JPH0452598A - Medical radiation shielding chamber - Google Patents

Medical radiation shielding chamber

Info

Publication number
JPH0452598A
JPH0452598A JP2161654A JP16165490A JPH0452598A JP H0452598 A JPH0452598 A JP H0452598A JP 2161654 A JP2161654 A JP 2161654A JP 16165490 A JP16165490 A JP 16165490A JP H0452598 A JPH0452598 A JP H0452598A
Authority
JP
Japan
Prior art keywords
wall
entrance
exit
radiation shielding
walls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2161654A
Other languages
Japanese (ja)
Inventor
Yasuo Ueda
上田 八寿男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2161654A priority Critical patent/JPH0452598A/en
Publication of JPH0452598A publication Critical patent/JPH0452598A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)

Abstract

PURPOSE:To reduce the primary scattering rays incident on the door of an entrance and exit by shielding radiation by providing a plurality of partition walls having radiation shielding capacity to the wall surface opposed to the entrance and exit. CONSTITUTION:Partition walls 6A - 6C are provided on the wall surface of an entrance and exit. The walls A, B has the radiation shielding capacity to leak X-rays going toward a front wall from a high energy X-ray generator 21 and the wall 6C has the radiation shielding capacity to the primary scattering rays going toward the entrance and exit. Further, two small chamber structures having opening parts in the direction of the entrance and exit are constituted of the walls 6A, 6B. With respect to the primary scattering surface seen through from the point P of the door 1 of the entrance and exit, the planar expanse among the leak rays radially generated from the generator 21 becomes the range determined by a side wall 4 and the wall 6c when looked from the point P within the range determined by the side wall 4 and the walls 6A, 6B. The height direction thereof becomes the range of the opening height falling from a floor surface and determined by a wall 5. Therefore, the primary scattering surface becomes the range determined by the opening dimension of the wall 5 among the front wall of the wall 6B.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は医療用放射線遮蔽室に関し、特に出入口扉へ入
射する一次散乱線を極小にした構造の医療用放射線遮蔽
室に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a medical radiation shielding chamber, and more particularly to a medical radiation shielding chamber having a structure that minimizes primary scattered rays incident on an entrance/exit door.

〔従来の技術〕[Conventional technology]

従来、この種の医療用放射線遮蔽室は、迷路と射線源の
一次線または漏洩線がこの開口部を通り抜けて、出入口
扉から見通せる天井@壁面及び床面に照射され、ここで
の−次数乱線(反射)が出入口扉に向う中で、下がり壁
で遮蔽される天井及び壁面上部からの一次散乱線の発生
を防いでいた。
Conventionally, in this type of medical radiation shielding room, the maze and the primary line or leakage line of the radiation source pass through this opening and are irradiated to the ceiling @ wall and floor that can be seen from the entrance door, and the -order randomization here is While the rays (reflections) were directed toward the entrance/exit door, primary scattered rays were prevented from occurring from the ceiling and the upper part of the wall, which were shielded by the falling walls.

第3図に従来の技術による医療用放射線遮蔽室の原理説
明図を示す。
FIG. 3 is a diagram illustrating the principle of a medical radiation shielding room according to the prior art.

第3図によれば従来の技術による医療用放射線遮蔽室の
構造は、出入口扉1と隔壁2により外周を形成し、内部
に袖壁104を設けて迷路111と照射室12とから構
成される。
According to FIG. 3, the structure of the medical radiation shielding room according to the prior art is composed of an outer periphery formed by an entrance/exit door 1 and a partition wall 2, a sleeve wall 104 provided inside, and a labyrinth 111 and an irradiation chamber 12. .

線源である高エネルギX線発生装置21は治療台22に
セットアツプされた患者に向けて一次X線を照射する。
A high-energy X-ray generator 21 serving as a radiation source irradiates primary X-rays toward a patient set up on a treatment table 22.

