JPH0452451B2 - - Google Patents

Info

Publication number
JPH0452451B2
JPH0452451B2 JP58040632A JP4063283A JPH0452451B2 JP H0452451 B2 JPH0452451 B2 JP H0452451B2 JP 58040632 A JP58040632 A JP 58040632A JP 4063283 A JP4063283 A JP 4063283A JP H0452451 B2 JPH0452451 B2 JP H0452451B2
Authority
JP
Japan
Prior art keywords
tank
water
silver halide
pressure
soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58040632A
Other languages
Japanese (ja)
Other versions
JPS59166939A (en
Inventor
Yoshinori Shiraki
Mikio Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP4063283A priority Critical patent/JPS59166939A/en
Publication of JPS59166939A publication Critical patent/JPS59166939A/en
Publication of JPH0452451B2 publication Critical patent/JPH0452451B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/015Apparatus or processes for the preparation of emulsions

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、ハロゲン化銀写真乳剤の製造方法、
特に脱塩法およびその装置の改良に関する。更に
詳しくは、フロキユレーシヨン法において、静止
沈降時間を短縮することが可能であつて、乳剤の
調製時間を著しく短縮することができるし、デカ
ンテーシヨンした後に得られる乳剤の再分散が容
易で、続いて行なわれる工程に支障をきたす虞れ
がなく、かつ短時間の攪拌混合によつて、カブリ
の発生が少ないなどの写真特性に優れた乳剤が得
られるし、更には調製する乳剤の歩どまりを大巾
に向上することができる写真乳剤の製造方法およ
びその装置に関する。 〔従来技術〕 ハロゲン化銀写真乳剤の製造方法は、通常、ゼ
ラチン水溶液の如き親水性コロイド中で水溶性銀
塩と水溶性ハロゲン化物とを複分解反応させるこ
とにより、親水性コロイド中にハロゲン化銀の結
晶を分散生成させ、温度を下げて物理熟成を終了
させ、その後上記複分解反応の副生物である過剰
の塩類を除去することが行なわれている。この過
剰の塩類の除去方法の1つとして、物理熟成の終
了した乳剤に凝集剤を加えることによりハロゲン
化銀粒子を親水性コロイドと共に凝集沈殿させて
塩類を含む母液と分離するフロキユレーシヨン法
が知られている。斯かるフロキユレーシヨン法
は、このような塩類の除去方法の他の方法として
知られているヌードル法や連続薄膜法に比べて能
率性が良好である等の利点を有するため、現在で
は多用されている。 即ち、ヌードル法は、感光乳剤を冷却、セツ
ト、裁断して得られるヌードルが溶解しない条件
で、冷水により不要塩類を浸透圧の原理で除去す
る方法であり、また連続薄膜法は、冷却水中に薄
膜状にゲル化された乳剤を連続的に浸水し、脱塩
する方法で回転支持体に乳剤を薄膜形成し、水洗
槽中にて脱塩し、その後剥離回収する方法が知ら
れており、例えば特公昭49−46255号公報に記載
の方法が挙げられる。しかし、前者のヌードル法
では脱塩時間が長いし、かつ設置スペースを大き
く必要とし、処理上のロスが大きく、洗浄水が多
量に必要である等の欠点がみられ、一方、後者の
連続薄膜法では洗浄水量が多量に必要であり、か
き取りロスが大きく、脱塩率のバラツキが大き
く、かつゼラチン/Agx値が大きい等の欠点があ
る。 この点、前述したフロキユレーシヨン法は、上
記2つの他の方法の欠点を有しない技術であつ
て、例えば米国特許第2614928号、同第3312553
号、同第3178294号、同第3137576号各明細書、英
国特許第1005784号、同第1033189号、同第945334
号、同第981251号各明細書、特公昭40−21020号、
同46−43429号各公報、特開昭55−45066号及び同
49−94319号各公報に記載される方法が挙げられ
る。 しかし、これら従来のフロキユレーシヨン法に
よれば、いまだ静止沈殿時間が長く、長時間の調
製時間を必要とする欠点がみられた。さらに乳剤
を連続的に調製する場合、凝集剤を精密に比例計
量して添加する必要があり、この沈降剤の坪量が
多すぎたりすると、乳剤のフロツクの形成や大き
さが不均一になつたり、得られる乳剤の再分散性
が悪くなつたりして、続いて行なわれる工程に支
障をきたすことがあつた。さらには、塩類を含む
母液の上澄部にハロゲン化銀が懸濁して歩どまり
を低下させたり、あるいは使用する凝集剤の種類
によつては、写真性能に悪影響を与えた。 これらの欠点を解決する技術として、例えば特
公昭48−13057号公報、特公昭50−10157号公報等
に記載された方法が提案されている。前者の方法
は、凝集剤を物理熟成終了までにゼラチン含有溶
液に添加する発明であつて、得られる乳剤の再分
散性および歩どまりの向上並びに沈降剤の坪量の
簡易化等にある程度の効果を発揮している。一
方、後者の方法は、遠心分離法を採用した発明で
あつて、洗滌水の節減および工程の短縮化等に効
果を発揮している。 しかし、これらの発明によつても、安定性、写
真性能等が必ずしも充分でなく、前述の問題点を
すべて解決したものとはいえない。 〔発明の目的〕 本発明は前述の問題点を解決するために成され
たものであつて、優れた写真性能の乳剤を安定に
かつ確実に得ることができ、優れた写真性能を長
時間に亘つて安定して維持することができるハロ
ゲン化銀写真乳剤の製造方法およびその装置を提
供することを第1の目的とする。 本発明は第2の目的は、脱塩工程を終了させる
ことができる時間が、従来のに比べて著しく短
く、乳剤の調製時間を著しく短縮することができ
るハロゲン化銀写真乳剤の製造方法およびその装
置を提供することである。 本発明の第3の目的は、デカンテーシヨンした
後に得られる乳剤の再分散が容易で、続いて行な
われる工程に支障をきたす虞れがなく、かつ短時
間の充分なる攪拌混合により、安定した品位に乳
剤を得ることができるハロゲン化銀写真乳剤の製
造方法およびその装置を提供することである。 本発明の第4の目的は、使用する凝集剤の坪量
精度による写真性能の悪影響が見られず、多めの
沈降剤を用いたとしても、これにより調製しよう
とする乳剤に悪影響を生じないハロゲン化銀写真
乳剤の製造方法およびその装置を提供することで
ある。 本発明の第5の目的は、調製する乳剤の歩どま
りを従来法に比べて大巾に向上することができる
ハロゲン化銀写真乳剤の製造方法およびその装置
を提供することである。 〔発明の要旨〕 上記諸目的を達成する本発明法は、水溶性銀塩
と水溶性ハロゲン化物とを親水性コロイドの存在
下に混合して親水性コロイド中にハロゲン化銀の
結晶を分散生成させ、公知の方法により(温度を
下げること及び/又は物理熟成抑制剤によること
等。)物理熟成を終了させ、該物理熟成の終了時
または終了後に、凝集剤の存在下にハロゲン化銀
結晶を凝集沈澱させ、上記水溶性銀塩と水溶性ハ
ロゲン化物との複分解反応によつて生成する副生
物の塩を除去する方法において、容器内の圧力を
初め大気圧以下に保持した際に凝集剤を添加混合
せしめ、静置し、その後前記容器内の圧力を大気
圧若しくはそれ以上にする操作を行ない、さらに
前記減圧と加圧を複数回繰り返すことを特徴とす
る。 また本発明に係る装置は、上記方法を実施する
のに用いられる装置において、内部を大気圧以下
に減圧および大気圧以上に加圧しうるタンクと、
該タンク内部を減圧した際にその圧力を保持した
まま凝集剤の流量を調節しうると共に添加供給し
うる設備と、該タンク内部を減圧又は加圧した際
に内部液を攪拌混合する設備と、該タンク内部を
加圧した際に規定量の液をタンク外部に排出する
設備とを有することを特徴とする。 本発明者等は、フロキユレーシヨン法(沈殿
法)の欠点である沈降時間が長くかかる原因につ
いて、鋭意研究を重ねた結果、一つには形成され
たフロツクの中でも、微小なフロツクの存在に起
因しているもので、凝集剤の均一な反応がなされ
なかつたことにより、微小なフロツクが凝集され
ないで浮遊していることが判つた。さらにもう一
つは、均一に反応させるために攪拌を強力に行な
うと、発泡が起り、この泡の破壊に長時間を要す
ることが判つた。本発明はこれらの知見に基づい
て成されたものである。 〔発明の構成〕 以下、本発明の一実施例を添付図面に基づき説
明する。 第1図は本発明に係る製造装置の一実施例を示
す概略説明図である。図において、1は内部を大
気圧下に減圧又は大気圧以上に加圧しうるタンク
で、該タンク1の外側面には温調用のジヤケツト
2が設けられ、下部にはドレン弁3が設けられて
いる。4はタンク1内を減圧するための真空ポン
プであり、5はタンク1内を加圧するためのコン
プレツサーである。6は加圧と減圧が同時に行な
われないようにするために設けられた三方弁であ
る。7はハロゲン化銀写真感光乳剤の供給口、8
は水供給口、9は三方弁である。10はタンク1
内を減圧又は加圧した際に内部液を攪拌するため
の攪拌機である。11はタンク1内部を減圧した
際にその圧力を保持したまま凝集剤の流量を調節
しうると共に添加供給しうる設備である。12は
タンク1内部を加圧した際に規定量の液をタンク
1の外部に排出するポンプである。 次に上記構成を有する装置の作用を説明する。 タンク1内を真空ポンプ4で減圧し、規定の減
圧度に維持したままで、ゼラチン等の親水性コロ
イドにより分散されたハロゲン化銀写真乳剤を供
給する。この乳剤はいわゆる仕込混合直後の不要
な塩類を含む液(被脱塩乳剤)である。 上記減圧度は被脱塩乳剤の温度、組成及び表面
張力によつて異なるが、通常−500mmHg〜−750
mmHgの範囲が望ましい。ただし、被脱塩乳剤の
組成によつては、−760mmHg以上で沸騰をするも
のが多く、この場合には沸点にいたる減圧度以下
にすることが望ましい。 次にタンク1内を規定の減圧度に維持したま
ま、攪拌機10を始動させ、規定の混合度にし、
次いで凝集沈殿用の凝集剤(数種類であつてもよ
い)を添加設備11から規定量添加し混合する。
凝集剤の添加混合が終了した後に攪拌を停止す
る。 攪拌を停止した後、ただちに槽内の圧力をコン
プレツサー5により急激に大気圧に戻すか若しく
は大気圧以上の規定の圧力に加圧する。 上記加圧度は、被脱塩乳剤によつて異なる。加
圧操作は、減圧度が沸騰などの理由により、−500
mmHgが維持できない場合に行ない、通常装置上
に複雑化等をまねくため、加圧条件をとらなくて
よい。加圧度の範囲は、減圧度との圧力差が500
mmHg〜700mmHgになるように設定されることが
望ましい。例えば、減圧度−400mmHgの場合は、
加圧範囲+100mmHg〜+300mmHgに設定される。 ハロゲン化銀粒子が沈降した後、槽内が加圧さ
れている場合は、加圧状態から大気圧に戻した後
に、不要な塩類を含みかつハロゲン化銀粒子を含
まない上澄液をポンプ12により規定量だけ排出
する。排出完了後必要な場合タンク1内を再び規
定の減圧度にする。タンク1内が減圧された場合
は、その減圧度を維持したまま、水供給口8から
希釈用の純水をタンク1内に供給する。 次に攪拌機10を始動し、2回目の凝集剤添加
を行なう。凝集剤の添加混合が終了した後に、攪
拌機10を停止し、ただちにタンク1内の圧力を
急激に大気圧に戻すか若しくは大気圧以上の規定
の圧力に加圧する。 ハロゲン化銀粒子が沈降した後、タンク1内が
加圧されている場合は、内圧を大気圧に戻し、そ
の後不要な塩類を含みかつハロゲン化銀粒子を含
まない上澄液を規定量排出する。 なお必要があれば上記操作を繰り返せばよい
し、又破泡の際に、上記減圧操作、大気圧に戻す
か若しくは加圧操作を数度くり返すことにより、
完全な破泡を可能にする。 本発明におけるハロゲン化銀としては、塩化
銀、塩臭化銀、塩沃化銀、臭化銀、沃臭化銀、塩
沃臭化銀のどれでも良く、又この結晶の粒径にも
制約はない。またこれらハロゲン化銀塩をつくる
製法としての制約もなく、シングルジエツト法、
ダブルジエツト法、アンモニア法、あるいは銀電
位制御をしたコントロールドダブルジエツト法の
いずれでも良い。 本発明に使用される凝集剤はいかなるものも使
用することができる。例えば英国特許第819039号
明細書等に記載されている有機溶媒、米国特許第
3007796号明細書、仏国特許第1333773号明細書
等、米国特許第2618556号明細書等に記載されて
いる無機物、米国特許第3144355号明細書に記載
されているカゼイン系化合物、米国特許第
