JPH0452707B2 - - Google Patents

Info

Publication number
JPH0452707B2
JPH0452707B2 JP2825886A JP2825886A JPH0452707B2 JP H0452707 B2 JPH0452707 B2 JP H0452707B2 JP 2825886 A JP2825886 A JP 2825886A JP 2825886 A JP2825886 A JP 2825886A JP H0452707 B2 JPH0452707 B2 JP H0452707B2
Authority
JP
Japan
Prior art keywords
flow path
annular flow
annular
electromagnetic pump
linear induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2825886A
Other languages
Japanese (ja)
Other versions
JPS62189969A (en
Inventor
Kuniaki Miura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sukegawa Electric Co Ltd
Original Assignee
Sukegawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sukegawa Electric Co Ltd filed Critical Sukegawa Electric Co Ltd
Priority to JP2825886A priority Critical patent/JPS62189969A/en
Publication of JPS62189969A publication Critical patent/JPS62189969A/en
Publication of JPH0452707B2 publication Critical patent/JPH0452707B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、溶融金属等の導電性液体の搬送に
使用されるリニア誘導電磁ポンプに関し、特に、
環状流路を持ち、かつ、この環状流路の内周と外
周側にそれぞれステータを配置した二重誘導式環
状流路形リニア誘導電磁ポンプに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a linear induction electromagnetic pump used for conveying conductive liquid such as molten metal, and in particular,
The present invention relates to a double induction annular flow path type linear induction electromagnetic pump having an annular flow path and having stators arranged on the inner and outer periphery sides of the annular flow path.

〔従来の技術〕[Conventional technology]

一般のリニア誘導電磁ポンプは、断面円形の流
路を持ち、この外周側にステータを、流路の中心
に磁性体製のコアを配置したものである。この種
のリニア誘導電磁ポンプでは、流路の径を大きく
とり、流路の断面積を広くすると、流路の中心に
磁界が浸透しにくゝなる。このため、広い流路断
面積を得ることが困難であり、大量の液体の搬送
には不向きである。
A general linear induction electromagnetic pump has a flow path with a circular cross section, a stator is placed on the outer periphery of the flow path, and a core made of a magnetic material is arranged at the center of the flow path. In this type of linear induction electromagnetic pump, by increasing the diameter of the flow path and widening the cross-sectional area of the flow path, it becomes difficult for the magnetic field to penetrate into the center of the flow path. For this reason, it is difficult to obtain a wide cross-sectional area of the flow path, making it unsuitable for conveying a large amount of liquid.

そこで、比較的大量の液体の搬送には、第4図
で示すような、環状流路3を使用したリニア誘導
電磁ポンプが使用される。これは、二重のパイプ
1,2の間に環状流路3を形成し、環状流路3の
外周側にステータ5,5……を配置したものであ
る。
Therefore, to convey a relatively large amount of liquid, a linear induction electromagnetic pump using an annular flow path 3 as shown in FIG. 4 is used. In this, an annular flow path 3 is formed between double pipes 1 and 2, and stators 5, 5, . . . are arranged on the outer peripheral side of the annular flow path 3.

さらに、この形式の電磁ポンプでは、流路の内
側にも或る程度のスペースが得られることから、
流路の内周側にもステータ4,4……を配置す
る、いわゆる二重誘導方式の電磁ポンプが提案さ
れている。この方式では、環状流路3の内部にま
で磁界を浸透させやすいため、環状流路3をそれ
だけ厚くすることができる。従つて、環状流路3
の外径を大きくせずに、流路断面積を広くとるこ
とができ、小型化しやすい利点がある。
Furthermore, with this type of electromagnetic pump, a certain amount of space is available inside the flow path, so
A so-called double induction type electromagnetic pump has been proposed in which stators 4, 4, . . . are arranged also on the inner peripheral side of the flow path. In this method, the magnetic field can easily penetrate into the annular flow path 3, so that the annular flow path 3 can be made thicker. Therefore, the annular flow path 3
This has the advantage that the cross-sectional area of the flow path can be made wide without increasing the outer diameter of the tube, making it easy to downsize.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

リニア誘導電磁ポンプにおいて、導体であると
ころの流路の中の液体は、水力学的な損失の他、
渦電流による電気的な損失(オーミツクロス)を
受ける。このオーミツクロスは、液体の流速が遅
い程大きく、速い程小さくなる。
In a linear induction electromagnetic pump, the liquid in the flow path, which is a conductor, suffers from hydraulic losses as well as
Subject to electrical loss (Omitsu cross) due to eddy currents. The slower the flow rate of the liquid, the larger the omitsu cloth becomes, and the faster the flow rate of the liquid, the smaller the omitsu cloth becomes.

