JPH0443569B2 - - Google Patents
Info
- Publication number
- JPH0443569B2 JPH0443569B2 JP60195001A JP19500185A JPH0443569B2 JP H0443569 B2 JPH0443569 B2 JP H0443569B2 JP 60195001 A JP60195001 A JP 60195001A JP 19500185 A JP19500185 A JP 19500185A JP H0443569 B2 JPH0443569 B2 JP H0443569B2
- Authority
- JP
- Japan
- Prior art keywords
- silver
- splash
- added
- emulsion
- prepared
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000839 emulsion Substances 0.000 claims description 68
- 238000000034 method Methods 0.000 claims description 61
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 claims description 45
- 229910052709 silver Inorganic materials 0.000 claims description 36
- 239000004332 silver Substances 0.000 claims description 36
- 239000013078 crystal Substances 0.000 claims description 35
- -1 silver halide Chemical class 0.000 claims description 26
- 229910001961 silver nitrate Inorganic materials 0.000 claims description 21
- 238000009826 distribution Methods 0.000 claims description 14
- 150000004820 halides Chemical class 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 230000001681 protective effect Effects 0.000 claims description 5
- 229910001508 alkali metal halide Inorganic materials 0.000 claims description 4
- 239000000084 colloidal system Substances 0.000 claims description 4
- 239000003513 alkali Substances 0.000 claims description 3
- 150000008045 alkali metal halides Chemical class 0.000 claims description 3
- 239000007864 aqueous solution Substances 0.000 claims description 2
- 239000000243 solution Substances 0.000 description 31
- 230000000052 comparative effect Effects 0.000 description 23
- 239000002245 particle Substances 0.000 description 20
- 108010010803 Gelatin Proteins 0.000 description 16
- 239000008273 gelatin Substances 0.000 description 16
- 229920000159 gelatin Polymers 0.000 description 16
- 235000019322 gelatine Nutrition 0.000 description 16
- 235000011852 gelatine desserts Nutrition 0.000 description 16
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 13
- 238000001556 precipitation Methods 0.000 description 12
- 239000000203 mixture Substances 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 101710134784 Agnoprotein Proteins 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 206010070834 Sensitisation Diseases 0.000 description 6
- 230000032683 aging Effects 0.000 description 6
- 230000007547 defect Effects 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 230000035945 sensitivity Effects 0.000 description 6
- 230000008313 sensitization Effects 0.000 description 6
- 241000894007 species Species 0.000 description 6
- 238000000635 electron micrograph Methods 0.000 description 5
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Substances [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 5
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 4
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- ADZWSOLPGZMUMY-UHFFFAOYSA-M silver bromide Chemical compound [Ag]Br ADZWSOLPGZMUMY-UHFFFAOYSA-M 0.000 description 4
- ZUNKMNLKJXRCDM-UHFFFAOYSA-N silver bromoiodide Chemical compound [Ag].IBr ZUNKMNLKJXRCDM-UHFFFAOYSA-N 0.000 description 4