2481650号、同第2719146号、同第2728662号、同
第2768079号、仏国特許第1311549号の各明細書等
に記載されている、アミノ基との結合性を有する
化合物、また、ゼラチンとの錯体を形成する、例
えば米国特許第2489341号、同第2527261号明細書
等に記載されているアニオンソープ、米国特許第
2772165号明細書、特公昭48−13057号公報、同40
−21020号公報、米国特許第861984号明細書等に
記載されている共重合体、特公昭40−27470号公
報、ベルギー国特許第637343号明細書等に記載さ
れている含窒素複素環類、英国特許第945334号明
細書、特公昭35−16086号公報等に記載されてい
るナフタレン系化合物、あるいは西独国特許第
1146117号公報等に記載のポリエチレンスルホン
酸類、特公昭43−27562号公報等に記載のフエノ
ール誘導体類、ベルギー国特許第642112号明細書
等に記載のリン酸エステル、特開昭52−35624号
公報等に記載のエチレン系の共重合体等を好まし
く使用することができる。 本発明は、乳剤の製造方法、例えばアンモニア
法、中性法、酸性法のいずれにも適用される。ま
た、本発明における水溶性銀塩と水溶性ハロゲン
化物との親水性コロイド中における混合は、正混
合、逆混合、同時混合のいずれの方法を採用して
もよく、また変換法あるいは被覆乳剤
(Convered grain)法等を採用してもよい。 本発明の物理熟成に際しての条件は、従来の条
件を適用することができる。すなわち、温度、
PH、銀イオン濃度、時間、攪拌条件あるいは親水
性コロイドの種類や濃度等の物理熟成条件は、目
的とするハロゲン化銀写真乳剤の種類等に応じて
最適の条件を選択できる。 また、これらのハロゲン化銀結晶粒子内にイリ
ジウム、ロジウム、ルテニウム、オスミウム、コ
バルト、ビスマス、カドミウム等の金属原子を含
有せしめてもよい。さらに表面潜像型であつても
内部潜像型であつてもよい。 このようにして調製された本発明に係るハロゲ
ン化銀写真乳剤は、公知の任意の方法で化学熟成
される。すなわち、このハロゲン化銀写真乳剤
は、活性ゼラチン、例えばアリルチオカルバミ
ド、チオ尿素、シスチン等の硫黄増感剤、セレン
増感剤、貴金属増感剤、例えば金増感剤やルテニ
ウム、ロジウム、イリジウム等の増感剤を単独に
あるいは適宜併用して化学的に増感することがで
きる。更にこのハロゲン化銀写真乳剤は光学的に
増感され得、例えばシアニン色素、メロシアニン
色素によつて増感される。 またこのハロゲン化銀写真乳剤にはトリアゾー
ル類、テトラゾール類、イミダゾール類、アザイ
ンデン類、第4級ベンゾチアゾリウム化合物、亜
鉛あるいはカドミウム化合物で安定化され得、ま
た第4級アンモニウム塩またはポリエチレングリ
コール等の増感化合物を含ませることもできる。
そしてまた、適当なゼラチン可塑剤、ゼラチン硬
化剤、サポニン等の延展剤、スルホコハク酸塩等
の塗布助剤等の種々の写真用添加剤を含ませるこ
ともできる。更に必要に応じてカブリ防止剤、紫
外線吸収剤等の通常写真に使用される各種添加剤
を含ませることもできる。 なお、本発明においてハロゲン化銀の分散剤で
ある親水性コロイドとしては、好ましくはゼラチ
ンが用いられるが、ゼラチンの外にゼラチン誘導
体、ポリビニルアルコール等の各種の天然または
合成されたコロイド物質を単独またはゼラチンと
併用して使用することもできる。 〔発明の効果〕 本発明法により得られるハロゲン化銀写真乳剤
は、再分散性が良好で塗布性が良いため、フイル
ム等の適当な支持体に塗布して、種々のハロゲン
化銀写真感光材料を得るのに適している。 本発明法によれば、静置沈降時間が従来の時間
に比べて著しく短かくてすむため乳剤の調製時間
を大巾に短縮することができるし、使用する凝集
剤の坪量精度による写真性能の悪影響がないた
め、物理熟成の終了後にゼラチン等の親水性コロ
イド量に比例して凝集剤を精度計量することが特
に乳剤の連続調製の際になくなるし、得られる乳
剤の再分散が容易であるため続いて行なわれる工
程に支障をきたす虞れもなく、かつ短時間の充分
なる攪拌混合により安定した品位で経時での安定
性に優れしかも、カブリの発生が少ない優れた写
真性能を有する乳剤を得ることができる。また、
凝集沈降した乳剤と母液との分離が安定確実にな
るので乳剤の歩どまりを従来法に比べて大巾に向
上させることができるし、塗布性が極めて良好な
乳剤を得ることができるため、フイルム等の支持
体に塗布して種々のハロゲン化銀写真感光材料を
得るのに適している。さらにまた、物理熟成終了
のための冷却に際し、温度を下げる割合を大きく
することによりカブリを大巾に低減することがで
きる。 本発明により得られるハロゲン化銀写真乳剤
は、上記の如き特徴を有するのでグラフイツク用
フイルム、マイクロフイルム、カラーネガフイル
ム、カラーリバーサルフイルム、X−レイフイル
ム、直接ポジフイルム、映画ポジフイルム用等の
各種のハロゲン化銀写真感光材料用乳剤として使
用できる。 〔実施例〕 以下、実施例を挙げて本発明を更に詳説する
が、本発明の実施態様はこれらに限定されない。 実施例 1 下記第1表に記載する液,,を調製し、
ダブルジエツト法により物理熟成をおこない、感
光性ハロゲン化銀写真乳剤を得た。液を母液と
し、,液をダブルジエツト法により添加混合
した。その時の反応温度を60℃、添加時間を40分
とした。
[Industrial Application Field] The present invention relates to a method for producing a silver halide photographic emulsion;
In particular, it relates to improvements in desalination methods and equipment. More specifically, in the flocculation method, it is possible to shorten the static settling time, significantly shortening the emulsion preparation time, and it is easy to redisperse the emulsion obtained after decantation. By stirring and mixing for a short time without causing any problems in the subsequent process, an emulsion with excellent photographic properties such as less fogging can be obtained, and furthermore, the emulsion to be prepared can be improved. The present invention relates to a method for producing a photographic emulsion and an apparatus therefor, which can greatly improve the yield. [Prior Art] The method for producing silver halide photographic emulsions is usually carried out by subjecting a water-soluble silver salt and a water-soluble halide to a metathesis reaction in a hydrophilic colloid such as an aqueous gelatin solution, thereby producing silver halide in the hydrophilic colloid. The practice is to form crystals in a dispersed manner, lower the temperature to complete physical ripening, and then remove excess salts, which are by-products of the metathesis reaction. One method for removing excess salts is the flocculation method, in which silver halide grains are coagulated and precipitated together with hydrophilic colloids by adding a flocculant to the emulsion that has undergone physical ripening, and separated from the mother liquor containing salts. It has been known. The flocculation method is now widely used because it has advantages such as better efficiency than the noodle method and continuous thin film method, which are known as other methods for removing salts. has been done. That is, the noodle method is a method in which unnecessary salts are removed using the principle of osmotic pressure in cold water under conditions that do not dissolve the noodles obtained by cooling, setting, and cutting a photosensitive emulsion. A method is known in which a thin film of gelled emulsion is continuously immersed in water and desalted to form a thin film of the emulsion on a rotating support, desalted in a water washing tank, and then peeled off and recovered. For example, the method described in Japanese Patent Publication No. 49-46255 can be mentioned. However, the former noodle method has drawbacks such as long desalination time, large installation space, large processing losses, and large amounts of washing water.On the other hand, the latter continuous thin film This method requires a large amount of washing water, has large scraping losses, large variations in salt removal rate, and has drawbacks such as a large gelatin/Agx value. In this respect, the flocculation method described above is a technology that does not have the drawbacks of the other two methods described above, and is, for example, US Pat. No. 2,614,928, US Pat.
British Patent No. 1005784, British Patent No. 1033189, British Patent No. 945334
No. 981251, Specifications, Special Publication No. 40-21020,
Publications No. 46-43429, JP-A No. 55-45066 and the same
