JPH0452487Y2 - - Google Patents
Info
- Publication number
- JPH0452487Y2 JPH0452487Y2 JP16534987U JP16534987U JPH0452487Y2 JP H0452487 Y2 JPH0452487 Y2 JP H0452487Y2 JP 16534987 U JP16534987 U JP 16534987U JP 16534987 U JP16534987 U JP 16534987U JP H0452487 Y2 JPH0452487 Y2 JP H0452487Y2
- Authority
- JP
- Japan
- Prior art keywords
- spindle
- contact ring
- bearing member
- bearing
- outer diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000007789 sealing Methods 0.000 claims description 16
- 230000002706 hydrostatic effect Effects 0.000 claims description 14
- 230000000694 effects Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
Landscapes
- Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
Description
この考案は、スピンドルの外周面と、このスピ
ンドルを回転自在に軸支する軸受部材の内周面と
の間に、外部から油圧が供給される軸受ポケツト
を設けた静圧軸受装置に関するものである。
This invention relates to a hydrostatic bearing device in which a bearing pocket, to which hydraulic pressure is supplied from outside, is provided between the outer circumferential surface of a spindle and the inner circumferential surface of a bearing member which rotatably supports the spindle.
従来、前記のような静圧軸受装置では、スピン
ドルと軸受部材の間から油が装置外に漏れるのを
防止するために、スピンドルと軸受部材とに常時
接触しているシール用の接触部材を設けたり、シ
ール用の圧力空気を軸受部材の端部内に供給して
エアカーテンを造つたりしている。
Conventionally, in the above-mentioned hydrostatic bearing devices, a contact member for sealing that is in constant contact with the spindle and the bearing member is provided in order to prevent oil from leaking out of the device from between the spindle and the bearing member. Alternatively, sealing pressurized air may be supplied into the end of the bearing member to create an air curtain.
従来の静圧軸受装置のうち、シール用の接触部
材を設けたものは、接触部材とスピンドルが常に
接触しているために、スピンドルの回転によつて
接触部材やスピンドルの接触部が発熱したり、摩
耗したりして、油漏れが発生するという問題点が
あつた。また、エアカーテンを造るものは、スピ
ンドルの停止時にシール用空気の圧送も停止され
るので、油漏れが生じ、とくに堅軸の静圧軸受装
置では油漏れが激しく使用できないという問題点
があつた。
この考案は、前述した問題点を解決して、スピ
ンドルの回転軸に、スピンドルやシール用接触リ
ングが発熱したり摩耗したりせず、またスピンド
ルの停止時にも油漏れがなく、長時間にわたり確
実な油のシールができる静圧軸受装置を提供する
ことを目的としている。
Among conventional hydrostatic bearing devices, those equipped with a contact member for sealing are always in contact with the contact member and the spindle, so the rotation of the spindle can cause the contact member and the contact part of the spindle to generate heat. There was a problem that oil leakage occurred due to wear and tear. In addition, with air curtains, when the spindle stops, the sealing air is also stopped under pressure, which causes oil leakage, and this poses a problem, especially in hard-shaft hydrostatic bearings, which is so prone to oil leakage that it cannot be used. . This invention solves the above-mentioned problems and ensures that the spindle and sealing contact ring do not generate heat or wear out, and there is no oil leakage even when the spindle is stopped, and it is reliable for a long time. The purpose of this invention is to provide a hydrostatic bearing device that can seal oil.