鉄板3は天井を含めてコの字形または床下をも含めて口
の字形に配置され、高エネルギX線発生装置21からの
放射線の漏洩を防止する。線源から外部、特に出入口扉
1のP点に達する漏洩線量は、まずルート36を通して
到達するものについては、袖壁104により軽減せしめ
ている。次に、P点に相対する隔壁102の面で線源か
ら照射され散乱してP点に達する線量が、ルート35A
と迷路111中のルート35Bを通じて到達するものに
ついては、袖壁104の構造と下がり壁5とにより軽減
せしめている。
The iron plate 3 is arranged in a U-shape including the ceiling or in a square-shape including the area under the floor to prevent leakage of radiation from the high-energy X-ray generator 21. The leakage dose that reaches the outside from the radiation source, particularly the point P of the entrance/exit door 1, first reaches through the route 36, and is reduced by the wing wall 104. Next, the dose that is irradiated from the radiation source on the surface of the partition wall 102 facing the point P and is scattered and reaches the point P is transmitted to the route 35A.
and those reaching through the route 35B in the maze 111 are reduced by the structure of the wing walls 104 and the descending walls 5.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した開口部での下り壁による遮蔽構造では、通常の
出入口扉に向う全散乱面のうち4割前後の遮蔽効果を有
するが、十分とは言えない。特に、高エネルギーX線発
生装置の場合には、従来10MV以下のエネルギー帯が
大半で、中性子線の遮蔽にはそれ程問題とはならなかっ
たが、近年、15MVや18MVの高エネルギー装置が
普及のきざしにあり、このエネルギー帯での中性子線の
急激な増大に対して前述の遮蔽構造程度では出入口扉に
対する遮蔽負荷が課題となり、運用上の支障は少くない
The above-mentioned shielding structure using a descending wall at the opening has a shielding effect of about 40% of the total scattering surface facing the normal entrance/exit door, but it cannot be said to be sufficient. In particular, in the case of high-energy X-ray generators, most of the energy bands used to be 10 MV or less, which did not pose much of a problem in shielding neutron beams, but in recent years, high-energy devices of 15 MV and 18 MV have become popular. With the rapid increase in neutron beams in this energy band, the above-mentioned shielding structure poses a problem of shielding load on the entrance/exit door, which poses many operational problems.

一例として、オーダ的には鉛30mm、 ポリエチレン
120 mmとなることも少なくない。このため、外装
の鉄板と合わせて外形寸法で2000X2000X18
0mm、重量にして5tonに達し、開閉時間は分のオ
ーダとなる。また、患者に対する不安感も無しとしない
As an example, the order is often 30 mm of lead and 120 mm of polyethylene. For this reason, the external dimensions including the exterior iron plate are 2000 x 2000 x 18.
0mm, the weight reaches 5 tons, and the opening/closing time is on the order of minutes. Also, there is a sense of anxiety towards the patient.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の医療用放射線遮蔽室は、迷路構造を有する医療
用放射線遮蔽室において、出入口に対向する壁面に放射
線遮蔽能を有する仕切り壁を設け、前記仕切り壁の壁面
の前記出入口方向に開口部を有する複数の小室構造を備
えて構成される。
The medical radiation shielding room of the present invention is a medical radiation shielding room having a labyrinth structure, in which a partition wall having a radiation shielding ability is provided on a wall surface facing an entrance/exit, and an opening is formed in the wall surface of the partition wall in the direction of the entrance/exit. It is configured with a plurality of chamber structures.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の構成を示す平面図である。FIG. 1 is a plan view showing the configuration of an embodiment of the present invention.

医療用放射線遮蔽室の基本構造は、出入口扉1と隔壁2
により外周を形成し、内部に袖壁4を設けて迷路11と
照射室12とから構成される。
The basic structure of a medical radiation shielding room is an entrance/exit door 1 and a partition wall 2.
The outer periphery is formed by a labyrinth 11 and an irradiation chamber 12 with sleeve walls 4 provided inside.

高エネルギX線発生装置21は、治療台22にセットア
ツプした患者に向けて、図の上下方向に360°の任意
の方向から一定の絞り機構の範囲内で利用線錐(−次X
線)を照射する(即ち、平面A内で治療台22を中心と
した360@方向から、はぼ治療台22に向って一次X
線を照射する)。
The high-energy X-ray generator 21 aims at the patient who is set up on the treatment table 22 and uses a beam cone (-X
ray) (i.e., from the 360@ direction centered on the treatment table 22 in plane A, the primary
rays).

鉄板3は天井を含めてコの字型に配置され、利用線錐の
360°照射に対する追加遮蔽を行なう。なお、床面は
土中となっている例であり、下階がある場合には360
°全体に鉄板が必要となることは言うまでもない。この
鉄板の代わりに、遮蔽室の内側または外側にコンクリー
トによる凸壁とする場合もある。
The iron plate 3 is arranged in a U-shape including the ceiling, and provides additional shielding against 360° irradiation of the beam used. In addition, this is an example where the floor surface is underground, and if there is a lower floor, 360
°It goes without saying that iron plates are required throughout. Instead of this iron plate, a convex wall made of concrete may be used on the inside or outside of the shielded room.