Examples include the methods described in Publications No. 49-94319. However, these conventional flocculation methods still have the drawback of requiring a long static precipitation time and a long preparation time. Furthermore, when preparing emulsions continuously, it is necessary to add flocculants in precisely proportionate amounts, and if the basis weight of this precipitant is too large, the formation and size of emulsion flocs may become uneven. In some cases, the redispersibility of the resulting emulsion deteriorates, which may impede subsequent steps. Furthermore, silver halide was suspended in the supernatant of the mother liquor containing salts, reducing the yield, or depending on the type of flocculant used, had an adverse effect on photographic performance. As a technique for solving these drawbacks, methods described in, for example, Japanese Patent Publications No. 48-13057 and Japanese Patent Publication No. 50-10157 have been proposed. The former method is an invention in which a flocculant is added to a gelatin-containing solution before the end of physical ripening, and has some effect on improving the redispersibility and yield of the resulting emulsion and simplifying the basis weight of the precipitant. is demonstrated. On the other hand, the latter method is an invention that employs a centrifugal separation method, and is effective in saving washing water and shortening the process. However, even with these inventions, stability, photographic performance, etc. are not necessarily sufficient, and it cannot be said that all of the above-mentioned problems have been solved. [Object of the Invention] The present invention has been made to solve the above-mentioned problems, and it is possible to stably and reliably obtain an emulsion with excellent photographic performance, and to maintain excellent photographic performance for a long time. A first object of the present invention is to provide a method and apparatus for producing a silver halide photographic emulsion that can be stably maintained over a long period of time. The second object of the present invention is to provide a method for producing a silver halide photographic emulsion in which the time required to complete the desalting step is significantly shorter than in the conventional method, and the emulsion preparation time can be significantly shortened. The purpose is to provide equipment. A third object of the present invention is that the emulsion obtained after decantation can be easily redispersed, there is no risk of interfering with subsequent steps, and the emulsion can be stabilized by sufficient stirring and mixing in a short period of time. It is an object of the present invention to provide a method for producing a silver halide photographic emulsion and an apparatus therefor, which can produce a high-quality emulsion. The fourth object of the present invention is that the photographic performance is not adversely affected by the basis weight accuracy of the flocculant used, and even if a large amount of precipitant is used, the halogen-free emulsion to be prepared is not adversely affected. An object of the present invention is to provide a method for producing a silver oxide photographic emulsion and an apparatus therefor. A fifth object of the present invention is to provide a method and apparatus for producing a silver halide photographic emulsion, which can greatly improve the yield of the prepared emulsion compared to conventional methods. [Summary of the Invention] The method of the present invention that achieves the above objects involves mixing a water-soluble silver salt and a water-soluble halide in the presence of a hydrophilic colloid to form silver halide crystals dispersed in the hydrophilic colloid. Then, physical ripening is completed by a known method (lowering the temperature and/or using a physical ripening inhibitor, etc.), and at or after the completion of the physical ripening, silver halide crystals are prepared in the presence of an agglomerating agent. In the method of coagulating and precipitating and removing the by-product salt produced by the double decomposition reaction between the water-soluble silver salt and the water-soluble halide, the flocculant is removed when the pressure inside the container is initially maintained below atmospheric pressure. It is characterized by adding and mixing, leaving to stand, and then increasing the pressure in the container to atmospheric pressure or higher, and repeating the depressurization and pressurization several times. Furthermore, the apparatus according to the present invention includes a tank whose interior can be depressurized to below atmospheric pressure and pressurized to above atmospheric pressure, in the apparatus used to carry out the above method;
equipment that can adjust the flow rate of the flocculant and add and supply it while maintaining the pressure when the inside of the tank is depressurized; equipment that stirs and mixes the internal liquid when the inside of the tank is depressurized or pressurized; It is characterized by having equipment for discharging a specified amount of liquid to the outside of the tank when the inside of the tank is pressurized. As a result of extensive research into the cause of the long sedimentation time, which is a drawback of the flocculation method (precipitation method), the present inventors have discovered that, among the flocs formed, the presence of minute flocs It was found that the micro flocs were not aggregated and were floating due to the failure of the flocculant to react uniformly. Furthermore, it was found that when stirring was performed strongly to ensure uniform reaction, foaming occurred and it took a long time for the foam to break. The present invention has been made based on these findings. [Structure of the Invention] An embodiment of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a schematic explanatory diagram showing an embodiment of a manufacturing apparatus according to the present invention. In the figure, 1 is a tank whose interior can be reduced to atmospheric pressure or pressurized to above atmospheric pressure.A jacket 2 for temperature control is provided on the outer surface of the tank 1, and a drain valve 3 is provided at the bottom. There is. 4 is a vacuum pump for reducing the pressure inside the tank 1, and 5 is a compressor for pressurizing the inside of the tank 1. 6 is a three-way valve provided to prevent pressurization and depressurization from occurring at the same time. 7 is a supply port for silver halide photographic emulsion; 8