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 3
- 229910021612 Silver iodide Inorganic materials 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 229910052703 rhodium Inorganic materials 0.000 description 3
- 239000010948 rhodium Substances 0.000 description 3
- VGTPCRGMBIAPIM-UHFFFAOYSA-M sodium thiocyanate Chemical compound [Na+].[S-]C#N VGTPCRGMBIAPIM-UHFFFAOYSA-M 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- JKFYKCYQEWQPTM-UHFFFAOYSA-N 2-azaniumyl-2-(4-fluorophenyl)acetate Chemical compound OC(=O)C(N)C1=CC=C(F)C=C1 JKFYKCYQEWQPTM-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 229910003771 Gold(I) chloride Inorganic materials 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 229960000583 acetic acid Drugs 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000000701 coagulant Substances 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000001493 electron microscopy Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000012362 glacial acetic acid Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- FDWREHZXQUYJFJ-UHFFFAOYSA-M gold monochloride Chemical compound [Cl-].[Au+] FDWREHZXQUYJFJ-UHFFFAOYSA-M 0.000 description 2
- CBEQRNSPHCCXSH-UHFFFAOYSA-N iodine monobromide Chemical compound IBr CBEQRNSPHCCXSH-UHFFFAOYSA-N 0.000 description 2
- FYWSTUCDSVYLPV-UHFFFAOYSA-N nitrooxythallium Chemical compound [Tl+].[O-][N+]([O-])=O FYWSTUCDSVYLPV-UHFFFAOYSA-N 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000004848 polyfunctional curative Substances 0.000 description 2
- 230000005070 ripening Effects 0.000 description 2
- 229940045105 silver iodide Drugs 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 241000170793 Phalaris canariensis Species 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- SJOOOZPMQAWAOP-UHFFFAOYSA-N [Ag].BrCl Chemical compound [Ag].BrCl SJOOOZPMQAWAOP-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000003921 particle size analysis Methods 0.000 description 1
- CMCWWLVWPDLCRM-UHFFFAOYSA-N phenidone Chemical compound N1C(=O)CCN1C1=CC=CC=C1 CMCWWLVWPDLCRM-UHFFFAOYSA-N 0.000 description 1
- 229920000447 polyanionic polymer Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920001289 polyvinyl ether Polymers 0.000 description 1
- SONJTKJMTWTJCT-UHFFFAOYSA-K rhodium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Rh+3] SONJTKJMTWTJCT-UHFFFAOYSA-K 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C1/00—Photosensitive materials
- G03C1/005—Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
- G03C1/015—Apparatus or processes for the preparation of emulsions
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C1/00—Photosensitive materials
- G03C1/005—Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
- G03C1/035—Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein characterised by the crystal form or composition, e.g. mixed grain
- G03C2001/0357—Monodisperse emulsion
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Silver Salt Photography Or Processing Solution Therefor (AREA)
- Colloid Chemistry (AREA)
Description
〔発明の分野〕
本発明は、ハロゲン化銀乳剤の製造分野、特に
いわゆる「スプラツシユ」法によつて製造したハ
ロゲン化銀に関する。さらに、本発明は、ハロゲ
ン化銀結晶の粒子サイズ分布が均一な、スプラツ