この発明は、スピンドルの外周面と、このスピ
ンドルを回転自在に軸支する軸受部材の内周面と
の間に、外部から油圧が供給される軸受ポケツト
を設けた静圧軸受装置において、前記スピンドル
に段を介して小外径部と大外径部を設け、前記軸
受部材内に軸方向に摺動可能にシール用接触リン
グを嵌合させ、この接触リングをスピンドルの前
記段に押付けるスプリングを、前記接触リングの
一端面に支持させ、軸受部材内の接触リング一端
面背面側に圧力空気室を形成すると共に、スピン
ドル回転時に前記軸受ポケツト側に送られる圧油
によつてスピンドル小外径部側に移動する押し棒
を軸受部材内のスピンドル大外径部側に配設し、
前記押し棒の先端を接触リングの他端面に当接さ
せたものである。
The present invention provides a hydrostatic bearing device in which a bearing pocket to which hydraulic pressure is supplied from the outside is provided between an outer circumferential surface of a spindle and an inner circumferential surface of a bearing member that rotatably supports the spindle. a small outer diameter portion and a large outer diameter portion are provided through a step, a sealing contact ring is fitted in the bearing member so as to be slidable in the axial direction, and a spring presses the contact ring against the step of the spindle. is supported on one end surface of the contact ring, and a pressurized air chamber is formed on the back side of the one end surface of the contact ring in the bearing member, and the small outer diameter of the spindle is A push rod that moves toward the outer diameter of the spindle is placed inside the bearing member on the large outer diameter side of the spindle.
The tip of the push rod is brought into contact with the other end surface of the contact ring.
この発明による静圧軸受装置は、前述のように
構成したので、スピンドルの停止時には、軸受ポ
ケツトに圧油を供給するポンプ、および圧力空気
室にシール用圧力空気を供給する装置も停止され
ているが、第1図に示すように、スプリングによ
つて接触リングがスピンドルの段に押付けられて
いることにより、スピンドルと軸受部材の間から
外部に油が漏れない。また、スピンドルの回転中
は、第2図に示すように、軸受ポケツト側に送ら
れる圧油によつて押し棒がスピンドル小径部側に
移動し、接触リングをスピンドルの段から離間さ
せることにより、接触リングとスピンドルの摩耗
や発熱が防止される。そして、スピンドルの回転
中は、空気室にシール用圧力空気が供給され、接
触リングの一端面より背面側の圧力が高くなるこ
とにより、スピンドルと軸受部材の間から外部に
油が漏れない。
Since the hydrostatic bearing device according to the present invention is configured as described above, when the spindle is stopped, the pump that supplies pressure oil to the bearing pocket and the device that supplies sealing pressure air to the pressure air chamber are also stopped. However, as shown in FIG. 1, since the contact ring is pressed against the stage of the spindle by the spring, oil does not leak to the outside from between the spindle and the bearing member. Also, while the spindle is rotating, as shown in Fig. 2, the push rod is moved toward the small diameter part of the spindle by the pressure oil sent to the bearing pocket side, and the contact ring is separated from the stage of the spindle. Wear and heat generation of the contact ring and spindle are prevented. While the spindle is rotating, sealing pressure air is supplied to the air chamber, and the pressure on the back side of the contact ring is higher than on one end surface of the contact ring, so that oil does not leak to the outside from between the spindle and the bearing member.
