、実験およびシミュレーションで示したように、
磁性膜の下に潤滑剤が含浸されるF層膜が設けられた磁
気記録媒体に於て、該T−層膜中に含浸された潤滑剤の
含浸濃度が、磁気記録媒体表面最近値の潤滑剤含浸濃度
より高い部分があるような磁気記録媒体では2表面の潤
滑剤が除去されても2元の量に近い潤滑剤が繰り返し回
復する。また1以上の実施例および比較例から分かるよ
うに、上記構造は、下層膜を持たない磁性膜のみの磁気
ディスクでも、磁性膜内部に上述の構造が取られていて
も、同様の効果が得られることは明がである。すなわち
、磁性膜の磁気記録媒体表面最近値の潤滑剤含浸濃度よ
り、該磁気記録媒体内部の少なくとも一部分の方が、潤
滑剤含浸濃度が高いような構造を持つ磁気記録媒体は、
上記実施例と同様に優れた潤滑剤回復特性を示すことは
、原理からして明かである。 【発明の効果) 本発明によれば4以上説明したように磁気記録媒体表面
の潤滑剤が摩擦等により除去されても。 表面の潤滑剤は元に近い状態に回復する3、したがって
、磁気記録媒体表面の潤滑膜は、長時間、経時変化を起
こずことなく維持されるため4機械的信頼性が高く、ヘ
ッド・クラッシュ等の問題が発生することがない。また
1本発明の構造は、塗布型磁気ディスクだけでなく、ス
パッタ、あるいはメツキディスク等の磁気記録媒体に関
しても、同様の効果が期待できることは言うまでもない
Magnetic recording media such as magnetic disks used as external storage devices generally have a magnetic layer formed on a variety of substrates, but the surface is rubbed at high speed by a magnetic head etc. during recording and reproduction. There is. Conventionally, in order to prevent performance deterioration due to this friction, methods have been used to apply lubricant to the disk surface. Furthermore, as a lubricant, fluorinated carbon oxide such as perfluoropolyether as disclosed in U.S. Pat. No. 3,778,308 is known as a preferred lubricant for magnetic recording media. It is an important issue to use them appropriately as agents. By the way, when the above-mentioned lubricant is applied to a magnetic recording medium such as a magnetic disk, the durability of the magnetic recording medium improves as the amount of lubricant increases. But 7 On the other hand. If too much lubricant is applied to the surface of the magnetic recording medium, 1. For example, in the case of a magnetic disk device, the adsorption force between the head and the disk surface increases when one rotation is stopped; 2. When the device starts to drive, the disk or head may be damaged, or the device may become unable to operate immediately. ]: As mentioned in J.2, the adsorption force between the head and the disk is greatly influenced by the lubricant present on the disk surface. A method of appropriately controlling the amount of lubricant on the surface of the magnetic layer by impregnating it has been proposed (Japanese Patent Laid-Open No. 104202/1983).
. In addition, a method has been proposed in which this method can be applied to high-density media with thin magnetic layers, in which the underlying film is impregnated with a lubricant and the lubricant is sequentially supplied to the surface through the magnetic film. (Japanese Unexamined Patent Publication No. 193325/1983). [Problem to be Solved by the Invention] The above-mentioned prior art still has problems with mechanical reliability, since consideration has not yet been given to keeping a constant amount of lubricant on the surface of the magnetic recording medium. In other words, the lubricant on the surface of the magnetic recording medium is lost due to friction caused by the head, etc., but this surface lubricant is then replenished by the lubricant impregnated in the magnetic film and underlying film seeping out onto the surface. be done. But 17. The number of surface lubricant pockets gradually decreases as the amount of impregnated lubricant decreases, making it impossible to maintain the same amount of lubricant on the medium surface each time the medium is placed on the surface, increasing the frequency of head crashes. An object of the present invention is to propose a magnetic recording medium that can always maintain a constant lubricant on the surface even if scattering loss of the lubricant on the surface of the magnetic recording medium occurs. [Means for Solving the Problems] In order to achieve each of the above objects, a structure is adopted in which the impregnation concentration of lubricant in at least a portion of the inside of the magnetic recording medium is higher than the impregnation concentration of lubricant at the most recent value on the surface of the magnetic recording medium. Ta. The lubricant impregnation profile of the magnetic recording medium is schematically shown in FIG. In general, a magnetic recording medium is composed of a magnetic film and a substrate, and if necessary, a protective film is provided on the magnetic film and an underlayer film is provided between the magnetic film and the substrate. In a medium having a structure in which the magnetic recording medium is impregnated with a lubricant, pores are formed that extend from the surface of the magnetic recording medium to the deep part of the recording medium, and the lubricant is impregnated into the pores. The amount of lubricant impregnated is naturally restricted by the pore density, and a disk impregnated with lubricant corresponding to the pore density is realized. Therefore, a magnetic recording medium is constructed such that the density of pores that can be impregnated with lubricant is higher in the deep part of the recording medium than in the vicinity of the surface of the magnetic recording medium. If enough lubricant is impregnated into the hole to fill it, 2