シユ法によつて調製したハロゲン化銀乳剤の製法
に関する。スプラツシユ法は硝酸銀溶液を1回ま
たはそれ以上で迅速に加える沈殿を言う。
〔従来技術〕
写真乳剤用の感光性ハロゲン化銀の調製は複雑
な方法である。基本的には、ハロゲン化銀結晶ま
たは粒子はよく知られた二つの方法、シングルジ
エツト法すなわち「スプラツシユ」法またはダブ
ルジエツト法すなわち平衡ダブルジエツト(以下
「BDJ」と言う)法によつて調製できる。スプラ
ツシユ法では、アルカリハロゲン化物溶液をすべ
て最初から保護コロイド(例えばゼラチン)と一
緒に混合容器に入れ次に硝酸銀溶液をこの混合物
に加える。硝酸銀は一度に全部または時間をかけ
て徐々に加えてもよいしあるいは数回に分けてす
ばやく加えることができる。BDJ法では、ハロ
ゲン化物溶液と硝酸銀溶液は混合容器中のゼラチ
ン溶液に同時に加えられる。
通常、スプラツシユ沈殿法では、多数のイオン
が銀イオン−ハライドイオンの網状構造に正しく
位置していない、いわゆる「結晶格子欠陥」が増
加する。これらの結晶から形成した乳剤は、格子
欠陥または構造上の乱れ(デイスオリエンテーシ
ヨン)がわずかであるか全くない結晶をもつハロ
ゲン化銀乳剤から形成したフイルムと比較して、
改善されたセンシトメトリー、特に、改善された
感度を示すフイルムを作るのに使用できる。この
利点にもかかわらず、スプラツシユ法では均一な
粒子サイズ分布をもつ乳剤を調製するのは困難で
ある。いくつかの写真分野では、例えば、グラジ
エントを調整するためには乳剤がこの均一な分布
をもつことが重要である。このように、グラフイ
ツクアートの分野では、高グラジエントが必要で
あり、広い粒子サイズ分布は許容できない。
他方、BDJ法によるハロゲン化銀結晶の製造
により、粒子サイズの均一性のよい粒子が得られ
るが、これらの粒子は一般にデイスオリエンテー
シヨンまはた格子欠陥を欠き、スプラツシユ法に
より調製した乳剤と同じ程度の感度を有さない。
既知の粒子サイズを有する種乳剤を用い、この
種乳剤または結晶をBDJ乳剤の調製中に加える
ことも知られている。ハロゲン化銀は、これらの
種の上に生じ、そして均一な最終粒子を形成す
る。この方法は、粒子のスプラツシユ調製には使
用されていなかつた。なぜなら、高度の内部欠陥
をもつ均一な粒子は形成できないと考えられてい
たからである。
〔発明の要約〕
本発明は、(a)保護コロイド中の1またはそれ以
上のアルカリハロゲン化物および(b)単分散性ハロ
ゲン化銀種結晶を含有する水溶液に硝酸銀をスプ
ラツシユ法によつて加えることによつて、狭い粒
度分布をもつハロゲン化銀乳剤を調製する方法に
関する。
スプラツシユ法による硝酸銀の添加に先行する
ゼラチン−アルカリ金属ハロゲン化溶液への単分
散性種結晶(これら自体はBDJ法で製造された
もの)の添加は、両方法の最良の成果をあげる。
得られる結晶サイズの分布は、スプラツシユ方法
で通常得られるものよりいつそう単分散性である
が、結晶はなお高度にすなわち多数の結晶格子欠
陥を有する。粒子サイズと分布は均一で、予測で
き、ゲル塩中の種結晶の大きさ、数および分布に
よつてならびにスプラツシユプロセスの間に加え
られる銀の合計量によつて調整される。こうし
て、BDJ法(この方法は、それ自体狭い範囲の
粒子サイズをもたらす)によつて種結晶を単に調
製することによつてスプラツシユ調製した乳剤中
の粒子サイズ分布を予測にもとづいて変動させる
ことができる。この二つの沈殿処理手順の組合せ
は、本発明の教示に従つて可能になる。
〔発明の詳細な説明〕
本発明の方法は臭化銀、塩化銀、ヨウ化銀ある
いはこれらの混合物など従来から製造されている
ハロゲン化銀のいかなるものの製造にも応用でき
る。透水性または水溶性ポリビニールアルコール
およびその誘導体、部分的に加水分解したポリビ
ニールアセテート、ポリビニールエーテル等のみ
ならず、ゼラチンのような従来のコロイドバイン
ダー系ならどれでも使用することもできる。その
他の有用なコロイドバインダーは、とりわけ、部
分的に加水分解したゼラチン、ポリ−N−ビニー
ルラクタム等である。ゼラチンはハロゲン化銀の
沈殿およびその結晶の形成の際の特別に上等な保
護コロイドであることがよく知られているので好
ましい。
慣用上、所望のアルカリ金属ハロゲン化物
(塩)をゼラチンの水性分散物に加える。次に、
BDJ法で既に調製した所望の大きさのハロゲン
化銀種結晶の所望の量を加えて攪拌を開始する。
所望の時間と温度で、水性硝酸銀をスプラツシユ
法で加える。これは、各約30秒間で二回の迅速ス
プラツシユ、一回の長い最初のスプラツシユ次い
で迅速なスプラツシユ、あるいは単一の長いスプ
ラツシユによつて行なうとよい。これらの処理手
順は当業者にとつてよく知られている。さらに、
別の態様では、アルカリ金属ハロゲン化物の幾分
かを反応容器中のゼラチンに加え、残部を硝酸銀
の幾分かを加えた後に加えることができる。
前述したとおり、種結晶はこのような周知の処
理手順に従つてBDJ法により形成される。これ
らの処理手順を変更することによつて、任意の平
均粒子サイズ分布をもつ粒子を調製し、使用すべ
き所望のものを選択することが本発明の範囲内に
おいて可能である。種結晶は、例えば、臭化銀、
ヨウ臭化銀、臭塩化銀およびヨウ化銀などのよう
な通常のハロゲン化物ならどれからも形成でき
る。さらに、よく知られているようにこれらの種
結晶に、例えば、ロジウムおよび鉛のような他の
金属をドープしてもよい。
ハロゲン化銀が沈殿した後、所望の結晶サイズ
とするために乳剤をさらに熟成させるのが普通で
ある。この後、乳剤をコロイドバインダーでさら
に「バルキーにし」(bulked)、そして、よく知
られているように化学および分光増感を行なうこ
とができる。増感処理段階の後に、硬膜剤、表面
活性剤、かぶり防止剤、安定剤、被覆助剤等をく
わえてもよい。次に、乳剤は、ハロゲン化銀乳剤
被膜を受け入れるように適切に下引き層を形成
(下地被覆)した、例えばポリエチレンテレフタ
レートフイルムなどの周知の写真用支持体のいか
なるものにも被覆できる。被覆した乳剤は、硬化
したゼラチンなどの保護用耐摩耗層で重ね被覆し
てもよい。これらのフイルムは、例えばX線また
はグラフイツクアート用フイルムとして、あるい
は直接陽面として通常のどのような方法に使用し
てもよい。それは全て製品構造物が製造される方
法次第で決まる。
本発明を下記の各実施例によつて説明するが、
実施例6が最良の態様を示すものと考える。
実施例 1
4種類のハロゲン化銀種結晶の試料を標準
BDJ手順に従つて製造した。ハロゲン化物の組
成およびハロゲン化銀粒子サイズ電解分析器〔エ
ー・ビー・ホランドおよびジエー・アール・ソワ
ーズ(A.B.Holland and J.R.Sawers)、写真科
学工学(Photogr.Sci.Eng.)17,1295(1973)参
照〕によつて測定した平均粒子サイズは下記のと
おりであつた。試料
ハロゲン化物 粒子寸法(μ3)
1 臭化物 0.02
2 臭化物 0.06
3 ヨウ臭化物(1%) 0.03
4 ヨウ臭化物(1%) 0.06
沈殿プロセスからの骨ゼラチンの少量を各々含
有する臭化銀およびAg()Brの種結晶を、ゼ