以下、この考案の一実施例につき第1図、第2
図を参照して説明する。
第1図、第2図において、1はスピンドル、2
はスピンドル1を回転自在に軸支するほぼ筒状の
軸受部材である。軸受部材2は、固定側部材3に
嵌合固定され、また内周面の軸方向中間部には円
周方向に相互間隔を設けて複数の軸受ポケツト4
が形成されている。軸受ポケツト4に絞り5を介
して圧油を供給する圧油供給溝6が軸受部材2の
外周面に環状に形成され、圧油供給溝6には図示
しないポンプからスピンドル1の回転時に圧油が
供給されるように構成され、軸受ポケツト3から
図示しない油タンクに油を戻すための排出溝18
ならびにドレン孔7が軸受部材2に形成されてい
る。
前記スピンドル1には、段1aを介して軸端側
の小外径部1bと、大外径部1cとが設けられて
いる。スピンドル1の小外径部1bにはシール用
接触リング8が軸方向に摺動自在に嵌合されてい
る。この接触リング8は、外周にシールリング9
が嵌合固定され、シールリング9を介して軸受部
材2の内周面に軸方向に摺動可能に嵌合されてい
る。なお、接触リング8の内周部にはスピンドル
1の段1aに当接する突出部8aが設けられてい
る。軸受部材2の端部には端板10が固定され、
端板10内端面には環状の突起10aが形成さ
れ、この突起10aの円周方向の複数個所に凹部
10bが設けられている。これらの凹部10bに
スプリング11の一端部が嵌合支持され、スプリ
ング11の他端が接触リング8の一端面に支持さ
れ、接触リング8はスプリング11によつてスピ
ンドル1の段1a側に附勢されている。軸受部材
2の接触リング8一端面背面側に圧力空気室12
が形成され、この空気室12は端板10に設けた
シール用空気供給孔13によつて図示しないシー
ル用圧力空気供給装置に接続されている。軸受部
材2内には、スピンドル1大外径部1cと対応す
る部分の円周方向の複数個所にシリンダ孔14が
スピンドル1の軸方向と平行に形成され、シリン
ダ孔14の底部が小径の圧油供給孔15によつて
前記圧油供給溝6に接続され、シリンダ孔14に
は押し棒16が摺動可能に嵌合されている。押し
棒16は、軸受部材2とスピンドル1大外径部1
cの間にスピンドル1と平行に延び、先端が接触
リング8の他端面に当接されている。
次に、以上のように構成された静圧軸受装置の
作動について説明する。
第1図に示すスピンドル1の停止時には、軸受
ポケツト4に圧油を供給するポンプ、および圧力
空気室12にシール用圧力空気を供給する装置も
停止されている。この状態では、スプリング10
のばね力によつて接触リング8の突出部8aがス
ピンドル1の段1aに押付けられていることによ
り、スピンドル1と軸受部材2の間から外部に油
が漏れない。
スピンドル1を回転させると、ポンプおよびシ
ール用圧力空気の供給装置が駆動される。ポンプ
の駆動によつて、圧油供給溝6から絞り5を経て
軸受ポケツト4に圧油が供給され、スピンドル1
と軸受部材2の間に油膜を形成して、スピンドル
1を軸受部材2で静圧軸支する。第2図に示すよ
うに、軸受部材2に供給される圧油の一部が圧油
供給溝6から圧油供給孔15を通してシリンダ孔
14に供給されることにより、押し棒16がスピ
ンドル1小外径部1b方向に移動し、同方向に接
触リング8をスプリング11のばね力に抗して移
動させ、接触リング8をスピンドル1の段1aか
ら離間させ端板10の突起10aに支持させる。
また、圧力空気供給装置の駆動によつてシール用
圧力空気を空気供給孔13から圧力空気室13に
供給し、接触リング8の一端面より背面側の圧力
を高くする。そして、この第2図に示す状態をス
ピンドル1の運転中は続け、スピンドル1を停止
させると圧油の供給ポンプ、圧力空気の供給装置
も停止し、再び第1図に示す状態に戻る。
したがつて、この実施例の静圧軸受装置は、ス
ピンドル1の停止状態では、スプリング10で接
触リング8がスピンドル1の段1aに押付けられ
ていることにより、またスピンドル1の回転状態
では、接触リング8がスピンドル1の段1aと離
間しているが接触リング8背面側の圧力空気室1
2の圧力が高くなつていることにより、いずれも
スピンドル1と軸受部材2の間から外部に油が漏
れない。そして、スピンドル1の回転状態では、
スピンドル1の段1aと接触リング8の突出部8
aが離間しているので、前記段1aや突出部8a
が摩耗せず、摩耗による発熱も生じない。
なお、以上の説明は、軸受部材の一端部のみに
ついて述べたが軸受部材の他端部からの油の漏れ
は、従来公知の適宜の手段で防止または処理する
ものである。
Below, an example of this invention is shown in Figures 1 and 2.