The magnetic disk of the present invention is realized. However, it is sufficient that the lubricant is sufficiently impregnated to create a concentration gradient, and it is not necessary to completely fill the entire pore. If we rephrase it using the symbols shown in Figure 1, it will be as follows. When the lubricant concentration in the recording medium is represented by C(x, t), what is the saturated impregnation concentration of the lubricant Cs (x)? lI! l corresponds to the impregnable pore density of the lubricant. The structure of the magnetic recording medium of the present invention has a lubricant saturation concentration C of the most recent value on the surface of the magnetic recording medium.
5(L-), it can be written as follows. Cs, a region x such that (x)>Cs (L-)
1<x<X2. Although the above structure can be achieved even with a magnetic recording medium with a single layer of magnetic film,2For example, in the case of a magnetic recording medium with a lower layer film impregnated with lubricant under the magnetic film, specifically, as follows. Achieved with a unique structure. A magnetic recording medium is manufactured so that the impregnation concentration of the lubricant impregnated into the stone layer film is higher than the most recent lubricant impregnation concentration on the surface of the magnetic recording medium. Of course, a magnetic recording medium may be used in which the lubricant saturation concentration of the lower layer film is higher than the lubricant saturation concentration of the nearest value on the surface of the magnetic layer over the entire region of the lower layer film. The conditions at that time can be expressed by the following formula. Cs (x) >Cs (L-) O<x<L, where ILi is the thickness of the lower layer film, and all the above concentrations are expressed as volume percentages in the film. [Operation] Due to the concentration gradient of the lubricant molecules, the lubricant molecules impregnated into the pores of the magnetic film, lower layer film, etc., diffuse through the film in proportion to the concentration gradient, from higher concentration to lower concentration. Move according to. Based on FIGS. 2 and 3, the lubricant movement mechanism in the film and on the surface will be formulated for the case with the lower film. The diffusion equation for the lubricant in the magnetic film and the underlying film can be written as follows. a x, a t i) x a t where Cm and Cu are the lubricant concentrations in the magnetic film and the lower layer film, respectively, and DIIl and Du are the diffusion constants of the lubricant. Furthermore, on the condition that the lubricant does not flow into the substrate at the interface between the lower film and the substrate, the following equation holds true. X From the condition that the flow of lubricant between the magnetic film and the underlying film is conserved. ax ax holds true. By the way, on the magnetic film surface, the lubricant flux 1') Ill
(acm/ax,) is the sum of the amount of lubricant seeping out from inside the magnetic film and the amount of lubricant seeping into the inside from the surface. Since the amount of lubricant that seeps out is proportional to the lubricant concentration of the magnetic film near the two surfaces, it becomes KoCm, where Ko is the proportionality constant. In addition, since the amount of lubricant penetrating is proportional to the amount of lubricant present on the surface, this proportionality constant is defined as Ki9 surface surface lubricant amount I
As "s. K j, T" can be written as s. Therefore, the following equation holds true as a boundary condition for the four surfaces. For example, if the lubricant on surface 6 is removed due to friction caused by the head, and then the lubricant on surface 4 gradually recovers, 9
Recovery according to equation (5). In this case, after a long period of time, an equilibrium state is reached and the flow of lubricant to or from the 4 surfaces stops, so the following equation holds true. X Therefore, the amount of surface lubricant in the equilibrium state is rs (