以上の利用線錐に対して、それ以外の方向には法定で定
められた範囲内で、不必要の漏洩線が放射状に照射され
、隔壁2で示すコンクリート厚で遮蔽される。また、出
入口扉方向へは下がり壁5の下部で構成される開口部を
通り抜けた漏洩線が、出入口扉1から見通せる壁面等に
照射され、その反射として後述する一次散乱線ルートで
出入口への漏洩が生じる。
Unnecessary leakage lines are irradiated radially in other directions with respect to the above-mentioned use line cone within the legally defined range, and are shielded by the concrete thickness shown by the partition wall 2. In addition, the leakage rays that go down toward the entrance/exit door and pass through the opening formed at the lower part of the wall 5 are irradiated onto the wall surface etc. that can be seen from the entrance/exit door 1, and are reflected back to the entrance/exit via the primary scattered ray route, which will be described later. occurs.

出入口に対向する壁面に設けられた仕切り壁6A〜6C
は本発明の遮蔽構造であり、後述する原理に基づき出入
口扉に入射する一次散乱線漏洩を大幅に低減するもので
ある。
Partition walls 6A to 6C provided on the wall facing the entrance/exit
is the shielding structure of the present invention, which significantly reduces leakage of primary scattered radiation incident on the entrance/exit door based on the principle described later.

第2図(a)および(b)は本発明の遮蔽構造に対する
遮蔽効果を具体的に示すための原理説明図である。
FIGS. 2(a) and 2(b) are principle explanatory diagrams specifically showing the shielding effect of the shielding structure of the present invention.

第2図(a)は、出入口扉1のP点から見通せる一次散
乱面を作図したものである。ここで見通せる一次散乱面
は高エネルギX線発生装置から放射状に発生する漏洩線
のうち、平面的な広がりについては袖壁4と本発明の仕
切り壁6A及び6Bで定まる照射範囲内にあってP点か
ら眺めて袖壁4と本発明の仕切り壁6Cで定まる範囲、
即ち斜線で示す範囲となる。
FIG. 2(a) is a drawing of the primary scattering surface that can be seen from point P of the entrance/exit door 1. The primary scattering surface that can be seen here is within the irradiation range determined by the wing wall 4 and the partition walls 6A and 6B of the present invention in terms of planar spread among the leakage rays generated radially from the high-energy X-ray generator. The range defined by the wing wall 4 and the partition wall 6C of the present invention when viewed from a point,
That is, the range is indicated by diagonal lines.

また、高さ方向については床面から下がり壁5で定まる
開口高の範囲となる。従って、−次散乱面は仕切り壁6
Bの正面壁のうち、下がり壁5の開口高寸法で定まる範
囲を斜線で示す床面が対象となる。
Further, in the height direction, the opening height falls from the floor surface and is determined by the wall 5. Therefore, the -th scattering surface is the partition wall 6
Among the front walls of B, the floor surface indicated by diagonal lines, which is determined by the height of the opening of the descending wall 5, is targeted.

一方、第2図(b)は出入口扉1のQ点から跳めた場合
の例を示し、ここでは正面壁からの一次散乱線は皆無で
あり、代わって斜線で示す側面壁からの一次散乱線が見
込まれる。
On the other hand, Fig. 2(b) shows an example when jumping from point Q of the entrance/exit door 1, in which there are no primary scattered rays from the front wall, but instead primary scattered rays from the side walls indicated by diagonal lines. line is expected.

出入口扉に入射する一次散乱線は装置側の漏れX線量を
ベースに、対象となる一次散乱面積とそこでの散乱比に
比例し、また−次散乱ルート31A及び31Bで代表す
るそれぞれの距離の逆自乗に比例する。この中で散乱比
は対象となる一次散乱面と垂直な線となす線源からの入
射角及び出入口扉に向う反射角に依存し、いずれも鋭角
となる程大きな数値となる。
The primary scattered rays incident on the entrance/exit door are proportional to the target primary scattering area and the scattering ratio there, based on the amount of leaked X-rays from the equipment side, and are the inverse of the respective distances represented by the -order scattering routes 31A and 31B. Proportional to the square. Among these, the scattering ratio depends on the incident angle from the source with respect to a line perpendicular to the target primary scattering surface and the reflection angle toward the entrance/exit door, and both values become larger as the angle becomes more acute.