This will be explained with reference to the figures. In Figures 1 and 2, 1 is a spindle, 2
is a substantially cylindrical bearing member that rotatably supports the spindle 1. The bearing member 2 is fitted and fixed to the stationary side member 3, and a plurality of bearing pockets 4 are provided at intervals in the circumferential direction at an axially intermediate portion of the inner circumferential surface.
is formed. A pressure oil supply groove 6 for supplying pressure oil to the bearing pocket 4 through a throttle 5 is formed in an annular shape on the outer peripheral surface of the bearing member 2. Pressure oil is supplied to the pressure oil supply groove 6 from a pump (not shown) when the spindle 1 rotates. A drain groove 18 for returning oil from the bearing pocket 3 to an oil tank (not shown)
A drain hole 7 is also formed in the bearing member 2. The spindle 1 is provided with a small outer diameter section 1b and a large outer diameter section 1c on the shaft end side via a step 1a. A sealing contact ring 8 is fitted into the small outer diameter portion 1b of the spindle 1 so as to be slidable in the axial direction. This contact ring 8 has a seal ring 9 on its outer periphery.
are fitted and fixed, and are fitted to the inner circumferential surface of the bearing member 2 via a seal ring 9 so as to be slidable in the axial direction. Note that the contact ring 8 is provided with a protruding portion 8a on the inner peripheral portion thereof, which abuts against the step 1a of the spindle 1. An end plate 10 is fixed to the end of the bearing member 2,
An annular projection 10a is formed on the inner end surface of the end plate 10, and recesses 10b are provided at a plurality of locations in the circumferential direction of the projection 10a. One end of a spring 11 is fitted and supported in these recesses 10b, the other end of the spring 11 is supported by one end surface of a contact ring 8, and the contact ring 8 is urged by the spring 11 toward the stage 1a of the spindle 1. has been done. A pressure air chamber 12 is provided on the back side of one end surface of the contact ring 8 of the bearing member 2.
is formed, and this air chamber 12 is connected to a sealing pressurized air supply device (not shown) through a sealing air supply hole 13 provided in the end plate 10. Inside the bearing member 2, cylinder holes 14 are formed at a plurality of locations in the circumferential direction of a portion corresponding to the large outer diameter portion 1c of the spindle 1, parallel to the axial direction of the spindle 1, and the bottom of the cylinder hole 14 is a small diameter pressure hole. It is connected to the pressure oil supply groove 6 through an oil supply hole 15, and a push rod 16 is slidably fitted into the cylinder hole 14. The push rod 16 is connected to the bearing member 2 and the large outer diameter portion 1 of the spindle 1.
The contact ring 8 extends parallel to the spindle 1 between the contact rings 1 and 1c, and its tip is in contact with the other end surface of the contact ring 8. Next, the operation of the hydrostatic bearing device configured as above will be explained. When the spindle 1 is stopped as shown in FIG. 1, the pump that supplies pressure oil to the bearing pocket 4 and the device that supplies sealing pressure air to the pressure air chamber 12 are also stopped. In this state, the spring 10
Since the protrusion 8a of the contact ring 8 is pressed against the step 1a of the spindle 1 by the spring force, oil does not leak to the outside from between the spindle 1 and the bearing member 2. When the spindle 1 is rotated, a pump and a sealing pressurized air supply device are driven. By driving the pump, pressure oil is supplied from the pressure oil supply groove 6 to the bearing pocket 4 through the throttle 5, and the spindle 1
An oil film is formed between the bearing member 2 and the bearing member 2, and the spindle 1 is supported by the bearing member 2 under hydrostatic pressure. As shown in FIG. 2, a part of the pressure oil supplied to the bearing member 2 is supplied from the pressure oil supply groove 6 to the cylinder hole 14 through the pressure oil supply hole 15, so that the push rod 16 is pushed into the spindle 1. The contact ring 8 is moved in the direction of the outer diameter portion 1b and moved in the same direction against the spring force of the spring 11, so that the contact ring 8 is separated from the step 1a of the spindle 1 and supported on the protrusion 10a of the end plate 10.