ラチンおよび水中で約3時間攪拌して再分散させ
そしてPHを約6.3〜6.7に調整した。これらの種結
晶を加えられる硝酸銀(18%)の0.51モル当り約
0.09モルの割で使用して下記の溶液および処理手
順を用いるスプラツシユ技術によつて調製される
乳剤に種付けした。
A 溶液:7g ゼラチン
120c.c. 脱イオン水
52g NH4Br
20c.c. 0.5M KI
0.06 ユニツト上記の各種結晶
(1ユニツト=1.5モルの銀、
0.06ユニツト=0.09モルの銀)
B 溶液:140c.c. 脱イオン水
45c.c. 3.0M AgNO3
30c.c. 12.0M NH4OH
C 溶液:70c.c. 脱イオン水
125c.c. 3.0M AgNO3
D 溶液:23c.c. 氷酢酸
E 溶液:10c.c. 凝固剤(ポリアニオン米国特許
第2772165号参照)
G 溶液:120c.c. 3M H2SO4
溶液Aを混合容器に入れて攪拌しながら105〓
に加熱した。次に溶液BをAに30秒かけて加えた
(硝酸銀の第一「スプラツシユ」)。この混合物を、
105〓で5分間熟成し、次に溶液Cをこれに30秒
かけて加えた(硝酸銀の第二の「スプラツシ
ユ」)。この混合物を8分間熟成した後、溶液Dを
熟成工程を停止するために加えた。次に、凝固剤
を加えてゼラチン−ハロゲン化銀を「凝乳状の物
質」として凝固させ、次に脱イオン水を添加し、
水および塩を除去するために傾瀉することによつ
てこれらの凝乳状物質を洗浄して過剰の可溶性塩
を除去した。溶液GはPHを3.0に調整するために
利用できた。比較目的のために種が存在しない以
外これに全く同一のスプラツシユ沈殿工程も実施
した(試料5)。次に、乳剤の各試料を、粒度分
析器を用いて分析した。さらに、電子顕微鏡写真
を各乳剤についてとつた。これらの結果によれ
ば、各場合の最終乳剤が比較例とほぼ同じ容量の
結晶をもつていたこと、より重要なことにはこれ
らの乳剤が比較例よりいつそう均一であつたこと
がわかる。比較例の乳剤は均一でなくそしてより
広い分布の粒子サイズを有していた。試料
容量(μ3) σg*
1 0.291 1.86
2 1.456 1.50
3 0.258 1.56
4 0.505 1.37
5 0.373 2.11
*多分散性指数(σg)−σgが小さければ小さい
ほど粒度の範囲がより均一である。
V84=累積分布曲線の84番目の百分位数におけ
る容積、
V16=累積分布曲線の16番目の百分位数におけ
る容積
実施例 2
さらに4種類のスプラツシユ調製したヨウ臭化
銀乳剤を調製した。これらの乳剤の3種類におい
ては、0.068μ3、σg=1.34のヨウ臭化銀(2%ヨ
ウ化物)種結晶を割合を変えて使用した。その後
の手順は、第1の銀スプラツシユの量(実施例1
では約27%であるのに対して30%)および種結晶
の量(下記のとおり)以外は実施例1と全く同じ
であつた。
FIELD OF THE INVENTION The present invention relates to the field of silver halide emulsion production, and in particular to silver halide produced by the so-called "splash" process. Furthermore, the present invention relates to a method for producing a silver halide emulsion prepared by a splash method in which the grain size distribution of silver halide crystals is uniform. Splash method refers to precipitation by rapid addition of silver nitrate solution in one or more doses. PRIOR ART The preparation of light-sensitive silver halides for photographic emulsions is a complex process. Basically, silver halide crystals or grains can be prepared by two well known methods: the single jet or "splash" method or the double jet or balanced double jet (hereinafter referred to as "BDJ") method. In the splash method, the alkali halide solution is initially placed in a mixing vessel together with a protective colloid (eg, gelatin) and then the silver nitrate solution is added to this mixture. The silver nitrate can be added all at once, gradually over time, or can be added quickly in several portions. In the BDJ method, a halide solution and a silver nitrate solution are added simultaneously to a gelatin solution in a mixing vessel. Typically, splash precipitation increases so-called "crystal lattice defects" in which a large number of ions are not properly positioned in the silver ion-halide ion network. Emulsions formed from these crystals have lower lattice defects compared to films formed from silver halide emulsions having crystals with little or no lattice defects or disorientation.