本X線発生装置の例では、通常の線源位置は下向き照射
で(方向利用率1)、高さは鼾1.3 m前後となり、
出入口扉1より見た仕切壁の近傍の壁面でのX線の入射
角は、正面壁または側面(出入口扉1より見て右側)壁
では鋭角となり床面では鈍角となる。問題となるX線エ
ネルギが15MV以上の中性子線の例での正面壁または
側面壁と床面での散乱比の違いは、前記の角度によりそ
れぞれ通常4:1前後となる。
In the example of this X-ray generator, the normal radiation source position is downward irradiation (directional utilization factor 1), and the height is approximately 1.3 m.
The angle of incidence of X-rays on the wall near the partition wall when viewed from the entrance/exit door 1 is an acute angle on the front wall or side wall (on the right side as seen from the entrance/exit door 1), and an obtuse angle on the floor. In the case of a neutron beam with an X-ray energy of 15 MV or more, the difference in scattering ratio between the front wall or side wall and the floor surface is usually around 4:1 depending on the above-mentioned angle.

従って、対象となる正面壁の一次散乱面積をできる限り
小さくすること。即ち、いかにして正面壁への照射を避
けるか、また、側面壁からの一次散乱をいかにして避け
るかがポイントとなる。本発明の仕切り壁6A〜6Cは
この目的のために設けられたものであり、後述の従来の
実施例で示す一次散乱面積に比べて実効的に5分の1程
度となっている。
Therefore, the primary scattering area of the target front wall should be made as small as possible. That is, the key points are how to avoid irradiation to the front wall and how to avoid primary scattering from the side walls. The partition walls 6A to 6C of the present invention are provided for this purpose, and are effectively about one-fifth of the primary scattering area shown in the conventional embodiment described later.

本実施例では仕切り壁が3つの例であるが、いくつ設け
ても全面が散乱面となる従来比で相応の効果を有するこ
とは明らかである。また、仕切り壁の突き出し寸法や幅
についても作図で定まる一次散乱面積の減少分に応じた
遮蔽効果を有する。
In this embodiment, there are three partition walls, but it is clear that no matter how many partition walls are provided, a corresponding effect can be obtained compared to the conventional structure in which the entire surface is a scattering surface. Furthermore, the protrusion size and width of the partition wall have a shielding effect corresponding to the reduction in the primary scattering area determined by drawing.

即ち、本発明の仕切り壁6A及び6Bは、高エネルギX
線発生装置21から正面壁に向う漏れX線に対する放射
線遮蔽能を有し、また、仕切り壁6Cは出入口に向う一
次散乱線に対する放射線遮蔽能を有している。なお仕切
り壁E3A、6Bにより、出入口方向に開口部を存する
2つの小室構造を構成している。P点での遮蔽計算では
以上の一次散乱線に加え、漏洩ルート32からの袖壁4
の厚みに応じた漏洩線が加算される。
That is, the partition walls 6A and 6B of the present invention have high energy
The partition wall 6C has a radiation shielding ability against leaked X-rays toward the front wall from the ray generator 21, and the partition wall 6C has a radiation shielding ability against primary scattered rays toward the entrance/exit. The partition walls E3A and 6B constitute two small chambers each having an opening in the direction of the entrance and exit. In the shielding calculation at point P, in addition to the above primary scattered rays, the wing wall 4 from the leakage route 32
A leakage line is added according to the thickness.

次に、従来の技術と本発明の実施例とについて、ここで
問題としている対象となる一次散乱面についての従来の
技術による作図を第3図に示す。第3図で示す通り問題
とする正面壁の一次散乱面積は、本実施例に比べて5倍
程度大きくなっている。しかし、従来の技術の場合では
一次散乱線ルート35A及び35Bの距離が本実施例に
よる一次散乱線ルー)31A及び31Bの距離に比べて
それぞれ1.25倍前後長くとれているため、減衰量の
比は5 X (1/1.25) 2X (1/1.25
) 2峡2となり本実施例どうしでの比較では本実施例
による遮蔽効果は1/2程度となる。
Next, with regard to the conventional technique and the embodiment of the present invention, FIG. 3 shows a diagram of the primary scattering surface, which is the object of interest here, drawn by the conventional technique. As shown in FIG. 3, the primary scattering area of the front wall in question is about five times larger than that of this embodiment. However, in the case of the conventional technology, the distance between the primary scattered ray routes 35A and 35B is approximately 1.25 times longer than the distance between the primary scattered ray routes 31A and 31B according to the present embodiment, so the amount of attenuation is reduced. The ratio is 5X (1/1.25) 2X (1/1.25
) 2 gorges 2, and when comparing the present embodiments, the shielding effect of the present embodiment is about 1/2.