Further, by driving the pressurized air supply device, sealing pressure air is supplied from the air supply hole 13 to the pressure air chamber 13, and the pressure on the back side of the contact ring 8 is made higher than on the one end surface. The state shown in FIG. 2 continues while the spindle 1 is in operation, and when the spindle 1 is stopped, the pressure oil supply pump and pressurized air supply device are also stopped, returning to the state shown in FIG. 1 again. Therefore, in the hydrostatic bearing device of this embodiment, the contact ring 8 is pressed against the stage 1a of the spindle 1 by the spring 10 when the spindle 1 is stopped, and the contact ring 8 is pressed against the stage 1a of the spindle 1 when the spindle 1 is rotating. Although the ring 8 is separated from the stage 1a of the spindle 1, the pressure air chamber 1 on the back side of the contact ring 8
2, oil does not leak to the outside from between the spindle 1 and the bearing member 2. Then, in the rotating state of spindle 1,
Step 1a of spindle 1 and protrusion 8 of contact ring 8
a is spaced apart from each other, so that the step 1a and the protrusion 8a
does not wear out and does not generate heat due to wear. Although the above explanation has been made regarding only one end of the bearing member, leakage of oil from the other end of the bearing member is prevented or treated by conventionally known appropriate means.
以上説明したように、この考案の静圧軸受装置
は、スピンドルの停止状態では、軸受部材内に軸
方向に摺動可能に嵌合させた接触リングがスプリ
ングによつてスピンドルの段に押付けられてお
り、スピンドルの回転状態では、押し棒が軸受ポ
ケツトに供給される圧油で移動し前記接触リング
がスピンドルの段から離間するが、軸受部材端部
内の接触リング背面側に設けた圧力空気室内の圧
力が高くなつているので、スピンドルの停止状態
でも回転状態でも、スピンドルと軸受部材の間か
ら外部に油が漏れることがなく、またスピンドル
の回転状態では、前述したように接触リングがス
ピンドルの段から離間しているので、接触リング
やスピンドルが摩耗したり、発熱したりすること
がなく、したがつて長期間にわたり、確実な油の
シールができるという効果がある。
As explained above, in the hydrostatic bearing device of this invention, when the spindle is stopped, the contact ring fitted in the bearing member so as to be slidable in the axial direction is pressed against the step of the spindle by the spring. When the spindle is rotating, the push rod is moved by the pressure oil supplied to the bearing pocket, and the contact ring is separated from the stage of the spindle. Since the pressure is high, oil will not leak to the outside from between the spindle and the bearing member, whether the spindle is stopped or rotating, and when the spindle is rotating, the contact ring will close to the spindle stage as described above. Since the contact ring and the spindle are spaced apart from each other, the contact ring and spindle do not wear out or generate heat, and this has the effect of ensuring reliable oil sealing over a long period of time.
第1図はこの考案の一実施例による静圧軸受装
置を示すスピンドル停止状態の縦断側面図、第2
図は同スピンドル運転状態の一端部の縦断側面図
である。
1……スピンドル、1a……段、1b……小外
径部、1c……大外径部、2……軸受部材、4…
…軸受ポケツト、8……接触リング、10……端
板、11……スプリング、12……圧力空気室、
13……空気供給孔、14……シリンダ孔、16
……押し棒。
FIG. 1 is a longitudinal sectional side view showing a hydrostatic bearing device according to an embodiment of this invention with the spindle stopped;
The figure is a longitudinal sectional side view of one end of the spindle in the operating state. DESCRIPTION OF SYMBOLS 1...Spindle, 1a...Step, 1b...Small outer diameter part, 1c...Large outer diameter part, 2...Bearing member, 4...
... Bearing pocket, 8 ... Contact ring, 10 ... End plate, 11 ... Spring, 12 ... Pressure air chamber,
13... Air supply hole, 14... Cylinder hole, 16
...Push stick.