上記環状流路3の厚みが増した場合、これによ
つて水力学的な損失が小さくなり、全損失に占め
る上記オーミツクロクの割合が相対的に大きくな
る。この場合、環状流路3を流れる液体の流量Q
と、電磁ポンプの吐出圧力Hの関係(以下、「Q
−H特性」という。)を示すQ−H特性曲線は、
第5図や第6図で示すように、流量Qを横軸にと
り、吐出圧力Hを縦軸にとると、上に凸になる。
即ち、オーミツクロスのため、流体の流速vが遅
いと、電磁ポンプの吐出圧力Hが低く、流速vが
速くなるに従つて、吐出圧力Hが高くなる。さら
に流速vが速くなると、全誘導電流eが小さくな
るので、ポンプの性能が低下し、吐出圧力Hが低
くなる。
When the thickness of the annular flow path 3 increases, the hydraulic loss decreases, and the proportion of the omitlock in the total loss becomes relatively large. In this case, the flow rate Q of the liquid flowing through the annular channel 3
and the discharge pressure H of the electromagnetic pump (hereinafter referred to as "Q")
-H characteristics. ), the Q-H characteristic curve is
As shown in FIGS. 5 and 6, when the flow rate Q is plotted on the horizontal axis and the discharge pressure H is plotted on the vertical axis, it becomes convex upward.
That is, due to the omitsu cloth, when the flow rate v of the fluid is slow, the discharge pressure H of the electromagnetic pump is low, and as the flow rate v becomes faster, the discharge pressure H increases. As the flow velocity v further increases, the total induced current e becomes smaller, so the performance of the pump decreases and the discharge pressure H becomes lower.

このような流量Qと吐出圧力Hの関係のもとで
は、液体の流量Q、即ち、流速vが変動する何等
かの原因があると、環状流路3の水力学的な圧力
−損失特性に変動が生じる。このため、滑らかな
運転ができず、流量制御が困難になると共に、い
わゆるウオーターハンマー現象(水撃現象)によ
るトラブルの発生原因となる。
Under such a relationship between the flow rate Q and the discharge pressure H, if there is any cause for fluctuations in the liquid flow rate Q, that is, the flow velocity v, the hydraulic pressure-loss characteristics of the annular flow path 3 will change. Fluctuations occur. For this reason, smooth operation is not possible, flow rate control becomes difficult, and troubles due to the so-called water hammer phenomenon occur.

例えば、環状流路3の中でのキヤビテーシヨン
の発生や、その中で異物が動揺することによつ
て、流量がQ1とQ2との間で変動すると、同じ吐
出圧力hのもとで、圧力−損失特性が第5図にお
いて、n1とn2で示すように変動する。また、第6
図で示すように、液体の供給側での液面h12の変
動等によつても、圧力−損失特性の変動がもたら
される。
For example, if the flow rate fluctuates between Q 1 and Q 2 due to the occurrence of cavitation in the annular flow path 3 or the movement of foreign matter therein, under the same discharge pressure h, The pressure-loss characteristics vary as shown by n 1 and n 2 in FIG. Also, the 6th
As shown in the figure, variations in the liquid levels h 1 and 2 on the liquid supply side also cause variations in the pressure-loss characteristics.

この発明は、従来の二重誘導式環状流路形リニ
ア誘導電磁ポンプにおける上記の問題を解決する
ためなされたもので、適当なQ−H特性が得られ
る環状流路を持つた二重誘導式環状流路形リニア
誘導電磁ポンプを提供することを目的とする。
This invention was made in order to solve the above-mentioned problems in the conventional dual induction annular flow path type linear induction electromagnetic pump. An object of the present invention is to provide an annular flow path type linear induction electromagnetic pump.