本実施例は従来の技術と同様に図の縦方向での全長が長
い例であり、従って一般には本例の1.25倍は縮まる
方向にあり、透過率換算で1/3前後は期待できる。ち
なみにこの透過率1/3という値は出入口扉の中性子遮
蔽材としてのポリエチレンの厚みに換算すると、30−
m前後に相当し通常100m前後が使用される中で無視
し得ない厚みとなる。この他、本発明の副次的効果とし
ては照射室に向う動線が短縮されるという利点がある。
This example is an example in which the total length in the vertical direction of the figure is long as in the conventional technology, and therefore, in general, it is 1.25 times shorter than this example, and it can be expected to be around 1/3 in terms of transmittance. . By the way, this value of transmittance 1/3 is equivalent to 30-
The thickness corresponds to around 100m, which cannot be ignored since around 100m is normally used. In addition, a secondary effect of the present invention is that the flow line toward the irradiation chamber is shortened.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、出入口に対向する壁面に
放射線遮蔽能を有する複数の仕切り壁を設け、出入口に
対向する壁面による一次散乱線の発生を未然に防止し、
あるいは部分的に発生しても出入口に向う一次散乱線を
阻止することにより、結果として出入口扉に入射する一
次散乱線を大幅に低減している。
As explained above, the present invention provides a plurality of partition walls having radiation shielding ability on the wall facing the entrance/exit to prevent the generation of primary scattered radiation by the wall facing the entrance/exit,
Alternatively, even if the primary scattered rays are partially generated, by blocking the primary scattered rays toward the entrance/exit door, the primary scattered rays incident on the entrance/exit door are significantly reduced as a result.

このため、出入口扉は軽薄となり開閉速度が上がると共
に、患者に対する心理的不安感もやわらぐという効果が
ある。また遮蔽室内の動線が短縮されるという効果もあ
る。
For this reason, the entrance/exit door becomes light and thin, opening and closing speed is increased, and the patient's psychological anxiety is alleviated. It also has the effect of shortening the flow line within the shielded room.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成を示す平面図、第2図
(a)および(b)は本実施例の放射線遮蔽室の遮蔽効
果を示す原理説明図、第3図は従来の技術による医療用
放射線遮蔽室の原理説明図である。 1・・・出入口扉、2・・・隔壁、3・・・鉄板、4・
・・袖壁、5・・・下がり壁、6A〜6C・・・仕切り
壁、11・・・迷路、12・・・照射室、21・・・高
エネルギX線発生装置、22・・・治療台、31A・3
1B・・・−次散乱線ルート、32・・・漏洩線ルート
、33A・33B・・・−次散乱線ルート、34・・・
漏洩線ルート。
FIG. 1 is a plan view showing the configuration of an embodiment of the present invention, FIGS. 2(a) and (b) are principle explanatory diagrams showing the shielding effect of the radiation shielding chamber of this embodiment, and FIG. FIG. 2 is a diagram illustrating the principle of a medical radiation shielding room according to technology. 1... Entrance/exit door, 2... Partition wall, 3... Iron plate, 4...
...Sleeve wall, 5...Downward wall, 6A-6C...Partition wall, 11...Maze, 12...Irradiation room, 21...High energy X-ray generator, 22...Treatment Stand, 31A・3
1B... -th order scattered ray route, 32... leakage ray route, 33A/33B... -th order scattered ray route, 34...
leakage line route.

Claims (1)

【特許請求の範囲】[Claims] 迷路構造を有する医療用放射線遮蔽室において、出入口
に対向する壁面に放射線遮蔽能を有する複数個の仕切り
壁を設け、前記仕切り壁の壁面の前記出入口方向に開口
部を有する複数の小室構造を備えて成ることを特徴とす
る医療用放射線遮蔽室。
In a medical radiation shielding room having a labyrinth structure, a plurality of partition walls having a radiation shielding ability are provided on a wall surface facing an entrance/exit, and a plurality of small chamber structures having openings on the wall surface of the partition wall in the direction of the entrance/exit are provided. A medical radiation shielding room characterized by comprising:
JP2161654A 1990-06-20 1990-06-20 Medical radiation shielding chamber Pending JPH0452598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2161654A JPH0452598A (en) 1990-06-20 1990-06-20 Medical radiation shielding chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2161654A JPH0452598A (en) 1990-06-20 1990-06-20 Medical radiation shielding chamber