It can be used for improved sensitometry, particularly for producing films that exhibit improved sensitivity. Despite this advantage, it is difficult to prepare emulsions with uniform grain size distribution using the splash method. In some photographic fields, it is important for the emulsion to have this uniform distribution, for example to adjust the gradient. Thus, in the field of graphic arts, high gradients are required and broad particle size distributions are unacceptable. On the other hand, the production of silver halide crystals by the BDJ method yields grains with good grain size uniformity, but these grains generally lack disorientation or lattice defects and are different from emulsions prepared by the splash method. They do not have the same degree of sensitivity. It is also known to use a seed emulsion with a known grain size and to add this seed emulsion or crystals during the preparation of the BDJ emulsion. Silver halide forms on top of these seeds and forms uniform final grains. This method has not been used for particle splash preparation. This is because it was believed that uniform particles with a high degree of internal defects could not be formed. SUMMARY OF THE INVENTION The present invention involves adding silver nitrate by a splash method to an aqueous solution containing (a) one or more alkali halides in a protective colloid and (b) monodisperse silver halide seeds. relates to a method for preparing silver halide emulsions with a narrow particle size distribution. The addition of monodisperse seed crystals (themselves produced by the BDJ method) to the gelatin-alkali metal halide solution prior to the addition of silver nitrate by the splash method gives the best results for both methods.
Although the resulting crystal size distribution is much more monodisperse than that normally obtained with splash methods, the crystals still have a high degree, ie a large number of crystal lattice defects. Particle size and distribution is uniform, predictable, and controlled by the size, number, and distribution of seed crystals in the gel salt and by the total amount of silver added during the splash process. Thus, it is possible to predictably vary the grain size distribution in splash-prepared emulsions simply by preparing seed crystals by the BDJ method, which itself yields a narrow range of grain sizes. can. A combination of these two precipitation procedures is possible according to the teachings of the present invention. DETAILED DESCRIPTION OF THE INVENTION The method of the present invention can be applied to the production of any conventionally produced silver halide, such as silver bromide, silver chloride, silver iodide, or mixtures thereof. Any conventional colloidal binder system can be used, such as gelatin, as well as water-permeable or water-soluble polyvinyl alcohol and its derivatives, partially hydrolyzed polyvinyl acetate, polyvinyl ether, etc. Other useful colloidal binders include partially hydrolyzed gelatin, poly-N-vinyl lactam, and the like, among others. Gelatin is preferred as it is well known to be an especially good protective colloid during the precipitation of silver halide and the formation of its crystals. Conventionally, the desired alkali metal halide (salt) is added to an aqueous dispersion of gelatin. next,
Add the desired amount of silver halide seed crystals of desired size previously prepared by the BDJ method and start stirring.