〔問題を解決するための手段〕[Means to solve the problem]

以下、この発明の構成を第1図と第2図の符号
を引用しながら説明すると、二重のパイプ11,
12の間に環状流路13を形成し、この環状流路
13の内周側と外周側にそれぞれステータ14,
14……,15,15……を配置する。さらに、
上記パイプ11,12の間の環状流路13の中
に、磁性体からなるパイプ状のコア16を挿入
し、これによつて、環状流路13を内側の内周側
流路13aと外側の外周側流路13bとい分割す
る。
Hereinafter, the structure of the present invention will be explained while referring to the reference numerals in FIGS. 1 and 2. The double pipe 11,
An annular flow path 13 is formed between the annular flow paths 12 and stators 14 and 14 on the inner and outer circumferential sides of the annular flow path 13, respectively.
14..., 15, 15... are arranged. moreover,
A pipe-shaped core 16 made of a magnetic material is inserted into the annular flow path 13 between the pipes 11 and 12, thereby dividing the annular flow path 13 between the inner circumferential flow path 13a and the outer circumferential flow path 13a. The outer circumferential flow path 13b is divided into two.

〔作用〕[Effect]

この発明による二重誘導式環状流路形リニア誘
導電磁ポンプでは、環状流路13がコア16によ
つて内周側流路13aと外周側流路13bとに分
割されるため、それぞれの流路13a,13bの
厚みは、環状流路13全体の約半分ずつとなる。
従つて、環状流路13の中の全損失に占める流体
のオーミツクロスが相対的に小さくなり、上に凸
になるQ−H特性曲線が形成されにくゝなる。
In the dual-induction annular flow path linear induction electromagnetic pump according to the present invention, the annular flow path 13 is divided by the core 16 into an inner flow path 13a and an outer flow path 13b, so that each flow path is The thickness of each of 13a and 13b is about half of the entire annular flow path 13.
Therefore, the amount of fluid loss that accounts for the total loss in the annular flow path 13 becomes relatively small, making it difficult to form an upwardly convex Q-H characteristic curve.

例えば、第3図は内周側流路13aと外周側流
路13bとの断面積を等しくしたときのQ−H特
性曲線の一例を示したものである。内周側流路1
3aと外周側流路13bのそれぞれのQ−H特性
曲線は、点線で示すような曲線となる。にれによ
つて、環状流路13全体では、上記両流路13
a,13bの流量Qを合計した実線のようなQ−
H特性曲線が得られる。
For example, FIG. 3 shows an example of a Q-H characteristic curve when the cross-sectional areas of the inner circumference side flow path 13a and the outer circumference side flow path 13b are made equal. Inner circumference side flow path 1
The respective QH characteristic curves of the flow path 3a and the outer circumferential flow path 13b are curves as shown by dotted lines. Due to the separation, in the entire annular flow path 13, both of the flow paths 13
Q- as shown by the solid line which is the sum of the flow rates Q of a and 13b.
An H characteristic curve is obtained.

また、コア16は、磁性体製であるところか
ら、内周側流路13aと外周側流路13bとの間
に磁気回路が形成され、これら流路13a,13
bを流れる流体に対して、それぞれほゞ直交する
磁界形成される。
Further, since the core 16 is made of a magnetic material, a magnetic circuit is formed between the inner circumference side flow path 13a and the outer circumference side flow path 13b, and these flow paths 13a, 13
A magnetic field is formed that is substantially perpendicular to the fluid flowing through the b.

〔実施例〕〔Example〕

次に、第1図〜第3図を参照しながら、この発
明の実施例について説明する。
Next, an embodiment of the present invention will be described with reference to FIGS. 1 to 3.