Publications (1)

Publication Number Publication Date
JPH0452598A true JPH0452598A (en) 1992-02-20

Family

ID=15739295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2161654A Pending JPH0452598A (en) 1990-06-20 1990-06-20 Medical radiation shielding chamber

Country Status (1)

Country Link
JP (1) JPH0452598A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5756215A (en) * 1993-07-20 1998-05-26 Tdk Corporation Ceramic heater
JP2007139605A (en) * 2005-11-18 2007-06-07 Taisei Corp Irradiation facility
JP2009229181A (en) * 2008-03-21 2009-10-08 Ihi Corp Underground-type electron beam irradiation equipment
CN103211611A (en) * 2013-04-28 2013-07-24 中国人民解放军第三军医大学第二附属医院 Interventional diagnosis and treatment movable separating wall device
JP2016156776A (en) * 2015-02-26 2016-09-01 株式会社奥村組 Construction method of radiation shielding chamber
JP2018179851A (en) * 2017-04-18 2018-11-15 清水建設株式会社 Radiation shielding structure
JP2019100757A (en) * 2017-11-29 2019-06-24 清水建設株式会社 Radiation shield structure
JP2020110367A (en) * 2019-01-11 2020-07-27 清水建設株式会社 Dose calculation method and dose calculation program

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5756215A (en) * 1993-07-20 1998-05-26 Tdk Corporation Ceramic heater
JP2007139605A (en) * 2005-11-18 2007-06-07 Taisei Corp Irradiation facility
JP2009229181A (en) * 2008-03-21 2009-10-08 Ihi Corp Underground-type electron beam irradiation equipment
JP4697250B2 (en) * 2008-03-21 2011-06-08 株式会社Ihi Underground electron beam irradiation equipment
CN103211611A (en) * 2013-04-28 2013-07-24 中国人民解放军第三军医大学第二附属医院 Interventional diagnosis and treatment movable separating wall device
CN103211611B (en) * 2013-04-28 2015-05-13 中国人民解放军第三军医大学第二附属医院 Interventional diagnosis and treatment movable separating wall device
JP2016156776A (en) * 2015-02-26 2016-09-01 株式会社奥村組 Construction method of radiation shielding chamber
JP2018179851A (en) * 2017-04-18 2018-11-15 清水建設株式会社 Radiation shielding structure
JP2019100757A (en) * 2017-11-29 2019-06-24 清水建設株式会社 Radiation shield structure
JP2020110367A (en) * 2019-01-11 2020-07-27 清水建設株式会社 Dose calculation method and dose calculation program

Similar Documents

Publication Publication Date Title
JPH0452598A (en) Medical radiation shielding chamber
JP5227160B2 (en) Radiation shielding structure
JPH05223987A (en) Medical radiation shield room
CN108417285A (en) A kind of multiple labyrinth type fuel transfer tube shielding construction
JPH02173600A (en) Medical radiation shielding chamber
JP6994917B2 (en) Radiation shielding structure
JP2007139605A (en) Irradiation facility
McGinley et al. A method for calculating the dose due to capture gamma rays in accelerator mazes
KR20200005688A (en) Apparatus for Reducing Scatter Radiation in Mobile X-ray Equipment
CN111276271A (en) Combined structure for shielding and absorbing x-ray
JP7175184B2 (en) Radiation reduction structure
KR200419992Y1 (en) A sheilding device for reducing back-scatterred radiation in X-ray exposure room
JPH04138300U (en) Medical radiation shielding room
Jaradat et al. Tenth value layers for 60Co gamma rays and for 4, 6, 10, 15, and 18 MV X rays in concrete for beams of cone angles between 0 and 14 calculated by Monte Carlo simulation
KR100704699B1 (en) A shield door for radiation clinic and making method therefore
JPH0277698A (en) Radiation shield room
JP2024010440A (en) Radiotherapy room
KR200406766Y1 (en) Scattered Radiation Attenuation Panel
JPH05188192A (en) Medical radiation shielding chamber
Wyckoff X-ray protection design
CN209055490U (en) A kind of radiation-emitting device for industrial CT system
JP2022089463A (en) Radiation shield structure
KR20200082994A (en) Scattered radiation shielding structures using slits or girds
JPH09243794A (en) X-ray or gamma-ray shielding equipment
JP2020110367A (en) Dose calculation method and dose calculation program