oo) = (Ko/Ki) Cm (L, oo)
(7) and is proportional to the lubricant concentration in the magnetic film near the 4 surface. As can be seen from this result, if the lubricant concentration near the surface of the magnetic film can be kept constant, the amount of lubricant on the surface of the magnetic recording medium can always be kept constant. The changes over time in the surface lubricant will be schematically compared for four cases with different lubricant concentration distributions shown in FIGS. 4, 5, 6, and 7. In a magnetic recording medium with a lubricant impregnation profile in which the concentration of the impregnated lubricant decreases toward the inside as shown in Figure 4, as the lubricant from one surface is removed, the lubricant reaches an equilibrium state. The concentration gradually decreases both inside and on the surface. In contrast, in a magnetic recording medium as shown in FIG. 5, which has a lubricant impregnation profile in which the concentration of the impregnated lubricant increases toward the inside. The lubricant concentration decreases internally but remains constant at the surface. That is, the lubricant concentration near the surface of the magnetic recording medium gradually decreases from the beginning in FIG. 4, but in FIG. 5, there is almost no change in the surface lubricant at the beginning. Therefore 4
As estimated from equation (7), the lubricant removed by friction caused by the head etc. can be recovered and maintained at a constant level over a long period of time and many times in the case shown in FIG. Also, although Figures 4 and 5 are for the case of a sloped lubricant impregnation profile, the same applies when comparing the structures of stepped lubricant impregnation profiles as shown in Figures 6 and 7. In addition, the two-surface lubricant retaining effect is higher in the case shown in FIG. Note that the wear resistance of the magnetic film is related to the porosity of the surface of the magnetic film, and when the porosity is large, the wear resistance deteriorates and there is a limit value. In this sense. In FIGS. 4 and 5, and FIGS. 6 and 7, the saturation concentration near the surface is kept constant for comparison. As shown in FIGS. 5 and 7, the magnetic recording medium of the present invention has a portion inside the magnetic recording medium where the lubricant impregnation concentration is higher than the lubricant impregnation concentration near the surface of the magnetic recording medium. Due to its concentration gradient, the lubricant on the surface of the magnetic recording medium is supplemented by the lubricant inside, and the amount remains almost unchanged, resulting in a $1. 3 [Examples] Examples of the present invention will be given below and explained in more detail. Example] The paint for forming the magnetic layer (magnetic paint) consisted of 600'ff1ji parts of magnetic powder (CO coated γ-Fe20.), reinforcing agent (α-Fe20.
Add appropriate solvent to 2.0 parts by weight of Al, ○, ) and 380 parts by weight of an epoxy/phenolic binder (mixture of epoxy resin, phenol resin, polyvinyl butyral), and knead with a kneader and a ball mill. ↑) In addition, in order to make the magnetic film porous, a thermally decomposable additive (butene oxy[- and Copolymer of propylene oxide) was added to prepare the paint. The paint for forming the lower M film is 1 liter of magnetic powder (Go10.) 5ξ・0
The heavy foot part was adjusted by appropriately adding 450 parts by weight of a binder based on alcoholic acid and alcohol. In addition. Pyrolyzable additive (copolymer of butene oxide and propylene oxide) to binder at 1.7'-30v, r t
, % and adjust the paint, and the 80 magnetic disc is as shown in ■-1. I created it using the same paint and following the steps in the notes. First, the paint for the lower layer film was applied to the Full Miniram alloy substrate [2 and dried for 7 days. This lower M film was cured at 180°C for 2 hours (primary curing) [1]
.. Add 1 part to the specified surface roughness/film * (1.5 μm)] - Kawa, Mata. Next, the underlayer film was coated with a magnetic paint; l'l+' L and allowed to dry. After polishing, the magnetic and film surfaces are polished and subjected to heavy-duty 2. Predetermined magnetic i*co. :3 l1n
1) ・Gete. Furthermore, a magnetic disk was prepared by applying a lubricant (perfluoropolyether: R Fomblin, manufactured by Senntefu Co., Ltd.) to the surface of the magnetic disk at a constant ratio of 1:1. Lubricant concentration distribution? q
SIMS (Sec, ondary IonMa
s s spec: t r o s co .