is a water supply port, and 9 is a three-way valve. 10 is tank 1
This is a stirrer for stirring the internal liquid when the internal pressure is reduced or increased. Reference numeral 11 denotes equipment that can adjust the flow rate of the flocculant while maintaining the pressure when the pressure inside the tank 1 is reduced, and can also add and supply the flocculant. 12 is a pump that discharges a specified amount of liquid to the outside of the tank 1 when the inside of the tank 1 is pressurized. Next, the operation of the device having the above configuration will be explained. The pressure inside the tank 1 is reduced by a vacuum pump 4, and while maintaining a specified degree of vacuum, a silver halide photographic emulsion dispersed with a hydrophilic colloid such as gelatin is supplied. This emulsion is a so-called liquid (desalted emulsion) containing unnecessary salts immediately after mixing. The degree of reduced pressure mentioned above varies depending on the temperature, composition and surface tension of the emulsion to be desalted, but is usually -500 mmHg to -750 mmHg.
A range of mmHg is desirable. However, depending on the composition of the emulsion to be desalted, there are many that boil at temperatures above -760 mmHg, and in this case it is desirable to reduce the pressure below the degree that reaches the boiling point. Next, while maintaining the specified degree of vacuum inside the tank 1, the agitator 10 is started to achieve the specified mixing degree.
Next, a specified amount of flocculant for flocculation and precipitation (several types may be used) is added from the addition equipment 11 and mixed.
After the addition and mixing of the flocculant is completed, stirring is stopped. Immediately after the stirring is stopped, the pressure inside the tank is rapidly returned to atmospheric pressure by the compressor 5, or the pressure is increased to a specified pressure higher than atmospheric pressure. The above-mentioned degree of pressurization differs depending on the emulsion to be desalted. During pressurized operation, the degree of depressurization may be -500 due to boiling, etc.
This is done when mmHg cannot be maintained, and pressurization conditions do not need to be used, as this usually complicates the equipment. The range of pressurization degree is 500% pressure difference with depressurization degree.
It is desirable to set it between mmHg and 700mmHg. For example, if the degree of decompression is -400mmHg,
Pressure range is set to +100mmHg to +300mmHg. If the inside of the tank is pressurized after the silver halide grains have settled, after returning the pressurized state to atmospheric pressure, the supernatant liquid containing unnecessary salts and not containing silver halide grains is pumped to the pump 12. Only the specified amount is discharged. After the discharge is completed, the pressure inside the tank 1 is reduced to the specified degree again if necessary. When the pressure inside the tank 1 is reduced, pure water for dilution is supplied into the tank 1 from the water supply port 8 while maintaining the degree of pressure reduction. Next, the stirrer 10 is started and the second flocculant addition is performed. After the addition and mixing of the flocculant is completed, the agitator 10 is stopped, and the pressure inside the tank 1 is immediately returned to atmospheric pressure or is pressurized to a specified pressure higher than atmospheric pressure. After the silver halide particles have settled, if the inside of the tank 1 is pressurized, return the internal pressure to atmospheric pressure, and then drain the specified amount of supernatant liquid that contains unnecessary salts and does not contain silver halide particles. . If necessary, the above operation may be repeated, and when the bubbles are broken, the above depressurization operation, return to atmospheric pressure, or pressurization operation may be repeated several times.
Enables complete bubble breakage. The silver halide in the present invention may be any of silver chloride, silver chlorobromide, silver chloroiodide, silver bromide, silver iodobromide, and silver chloroiodobromide, and there are also restrictions on the grain size of this crystal. There isn't. In addition, there are no restrictions on the manufacturing method for producing these silver halide salts, such as the single-jet method,
Any of the double jet method, ammonia method, or controlled double jet method in which silver potential is controlled may be used. Any flocculant can be used in the present invention. For example, organic solvents described in British Patent No. 819039, US Patent No.
3007796 specification, French Patent No. 1333773, etc., inorganic substances described in US Patent No. 2618556, casein compounds described in US Patent No. 3144355, US Patent No.
2481650, 2719146, 2728662, 2768079, and French Patent No. 1311549, which have binding properties with amino groups, and also with gelatin. Anionic soaps that form complexes, such as those described in US Pat. No. 2,489,341 and US Pat. No. 2,527,261,
Specification No. 2772165, Japanese Patent Publication No. 48-13057, No. 40
Copolymers described in -21020 publication, US Patent No. 861984, etc., nitrogen-containing heterocycles described in Japanese Patent Publication No. 40-27470, Belgian Patent No. 637343, etc. Naphthalene compounds described in British Patent No. 945334, Japanese Patent Publication No. 35-16086, etc., or West German Patent No.