Add aqueous silver nitrate by splash method at desired time and temperature. This may be done by two rapid splashes of about 30 seconds each, one long initial splash followed by a rapid splash, or a single long splash. These processing procedures are well known to those skilled in the art. moreover,
In another embodiment, some of the alkali metal halide can be added to the gelatin in the reaction vessel and the remainder can be added after some of the silver nitrate has been added. As mentioned above, seed crystals are formed by the BDJ method according to such well-known processing procedures. By modifying these processing procedures, it is possible within the scope of the present invention to prepare particles with any average particle size distribution and select the desired ones to be used. The seed crystal is, for example, silver bromide,
It can be formed from any common halides such as silver iodobromide, silver bromochloride and silver iodide. Additionally, these seed crystals may be doped with other metals, such as rhodium and lead, as is well known. After the silver halide has precipitated, the emulsion is typically further ripened to achieve the desired crystal size. After this, the emulsion can be further "bulked" with a colloidal binder and subjected to chemical and spectral sensitization as is well known. After the sensitization step, hardeners, surfactants, antifoggants, stabilizers, coating aids, etc. may be added. The emulsion can then be coated on any of the well-known photographic supports, such as polyethylene terephthalate film, suitably coated with a subbing layer to receive the silver halide emulsion coating. The coated emulsion may be overcoated with a protective abrasion resistant layer such as hardened gelatin. These films may be used in any conventional manner, for example as X-ray or graphic arts films, or as direct positive surfaces. It all depends on how the product structure is manufactured. The present invention will be explained with reference to the following examples.
We believe that Example 6 represents the best mode. Example 1 Four types of silver halide seed crystal samples were used as standard
Manufactured according to the BDJ procedure. Halide composition and silver halide grain size electrolytic analyzer [see AB Holland and JRSawers, Photogr.Sci.Eng. 17 , 1295 (1973)] The average particle size measured by: Sample halide particle size (μ 3 ) 1 Bromide 0.02 2 Bromide 0.06 3 Iodobromide (1%) 0.03 4 Iodobromide (1%) 0.06 Silver bromide and Ag () each containing a small amount of bone gelatin from the precipitation process The Br seed crystals were redispersed in the gelatin and water by stirring for about 3 hours and the PH was adjusted to about 6.3-6.7. Approximately per 0.51 mole of silver nitrate (18%) added to these seed crystals
A 0.09 molar ratio was used to seed an emulsion prepared by splash technique using the solution and processing procedure described below. A Solution: 7g Gelatin 120c.c. Deionized water 52g NH 4 Br 20c.c. 0.5M KI 0.06 units Various crystals listed above (1 unit = 1.5 moles of silver,
0.06 units = 0.09 moles of silver) B Solution: 140c.c. Deionized water 45c.c. 3.0M AgNO 3 30c.c. 12.0M NH 4 OH C Solution: 70c.c. Deionized water 125c.c. 3.0 M AgNO 3 D Solution: 23 c.c. Glacial Acetic Acid E Solution: 10 c.c. Coagulant (see Polyanion US Pat. No. 2,772,165) G Solution: 120 c.c. 3M H 2 SO 4 Place Solution A in a mixing container. 105 while stirring
heated to. Solution B was then added to A over 30 seconds (first "splash" of silver nitrate). This mixture
Aged for 5 minutes at 105° and then solution C was added to this over 30 seconds (second "splash" of silver nitrate). After aging this mixture for 8 minutes, solution D was added to stop the aging process. A coagulant is then added to coagulate the gelatin-silver halide as a "curdled material", then deionized water is added,
These curds were washed to remove excess soluble salts by decanting to remove water and salts. Solution G was available to adjust the PH to 3.0. For comparison purposes, an identical splash precipitation step was also carried out (Sample 5) except that no seeds were present. Each sample of the emulsion was then analyzed using a particle size analyzer. Furthermore, electron micrographs were taken for each emulsion. These results show that the final emulsions in each case had approximately the same volume of crystals as the comparative examples, and more importantly, these emulsions were more uniform than the comparative examples. The comparative emulsions were non-uniform and had a broader distribution of grain sizes. Sample volume (μ 3 ) σg* 1 0.291 1.86 2 1.456 1.50 3 0.258 1.56 4 0.505 1.37 5 0.373 2.11 *Polydispersity index (σg) - The smaller σg, the more uniform the particle size range. V84 = Volume at the 84th percentile of the cumulative distribution curve, V16 = Volume at the 16th percentile of the cumulative distribution curve Example 2 Four additional splash prepared silver iodobromide emulsions were prepared. In three of these emulsions, varying proportions of silver iodobromide (2% iodide) seed crystals of 0.068 μ 3 , σg = 1.34 were used. The subsequent procedure consists of applying the first silver splash amount (Example 1)
(27% vs. 30%) and the amount of seed crystals (described below) were exactly the same as in Example 1.