p y ) and infrared analysis, the 8th
In Figure (a) 4, the a'a agent coating shown in Figure 4 was obtained; The concentration was approximately 8.3% by volume. In addition, the amount of lubricant deposited per unit area of the magnetic disk was 583 mg/m''. Comparative Example 1 Addition of thermally decomposable additive (copolymer of butene oxide and propylene oxide) to paint for forming the underlayer film A magnetic disk was prepared in the same manner as in Example 1, except that the amount of the binder was 10% by weight and a 6.3 μm lower layer film was formed. The lubricant distribution shown in Figure 8(b) was obtained by evaluating the concentration and adhesion amount of lubricant.The average lubricant concentration in the lower layer film was approximately 4.
6% by volume, average lubricant concentration in the magnetic film is approximately 8°1% by volume
, the amount of adhesion per unit area of the disk is 597 m g
/'m''. Comparative Example 2 A lower layer film with a thickness of about 1.4 μm was formed without adding any thermally decomposable additives to the paint for forming the lower N film. A magnetic disk was prepared in the same manner as in Example].The concentration and adhesion amount of the lubricant were evaluated in the same manner as in Example, and the lubricant 4) cloth shown in FIG. 8(c) was obtained. The average lubricant concentration in the six lower layers was approximately 1.1% by volume,
The average lubricant concentration in the magnetic film is approximately 7.3% by volume, and the amount of lubricant per unit area of the disk is 71%. , m, g/m
It was 2. By the way, the amount of lubricant present on the surface of the magnetic disk is
ESCA (Electron 5pee-tros
eopy for ChemjcalAna
], y s i s )1, and the lubricant on the surface of the magnetic disk is sputtered using Ar+ ions etc. under 1 condition 1. :Thus, the lubricant on the two surfaces can be removed without sputtering the magnetic film. Figure 9 shows the dependence of surface lubricant on the number of sputterings.
In other words, it shows the recovery characteristics of the surface lubricant. These are the results of an ESCA analysis of the lubricant on the surface of the magnetic disks prepared in Example 1 and Comparative Examples 1 and 2 6 to 7 minutes after sputtering. The value shown on the vertical axis indicates the ratio of the peak intensity attributable to the lubricant of the C(Is) peak of ESCA to the peak intensity attributable to the pineapple. Indicates that there are many. As can be seen from the figure, the magnetic disk of Example 8 has a high lubricant recovery ability, and has a high lubricant recovery ability of 2. 6) It can be seen that it recovers to an almost constant value. On the other hand, it can be seen that in the magnetic disks of Comparative Examples 1 and 2, when the lubricant on the two surfaces is removed by sputtering and spread, the amount of surface lubricant to be recovered rapidly decreases. The reason for this is thought to be that the total amount of lubricant impregnated in the magnetic disk of Comparative Example 2 was smaller than that of Example 14. However, although the magnetic disk of Comparative Example is impregnated with almost the same amount of lubricant as Example 1, the surface lubricant has a small recovery ability against repeated spatter. This is because the concentration gradient of the amount of lubricant impregnated, which is a feature of the present invention, does not exist in the comparative example. Incidentally, regarding the recovery characteristics of the surface lubricant of the magnetic disk of Example 1, the results of a simulation are shown in FIGS. 10 and 31. The diffusion mechanism of the lubricant shown in formulas (]) to (7) 7sym, 1γ22. Assume that the lubricant diffuses [11. Experimental 1: "The obtained diffusion constants Dm, u (However, it was assumed that the values are the same for the magnetic film and the T-layer film.) and l (o, and -i were used for simulation. , however, the initial concentration of lubricant is
It is approximated as having a purified form as shown in Figure 10. As shown in Figure 11, even once all the lubricant on the two surfaces is removed, the surface lubricant is almost fully recovered after about 1 minute. Further, the lubricant of the magnetic film is replenished by the lubricant of the F layer film as shown in FIG. 10, and the lubricant concentration near the surface 9 is restored to its original state. This phenomenon is V-'! This continues until the lubricant concentration in the film reaches the lubricant concentration near the surface of the magnetic film. This simulation result does not perfectly match the experimental results because the initial lubricant concentration, diffusion constant, and lubricant diffusion model are approximations, but it does well represent the characteristics of the structure in Example]. I'm here. Below, as shown in experiments and simulations,