Polyethylene sulfonic acids described in Japanese Patent Publication No. 1146117, etc., phenol derivatives described in Japanese Patent Publication No. 43-27562, etc., phosphoric acid esters described in Belgian Patent No. 642112, etc., Japanese Patent Application Laid-Open No. 52-35624 Ethylene-based copolymers described in et al. can be preferably used. The present invention is applicable to any emulsion manufacturing method, such as an ammonia method, a neutral method, or an acid method. Further, in the present invention, the water-soluble silver salt and the water-soluble halide may be mixed in the hydrophilic colloid by any of forward mixing, back mixing, and simultaneous mixing, and the conversion method or coating emulsion ( Converged grain method etc. may be adopted. Conventional conditions can be applied to the physical ripening conditions of the present invention. i.e. temperature,
Physical ripening conditions such as pH, silver ion concentration, time, stirring conditions, and type and concentration of hydrophilic colloid can be optimally selected depending on the type of silver halide photographic emulsion of interest. Furthermore, metal atoms such as iridium, rhodium, ruthenium, osmium, cobalt, bismuth, and cadmium may be contained in these silver halide crystal grains. Furthermore, it may be a surface latent image type or an internal latent image type. The silver halide photographic emulsion according to the present invention thus prepared is chemically ripened by any known method. That is, this silver halide photographic emulsion contains active gelatin, a sulfur sensitizer such as allylthiocarbamide, thiourea, cystine, a selenium sensitizer, a noble metal sensitizer such as a gold sensitizer, ruthenium, rhodium, iridium, etc. Chemical sensitization can be carried out by using sensitizers such as these alone or in combination as appropriate. Furthermore, this silver halide photographic emulsion can be optically sensitized, for example, with cyanine dyes or merocyanine dyes. The silver halide photographic emulsion may be stabilized with triazoles, tetrazoles, imidazoles, azaindenes, quaternary benzothiazolium compounds, zinc or cadmium compounds, and may also be stabilized with quaternary ammonium salts, polyethylene glycol, etc. sensitizing compounds may also be included.
Various photographic additives such as suitable gelatin plasticizers, gelatin hardeners, spreading agents such as saponins, and coating aids such as sulfosuccinates may also be included. Furthermore, various additives commonly used in photography, such as antifoggants and ultraviolet absorbers, can also be included, if necessary. In the present invention, gelatin is preferably used as the hydrophilic colloid as a dispersant for silver halide, but in addition to gelatin, various natural or synthetic colloidal substances such as gelatin derivatives and polyvinyl alcohol may be used alone or in combination. It can also be used in combination with gelatin. [Effects of the Invention] The silver halide photographic emulsion obtained by the method of the present invention has good redispersibility and good coating properties, so it can be coated on a suitable support such as a film to produce various silver halide photographic light-sensitive materials. suitable for obtaining. According to the method of the present invention, since the settling time is significantly shorter than that required in the conventional method, the emulsion preparation time can be greatly shortened, and the photographic performance is improved due to the accuracy of the basis weight of the flocculant used. Since there is no adverse effect of this, there is no need to accurately measure the flocculant in proportion to the amount of hydrophilic colloid such as gelatin after physical ripening, especially during continuous emulsion preparation, and redispersion of the resulting emulsion is easy. An emulsion that has excellent photographic performance with less fog, which has stable quality and excellent stability over time due to sufficient stirring and mixing in a short period of time, and which does not pose any risk of interfering with subsequent processes. can be obtained. Also,
The separation of the coagulated and settled emulsion from the mother liquor is stable and reliable, so the yield of the emulsion can be greatly improved compared to conventional methods, and it is also possible to obtain an emulsion with extremely good coating properties, which makes it possible to improve film production. It is suitable for obtaining various silver halide photographic materials by coating on supports such as. Furthermore, fog can be significantly reduced by increasing the rate at which the temperature is lowered during cooling to complete physical ripening. The silver halide photographic emulsion obtained by the present invention has the above-mentioned characteristics and can be used in various applications such as graphic films, micro films, color negative films, color reversal films, X-ray films, direct positive films, and motion picture positive films. It can be used as an emulsion for silver halide photographic materials. [Examples] Hereinafter, the present invention will be explained in more detail with reference to Examples, but the embodiments of the present invention are not limited thereto. Example 1 Prepare the solutions listed in Table 1 below,
Physical ripening was performed by a double jet method to obtain a light-sensitive silver halide photographic emulsion. The liquid was used as a mother liquid, and the liquid was added and mixed using the double jet method. The reaction temperature at that time was 60°C, and the addition time was 40 minutes.