径の異なる二本のパイプ11,12が同心状に
配置され、この間に環状流路13が形成されてい
る。これら2本のパイプ11,12の間に、磁性
体からなるパイプ状のコア16が挿入され、これ
が図示されてないスペーサによつて、環状流路1
3の中に固定されている。このコア16は、パイ
プ11と12の中間の径を有するもので、環状流
路13を内周側流路13aと外周側流路13bと
に2分している。なお、コア16は、必要に応じ
て環状流路13の中に多重に挿入することもでき
る。
Two pipes 11 and 12 having different diameters are arranged concentrically, and an annular flow path 13 is formed between them. A pipe-shaped core 16 made of a magnetic material is inserted between these two pipes 11 and 12, and this is connected to the annular flow path 1 by a spacer (not shown).
It is fixed in 3. The core 16 has a diameter intermediate between the pipes 11 and 12, and divides the annular flow path 13 into an inner flow path 13a and an outer flow path 13b. Note that the core 16 can be inserted into the annular flow path 13 multiple times as necessary.

内側のパイプ11の内周側と外側のパイプ12
の外周側とにそれぞれステータ14,14……,
15,15……が配置されている。これらのステ
ータ14,14……,15,15……は、ステー
タコア17,17……,18,18……と、これ
らに巻装されたステータコイル19,19……,
20,20……とからなる。ステータコイル1
9,19,……,20,20……には、環状流路
13の長手方向にわたつて順次位相がずれた電流
が流される。また、環状流路13を挟んで対向す
る内周側のステータコイル19,19……と外周
側のステータコイル20,20……には、互いに
同位相か、または、180°位相がずれた電流が流さ
れる。
The inner peripheral side of the inner pipe 11 and the outer pipe 12
stators 14, 14..., respectively, on the outer peripheral side of the
15, 15... are arranged. These stators 14, 14..., 15, 15... have stator cores 17, 17..., 18, 18... and stator coils 19, 19..., wound around them.
It consists of 20, 20... Stator coil 1
9, 19, . . . , 20, 20 . In addition, the stator coils 19, 19, . is washed away.

〔発明の効果〕〔Effect of the invention〕

以上説明した通り、この発明によれば、環状流
路13を、同じ流路断面積を有する同径の環状流
路13に比べて、約半分の厚みを持つた内周側流
路13aと外周側流路13bに分けることができ
る。このため、液体の流量Qと吐出圧力Hとにつ
いて、望ましい関係が得られる。即ち、流量Qが
定まれば、一律に吐出圧力Hが定まるという関係
が得られることから、環状流路13の圧力損失の
変動等に伴う流量Qの急激な変動が生じない。
As explained above, according to the present invention, the annular flow path 13 has an inner circumferential flow path 13a and an outer circumference having a thickness that is approximately half that of the annular flow path 13 having the same cross-sectional area and the same diameter. It can be divided into a side flow path 13b. Therefore, a desirable relationship can be obtained between the liquid flow rate Q and the discharge pressure H. That is, since a relationship is obtained in which the discharge pressure H is uniformly determined when the flow rate Q is determined, rapid fluctuations in the flow rate Q due to fluctuations in the pressure loss of the annular flow path 13, etc. do not occur.

また、コア16によつて、内周側のステータ1
4,14……と、外周側のステータ15,15…
…との間に磁気回路が形成され、内周側流路13
aと外周側流路13bを通過する流体の移動方向
に対してほゞ直交する磁界が形成できる。これに
よつて、効率の良いポンプが得られる。
In addition, the core 16 allows the stator 1 on the inner circumferential side to
4, 14... and stators 15, 15... on the outer peripheral side.
A magnetic circuit is formed between the inner circumference side flow path 13
A magnetic field can be formed that is substantially perpendicular to the moving direction of the fluid passing through the outer circumferential flow path 13b. This results in a highly efficient pump.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の実施例を示す二重誘導式
環状流路形リニア誘導電磁ポンプの一部半断面斜
視図、第2図は、第1図のA部拡大図、第3図
は、上記二重誘導式環状流路形リニア誘導電磁ポ
ンプの流量−吐出圧力特性を示すグラフ、第4図
は、二重誘導式環状流路形リニア誘導電磁ポンプ
の従来例を示す一部半断面斜視図、第5図と第6
図は、同二重誘導式環状流路形リニア誘導電磁ポ
ンプの流量と吐出圧力との関係を示すグラフであ
る。 13……環状流路、13a……内周側流路、1
3b……外周側流路、14,15……ステータ、
16……コア。
Fig. 1 is a partial half-sectional perspective view of a dual induction annular flow path type linear induction electromagnetic pump showing an embodiment of the present invention, Fig. 2 is an enlarged view of section A in Fig. 1, and Fig. 3 is , a graph showing the flow rate-discharge pressure characteristics of the above-mentioned double-induction annular flow-type linear induction electromagnetic pump; FIG. Perspective views, Figures 5 and 6
The figure is a graph showing the relationship between the flow rate and discharge pressure of the double induction annular flow path type linear induction electromagnetic pump. 13...Annular flow path, 13a...Inner peripheral side flow path, 1
3b... Outer circumference side flow path, 14, 15... Stator,
16...Core.