In a magnetic recording medium provided with an F-layer film in which a lubricant is impregnated under the magnetic film, the impregnation concentration of the lubricant impregnated into the T-layer film is the most recent level of lubrication on the surface of the magnetic recording medium. In a magnetic recording medium where there is a portion where the lubricant concentration is higher than the lubricant impregnation concentration, even if the lubricant on two surfaces is removed, the lubricant in an amount close to the original amount is repeatedly recovered. Furthermore, as can be seen from one or more Examples and Comparative Examples, the above structure provides the same effect even when the magnetic disk has only a magnetic film without an underlying film, and even when the above structure is provided inside the magnetic film. It is obvious that it will be done. That is, a magnetic recording medium having a structure in which at least a portion of the inside of the magnetic recording medium has a higher lubricant impregnation concentration than the most recent lubricant impregnation concentration on the magnetic recording medium surface of the magnetic film,
It is clear from the principle that this example exhibits excellent lubricant recovery characteristics similar to the above examples. [Effects of the Invention] According to the present invention, even if the lubricant on the surface of the magnetic recording medium is removed due to friction or the like, as described above in Section 4. The lubricant on the surface recovers to a state close to its original state3. Therefore, the lubricant film on the surface of the magnetic recording medium is maintained for a long time without any change over time4, resulting in high mechanical reliability and prevention of head crashes. Such problems will not occur. It goes without saying that the structure of the present invention can be expected to have similar effects not only on coated magnetic disks but also on magnetic recording media such as sputtered or plated disks.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の磁気記録媒体の潤滑剤含浸プロファイ
ルを示す図、第2図は本発明の磁気記録媒体の断面構造
の模型図、第3図は本発明の磁気記録媒体に於ける潤滑
剤の拡散現象定式化に用いた座標系を示す図である。ま
た、第4図、第5図、第6図、及び第7図は、磁気記録
媒体表面の潤滑剤が逐次除去された際、磁気記録媒体に
含浸された潤滑剤と表面近傍の潤滑剤濃度が時間的に変
化する様子を示す模型図、第8図は磁気記録媒体の81
!I滑剤含浸プロフアイルをSIMSで分析した結果を
示す図、第9図は、磁気記録媒体表面の潤滑剤をスパッ
タ除去した後に、回復する様子をESCAで分析した結
果を示す図、第10図は。本発明の磁気記録媒体の表面
潤滑剤を除去した後に、磁性膜および下層膜中の潤滑剤
濃度が変化する様子を計算機シミュレーションした結果
を示す図、第11図は、本発明の磁気記録媒体の表面潤
滑剤を除去した後に、表面の潤滑剤が回復する様子を計
算機シミュレーションした結果を示す図である。 1 ・基板、2・・下層膜、3・・・磁性膜、4・・・
表面潤第 ? 口 表面潤虜制 XI          X2 基級〃・うの距離 第4目 第夕目 第 目 石丘気ディス9に面p・うりYPJ膝 (Pl−)第 7目 又へ°ツク同数
FIG. 1 is a diagram showing the lubricant impregnation profile of the magnetic recording medium of the present invention, FIG. 2 is a schematic diagram of the cross-sectional structure of the magnetic recording medium of the present invention, and FIG. 3 is a diagram showing the lubrication profile of the magnetic recording medium of the present invention. FIG. 3 is a diagram showing a coordinate system used to formulate the agent diffusion phenomenon. 4, 5, 6, and 7 show the lubricant impregnated into the magnetic recording medium and the lubricant concentration near the surface when the lubricant on the surface of the magnetic recording medium is successively removed. Figure 8 is a model diagram showing how the magnetic recording medium changes over time.
! Figure 9 shows the results of SIMS analysis of lubricant impregnation profile. Figure 9 shows the results of ESCA analysis of the recovery after the lubricant on the surface of the magnetic recording medium is removed by sputtering. . FIG. 11 is a diagram showing the results of a computer simulation of how the lubricant concentration changes in the magnetic film and the underlying film after the surface lubricant of the magnetic recording medium of the present invention is removed. FIG. 6 is a diagram showing the results of a computer simulation of how the surface lubricant recovers after the surface lubricant is removed. 1.Substrate, 2.. Lower layer film, 3.. Magnetic film, 4..