【表】 上記により得たハロゲン化銀乳剤1l当りに下記
凝集剤〔A〕,〔B〕を各々70c.c.ずつ添加混合し乳
剤を沈降せしめる。混合の為の攪拌は強力に行な
つた。 〔A〕;ナフタレンスルホン酸と、ホルムアルデ
ヒドの縮重合物を純水に5wt/V%に溶解した
凝集剤 〔B〕;硫酸マグネシウムを純水に15wt/V%に
溶解した凝集剤 この凝集剤〔A〕,〔B〕を添加混合する際にタ
ンク内の圧力を減圧下におき、添加が終了した後
にその圧力を大気圧に戻し、静置沈降する。 この際、〔〕凝集剤添加終了後、タンク内の
圧力を大気圧に戻す前の発泡量(乳剤1l当りの体
積)、〔〕タンク内の圧力を大気圧に戻した後の
泡残量をタンク内減圧度(〜まで変化させ
た)をパラメータとして測定し、これをプロツト
した結果を第2図に示す。 その結果は第2図から明らかなようにタンク内
を減圧にし、攪拌を行なうと、発泡量は−300mm
Hg以下の減圧度で400c.c.〜500c.c.、減圧なしで600
c.c.となり、またタンク内を大気圧に戻した後の泡
量は、タンク内を減圧にしたものほど少なくなつ
た。第2図に示す直線を式化すると、次式で表わ
される。 Vf=A×H+B ここで、Vf=減圧→大気圧という操作後に残
つた、乳剤1l当りの泡量〔c.c./l〕 H=槽内の泡発生時の減圧度〔−mmHg〕 A,B=乳剤に特有な定数 従つて、大気圧時に存在する泡量を少なく抑え
るには、泡発生時の槽内圧力を少なくとも−500
mmHg以下にすれば良いことがわかる。 実施例 2 実施例−1の各実験のにおいて、圧力を大気圧
にもどした後静置沈降を行ない、上澄液中の含有
銀濃度より沈降時間を測定した。 測定条件及び方法は下記の通りである。 〔1〕サンプリング;第3図に示すようにタンク
1(R=5cm)の底から5cmの地点の乳剤をピ
ペツト13でサンプリングした。サンプリング
の頻度は30秒に1回とした。 〔2〕 分析方法;原子吸光光度計により分析し
た。 上記測定の結果、銀濃度が5ppm以下となつた
時間を第2表に示す。
[Table] 70 c.c. of each of the following flocculants [A] and [B] were added and mixed per 1 liter of the silver halide emulsion obtained above, and the emulsion was allowed to settle. Stirring for mixing was performed vigorously. [A]; A flocculant made by dissolving a condensation product of naphthalene sulfonic acid and formaldehyde in pure water at a concentration of 5 wt/V% [B]; A flocculant prepared by dissolving magnesium sulfate in pure water at a concentration of 15 wt/V% This flocculant [ When adding and mixing A] and [B], the pressure in the tank is reduced, and after the addition is completed, the pressure is returned to atmospheric pressure and allowed to settle. At this time, [] the amount of foaming (volume per 1 liter of emulsion) before returning the pressure in the tank to atmospheric pressure after the addition of the coagulant, and [] the amount of foam remaining after returning the pressure in the tank to atmospheric pressure. The degree of pressure reduction in the tank (varying up to ~) was measured as a parameter, and the results plotted are shown in Figure 2. The results are clear from Figure 2. When the pressure inside the tank was reduced and stirring was performed, the foaming amount was -300 mm.
400c.c. to 500c.c. with decompression degree below Hg, 600c.c. without decompression
cc, and the amount of bubbles after returning the tank to atmospheric pressure was smaller as the pressure inside the tank was reduced. When the straight line shown in FIG. 2 is expressed as an equation, it is expressed by the following equation. Vf=A×H+B Here, Vf=Amount of foam remaining per 1 liter of emulsion after the operation from reduced pressure to atmospheric pressure [cc/l] H=Degree of reduced pressure when bubbles are generated in the tank [-mmHg] A, B= Constants specific to emulsions Therefore, in order to keep the amount of bubbles that exist at atmospheric pressure to a low level, the pressure in the tank when bubbles are generated should be at least -500
It turns out that it is best to keep it below mmHg. Example 2 In each experiment of Example 1, the pressure was returned to atmospheric pressure, and then settling was performed, and the settling time was measured from the silver concentration in the supernatant. The measurement conditions and method are as follows. [1] Sampling: As shown in FIG. 3, the emulsion was sampled with a pipette 13 at a point 5 cm from the bottom of the tank 1 (R=5 cm). The frequency of sampling was once every 30 seconds. [2] Analysis method: Analysis was performed using an atomic absorption spectrophotometer. As a result of the above measurements, Table 2 shows the time at which the silver concentration became 5 ppm or less.