Claims (1)

【特許請求の範囲】[Claims] 1 環状流路13の内周側と外周側にそれぞれス
テータ14,14……,15,15……を配置し
た二重誘導式環状流路形リニア誘導電磁ポンプに
おいて、環状流路13の中に磁性体からなるパイ
プ状のコア16を挿入し、同コア16によつて、
環状流路13を、内側の内周側流路13aと外側
の外周側流路13bとに分割してなることを特徴
とする二重誘導式環状流路形リニア誘導電磁ポン
プ。
1. In a double-induction annular flow path type linear induction electromagnetic pump in which stators 14, 14..., 15, 15... are arranged on the inner circumference side and the outer circumference side of the annular flow path 13, respectively, A pipe-shaped core 16 made of magnetic material is inserted, and by the core 16,
A double induction annular flow path type linear induction electromagnetic pump characterized in that an annular flow path 13 is divided into an inner inner flow path 13a and an outer outer flow path 13b.
JP2825886A 1986-02-12 1986-02-12 Double induction type ring passage-shaped linear induction electromagnetic pump Granted JPS62189969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2825886A JPS62189969A (en) 1986-02-12 1986-02-12 Double induction type ring passage-shaped linear induction electromagnetic pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2825886A JPS62189969A (en) 1986-02-12 1986-02-12 Double induction type ring passage-shaped linear induction electromagnetic pump

Publications (2)

Publication Number Publication Date
JPS62189969A JPS62189969A (en) 1987-08-19
JPH0452707B2 true JPH0452707B2 (en) 1992-08-24

Family

ID=12243541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2825886A Granted JPS62189969A (en) 1986-02-12 1986-02-12 Double induction type ring passage-shaped linear induction electromagnetic pump

Country Status (1)

Country Link
JP (1) JPS62189969A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62217853A (en) * 1986-03-19 1987-09-25 Toshiba Corp Electromagnetic pump
JP5851908B2 (en) * 2012-03-28 2016-02-03 三菱重工メカトロシステムズ株式会社 Electromagnetic pump and quench tank and liquid metal loop

Also Published As

Publication number Publication date
JPS62189969A (en) 1987-08-19

Similar Documents

Publication Publication Date Title
US4152615A (en) End iron axial flux damper system
CA1150375A (en) Transformer or reactor having a winding formed from sheet material
US20010043715A1 (en) Loudspeaker
EP0069456A1 (en) Measuring device of electromagnetic flowmeter
US4557667A (en) Electromagnetic pump
JPH0452707B2 (en)
GB1577389A (en) Annular linear induction pump with an externally supported duct
US2808002A (en) Linear electromagnetic pump having concentric fluid passages
CN202839233U (en) Ideal iron core and electromagnetic transition device using the same
WO2022057167A1 (en) Annular linear induction pump having axial guide vanes
Blake Electro-magnetic pumps for liquid metals
CN218642583U (en) Multi-channel multi-frequency scale ion action combined coil
US2987001A (en) Dynamo-electric machines
SU704715A1 (en) Magnetohydrodynamic choke
SU1194238A1 (en) Electromagnetic induction pump
US1606816A (en) Inductance device
JPS57143804A (en) Cylindrical iron core made of segmental pieces
JPH04236162A (en) Induction type electromagnetic pump
JP2000331854A (en) Zero-phase current transformer
JPS60139158A (en) Voice coil motor
JPH02267906A (en) Tap winding of transformer
JPS6122919B2 (en)
JPS61131516A (en) Winding of stationary induction apparatus
JPS6021512A (en) Stationary induction electric apparatus winding
JPS58225621A (en) Three-phase wound core

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term