Surface Jundai? Mouth surface Junpo control XI

Claims (1)

【特許請求の範囲】 1、磁気記録媒体表面最近傍の潤滑剤含浸濃度より、該
磁気記録媒体内部の少なくとも一部分の方が潤滑剤含浸
濃度が高く、この濃度勾配により上記磁気記録媒体表面
に潤滑剤が供給されることを特徴とする磁気記録媒体。 2、磁性膜の下に潤滑剤が含浸される下層膜が設けられ
た磁気記録媒体に於て、該下層膜中の潤滑剤含浸濃度が
、磁気記録媒体表面最近傍の潤滑剤含浸濃度より高い部
分が少なくとも一部分存在し、この濃度勾配により上記
磁気記録媒体表面に潤滑剤が供給されることを特徴とす
る磁気記録媒体。
[Claims] 1. The concentration of lubricant impregnated in at least a portion of the inside of the magnetic recording medium is higher than the concentration of lubricant impregnated in the vicinity of the surface of the magnetic recording medium, and this concentration gradient lubricates the surface of the magnetic recording medium. A magnetic recording medium characterized by being supplied with an agent. 2. In a magnetic recording medium provided with a lower layer film impregnated with a lubricant under the magnetic film, the lubricant impregnation concentration in the lower layer film is higher than the lubricant impregnation concentration in the vicinity of the surface of the magnetic recording medium. A magnetic recording medium characterized in that the lubricant is supplied to the surface of the magnetic recording medium by the concentration gradient.
JP15970490A 1990-06-20 1990-06-20 Magnetic recording medium Pending JPH0453025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15970490A JPH0453025A (en) 1990-06-20 1990-06-20 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15970490A JPH0453025A (en) 1990-06-20 1990-06-20 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH0453025A true JPH0453025A (en) 1992-02-20

Family

ID=15699485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15970490A Pending JPH0453025A (en) 1990-06-20 1990-06-20 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0453025A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002298332A (en) * 2001-03-30 2002-10-11 Tdk Corp Magnetic recording medium
JP2002298327A (en) * 2001-03-30 2002-10-11 Tdk Corp Magnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002298332A (en) * 2001-03-30 2002-10-11 Tdk Corp Magnetic recording medium
JP2002298327A (en) * 2001-03-30 2002-10-11 Tdk Corp Magnetic recording medium

Similar Documents

Publication Publication Date Title
JP3058066B2 (en) Magnetic recording medium and method of manufacturing the same
US6565718B1 (en) Magnetic recording medium with high density, thin dual carbon overcoats
US4820584A (en) Magnetic recording medium and method of manufacturing the same
JPS6173237A (en) Magnetic disk
JPH01245425A (en) Surface treatment of carbon covered magnetic recording medium and slider
JPH0312372B2 (en)
JP3294760B2 (en) Magnetic recording media
JP3223238B2 (en) Magnetic recording media
US6136421A (en) Magneto-resistance recording media comprising multilayered protective overcoats
US6238780B1 (en) Magnetic recording medium comprising multilayered carbon-containing protective overcoats
JPH0453025A (en) Magnetic recording medium
US20020119316A1 (en) Protective overcoat layer for magnetic recording discs having enhanced corrosion resistance properties
US6537686B1 (en) Magneto-resistance recording media comprising a silicon nitride corrosion barrier layer and a C-overcoat
US6517956B1 (en) Magneto-resistance recording media comprising aluminum nitride corrosion barrier layer and a c-overcoat
JP3422553B2 (en) Magnetic recording medium and method of manufacturing the same
JPS58164025A (en) Magnetic recording medium
JP2959802B2 (en) Method of manufacturing continuous magnetic film type magnetic recording medium
JPS63249901A (en) Magnetic recording and reproducing device
JPH0729161A (en) Magnetic disk
JPH0836744A (en) Magnetic recording medium
JP2544365B2 (en) Method of manufacturing magnetic recording medium
JP2924052B2 (en) Magnetic storage body and method of manufacturing the same
JPS58185029A (en) Magnetic disc medium
JPH08273155A (en) Production of magnetic recording medium
JPH02201731A (en) Magnetic recording medium