【表】 第2表より、タンク内を減圧にし、泡を破壊す
ることにより、静置沈降に要する時間を、大巾に
短縮できることがわかる。
[Table] From Table 2, it can be seen that by reducing the pressure inside the tank and destroying the bubbles, the time required for static settling can be significantly shortened.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る製造装置の一実施例を示
す概略説明図、第2図は発泡量とタンク内減圧度
の関係を示すグラフ、第3図はサンプリング位置
を示す概略図である。 図中、1はタンク、10は攪拌機、11は凝集
剤添加供給設備を示す。
FIG. 1 is a schematic explanatory diagram showing one embodiment of the manufacturing apparatus according to the present invention, FIG. 2 is a graph showing the relationship between the amount of foaming and the degree of pressure reduction in the tank, and FIG. 3 is a schematic diagram showing the sampling position. In the figure, 1 is a tank, 10 is a stirrer, and 11 is a flocculant addition and supply facility.

Claims (1)

【特許請求の範囲】 1 水溶性銀塩と水溶性ハロゲン化物とを親水性
コロイドの存在下に混合して親水性コロイド中に
ハロゲン化銀の結晶を分散生成させ、物理熟成を
終了させ、該物理熟成の終了時または終了後に、
凝集剤の存在下にハロゲン化銀結晶を凝集沈澱さ
せ、上記水溶性銀塩と水溶性ハロゲン化物との複
分解反応によつて生成する副生物の塩を除去する
方法において、容器内の圧力を初め大気圧以下に
保持した際に凝集剤を添加混合せしめ、静置し、
その後前記容器内の圧力を大気圧若しくはそれ以
上にする操作を行ない、さらに前記減圧と加圧を
複数回繰り返すことを特徴とするハロゲン化銀写
真乳剤の製造方法。 2 水溶性銀塩と水溶性ハロゲン化物とを親水性
コロイドの存在下に混合して親水性コロイド中に
ハロゲン化銀の結晶を分散生成させ、物理熟成を
終了させ、該物理熟成の終了時または終了後に、
凝集剤の存在下にハロゲン化銀結晶を凝集沈澱さ
せ、上記水溶性銀塩と水溶性ハロゲン化物との複
分解反応によつて生成する副生物の塩を除去する
のに用いられる装置において、内部を大気圧以下
に減圧および大気圧以上に加圧しうるタンクと、
該タンク内部を減圧した際にその圧力を保持した
まま凝集剤の流量を調節しうると共に添加供給し
うる設備と、該タンク内部を減圧又は加圧した際
に内部液を攪拌混合する設備と、該タンク内部を
加圧した際に規定量の液をタンク外部に排出する
設備とを有することを特徴とするハロゲン化銀写
真乳剤の製造装置。
[Claims] 1. A water-soluble silver salt and a water-soluble halide are mixed in the presence of a hydrophilic colloid to form silver halide crystals dispersed in the hydrophilic colloid, and physical ripening is completed. At or after the end of physical ripening,
In the method of coagulating and precipitating silver halide crystals in the presence of a flocculant and removing the by-product salt produced by the metathesis reaction between the water-soluble silver salt and the water-soluble halide, the pressure inside the container is When the pressure is maintained below atmospheric pressure, a flocculant is added and mixed, and the mixture is allowed to stand still.
A method for producing a silver halide photographic emulsion, characterized in that the pressure inside the container is then increased to atmospheric pressure or higher, and further the depressurization and pressurization are repeated a plurality of times. 2 Mixing a water-soluble silver salt and a water-soluble halide in the presence of a hydrophilic colloid to form silver halide crystals dispersed in the hydrophilic colloid, completing physical ripening, and at the end of the physical ripening or After finishing,
In an apparatus used to coagulate and precipitate silver halide crystals in the presence of a flocculant and to remove by-product salts produced by the metathesis reaction between the water-soluble silver salt and the water-soluble halide, the interior is A tank that can be depressurized below atmospheric pressure and pressurized above atmospheric pressure;
equipment that can adjust the flow rate of the flocculant and add and supply it while maintaining the pressure when the inside of the tank is depressurized; equipment that stirs and mixes the internal liquid when the inside of the tank is depressurized or pressurized; 1. An apparatus for producing a silver halide photographic emulsion, comprising equipment for discharging a specified amount of liquid to the outside of the tank when the inside of the tank is pressurized.
JP4063283A 1983-03-14 1983-03-14 Method and device for manufacturing photographic silver halide emulsion Granted JPS59166939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4063283A JPS59166939A (en) 1983-03-14 1983-03-14 Method and device for manufacturing photographic silver halide emulsion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4063283A JPS59166939A (en) 1983-03-14 1983-03-14 Method and device for manufacturing photographic silver halide emulsion