Claims (1)
自在に軸支する軸受部材の内周面との間に、外部
から油圧が供給される軸受ポケツトを設けた静圧
軸受装置において、前記スピンドルに段を介して
小外径部と大外径部を設け、前記軸受部材内に軸
方向に摺動可能にシール用接触リングを嵌合さ
せ、この接触リングをスピンドルの前記段に押付
けるスプリングを、前記接触リングの一端面に支
持させ、軸受部材内の接触リング一端面背面側に
圧力空気室を形成すると共に、スピンドル回転時
に前記軸受ポケツト側に送られる油圧によつてス
ピンドル外径部側に移動する押し棒を軸受部材内
のスピンドル大外径部側に配設し、前記押し棒の
先端を接触リングの他端面に当接させたことを特
徴とする静圧軸受装置。 In a hydrostatic bearing device in which a bearing pocket to which hydraulic pressure is supplied from the outside is provided between the outer circumferential surface of a spindle and the inner circumferential surface of a bearing member that rotatably supports the spindle, the spindle is provided with a stage. a small outer diameter portion and a large outer diameter portion, a sealing contact ring is slidably fitted in the bearing member in the axial direction, and a spring that presses the contact ring against the step of the spindle is attached to the contact ring. A pusher is supported on one end surface of the ring, forms a pressurized air chamber on the back side of the one end surface of the contact ring in the bearing member, and is moved toward the outer diameter side of the spindle by hydraulic pressure sent to the bearing pocket side when the spindle rotates. A hydrostatic bearing device characterized in that a rod is disposed within the bearing member on the side of the large outer diameter portion of the spindle, and the tip of the push rod is brought into contact with the other end surface of a contact ring.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP16534987U JPH0452487Y2 (en) | 1987-10-30 | 1987-10-30 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP16534987U JPH0452487Y2 (en) | 1987-10-30 | 1987-10-30 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH0169913U JPH0169913U (en) | 1989-05-10 |
| JPH0452487Y2 true JPH0452487Y2 (en) | 1992-12-10 |
Family
ID=31451754
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP16534987U Expired JPH0452487Y2 (en) | 1987-10-30 | 1987-10-30 |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH0452487Y2 (en) |
-
1987
- 1987-10-30 JP JP16534987U patent/JPH0452487Y2/ja not_active Expired
Also Published As
| Publication number | Publication date |
|---|---|
| JPH0169913U (en) | 1989-05-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JPH0255671B2 (en) | ||
| JPH0452487Y2 (en) | ||
| KR840005522A (en) | Shaft device | |
| ES461043A1 (en) | Steering control valve for power booster steering mechanisms | |
| US2734785A (en) | Glass fiber bearing | |
| US6193639B1 (en) | Deflection compensation roll | |
| JPS6455368U (en) | ||
| CN104265904B (en) | A kind of main shaft sealing construction | |
| US2589631A (en) | Drive for washer of mechanical rotary seals | |
| ES8101729A1 (en) | Arrangement for the supply of oil from a stationary source to a rotating shaft | |
| JP2005205558A (en) | Oil seal press-fitting device | |
| JPS6010193B2 (en) | hydraulic screw machine | |
| US2851290A (en) | Axially compressible shaft seal | |
| US4093244A (en) | Stuffing-box seal particularly for rotating shafts | |
| JPH0512529Y2 (en) | ||
| JP2001221345A5 (en) | ||
| JPH0446146Y2 (en) | ||
| JP2528922Y2 (en) | Needle roller bearing for gear inner | |
| GB1421751A (en) | Machine tool spindle assembly | |
| JPH0726613Y2 (en) | mechanical seal | |
| JPS6117094Y2 (en) | ||
| JPH0228272Y2 (en) | ||
| JPH11159614A (en) | Automatic transmission | |
| JPH034999U (en) | ||
| JPH0227717Y2 (en) |