Publications (2)

Publication Number Publication Date
JPS59166939A JPS59166939A (en) 1984-09-20
JPH0452451B2 true JPH0452451B2 (en) 1992-08-21

Family

ID=12585920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4063283A Granted JPS59166939A (en) 1983-03-14 1983-03-14 Method and device for manufacturing photographic silver halide emulsion

Country Status (1)

Country Link
JP (1) JPS59166939A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2530843B2 (en) * 1987-03-30 1996-09-04 コニカ株式会社 Method for producing silver halide emulsion
JP2844069B2 (en) * 1988-06-27 1999-01-06 コニカ株式会社 Silver halide photographic materials for laser light sources

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556405A (en) * 1978-06-26 1980-01-17 Tokuyama Soda Co Ltd Manufacture of n-substituted phenylglycine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556405A (en) * 1978-06-26 1980-01-17 Tokuyama Soda Co Ltd Manufacture of n-substituted phenylglycine

Also Published As

Publication number Publication date
JPS59166939A (en) 1984-09-20

Similar Documents

Publication Publication Date Title
US3897935A (en) Apparatus for the preparation of a photographic emulsion
US3790386A (en) Process for the production of silver halide dispersions
GB2038792A (en) Novel silver halide crystals with two surface types
JPS6259053B2 (en)
US4496652A (en) Silver halide crystals with two surface types
US3782954A (en) Method for the uniform preparation of silver halide grains
US4332887A (en) Method for preparing photosensitive silver halide emulsions
JPH0452451B2 (en)
JP2875875B2 (en) Method for producing photosensitive silver halide emulsion
EP0102320B1 (en) Process for the preparation of a silver halide emulsion
US3153593A (en) Manufacture of silver halide emulsions
JP2731715B2 (en) An improved method for the manufacture of photographic elements
JPS5945130B2 (en) Method for producing silver halide photographic emulsion
RU2091852C1 (en) Method of manufacturing silver bromide/iodide photographic emulsions
JP2000199932A (en) Manufacture of silver halide photographic emulsion
SU188294A1 (en)
JPH0443569B2 (en)
RU2115944C1 (en) Process of production of halogen-and-silver photographic emulsion with microcrystals
JP3191184B2 (en) Method for producing silver halide photographic emulsion and grains thereof
JPH11218859A (en) Production of silver halide emulsion
JP2000187293A (en) Manufacture of silver halide emulsion
SU239033A1 (en)
JP2849873B2 (en) Silver halide photographic emulsion grains and method of forming the same
JPH11295830A (en) Production of silver halide particle and particle
RU2080642C1 (en) Method of preparing silver-halide photographic emulsion