【表】
スプラツシユ技術による乳剤形成工程の終了
後、粒子サイズを調べ、電子顕微鏡写真をとつ
た。本発明の試料である試料2と3は改善された
均一性と比較例の乳剤に近い粒子サイズを示し
た。この実施例はAgNO3の1モル当り0.2モルま
での種が許容できることを示している。
実施例 3
本発明の教示に従つて調製した乳剤の写真用の
有用性を証明するために、さらに4種類のスプラ
ツシユ調製した乳剤を実施例1に述べたのと同様
に調製した。これらの乳剤の3種類に用いられた
種は実施例2のものと全く同じであつた。乳剤へ
の硝酸銀溶液の添加は下記のごとく変更した。 試 料
混合タイプ
1 二回の迅速スプラツシユ、30秒(実
施例1と同じ)
2 二回の長いスプラツシユ(4.8分お
よび4.9分)
3 一回の長いスプラツシユ(7.5分)
4−比較例 二回の迅速スプラツシユ(実施例1
と同じ)
−種なし
次にこれらの乳剤を当業者にとつてよく知られ
ているように金およびイオウ増感によつてこれら
の最適の感光度にした。通常の界面活性剤、かぶ
り防止剤、硬膜剤等の添加後に各乳剤を、下塗り
層およびゼラチンの薄い固着用下層で適切に被覆
されたポリエチレンテレフタレートフイルム基体
上に被覆した。各試料に硬化したゼラチン耐摩耗
性層をオーバーコートした。被覆重量はAgBr約
47mg/dm2であつた。各被膜からの試料片を2枚
のクロネツクス(Cronex登録商標)ハイプラス
(HiPlus)スクリーンの間にサンドイツチ状には
さみ、40インチで60Kvp.100maで40ミリ秒の間
作動させたX線源の2√2のアルミニウム階段光
学くさびを通して露光した。次にこれらを標準ヒ
ドロキノン/フエニドン混合現像液で処理し次い
で通常の方法で定着し、水洗した。得られたセン
シトメトリーは下記のとおりであつた。[Table] After completing the emulsion formation process using the splash technique, the grain size was examined and an electron micrograph was taken. The inventive samples, Samples 2 and 3, exhibited improved uniformity and grain size similar to the comparative emulsion. This example shows that up to 0.2 moles of species per mole of AgNO 3 are acceptable. Example 3 To demonstrate the photographic utility of emulsions prepared in accordance with the teachings of the present invention, four additional splash-prepared emulsions were prepared as described in Example 1. The seeds used in three of these emulsions were exactly the same as in Example 2. The addition of silver nitrate solution to the emulsion was varied as follows. Sample mixing type 1 Two quick splashes, 30 seconds (same as Example 1) 2 Two long splashes (4.8 minutes and 4.9 minutes) 3 One long splash (7.5 minutes) 4 - Comparative example Two Rapid splash (Example 1)
) - unseeded These emulsions were then brought to their optimum sensitivity by gold and sulfur sensitization as is well known to those skilled in the art. After addition of conventional surfactants, antifoggants, hardeners, etc., each emulsion was coated onto a polyethylene terephthalate film substrate suitably coated with a subbing layer and a thin fixing underlayer of gelatin. Each sample was overcoated with a hardened gelatin abrasion resistant layer. Coating weight is approximately AgBr
It was 47mg/ dm2 . Sample pieces from each coating were sandwiched between two Cronex® HiPlus screens and placed in an X-ray source operated for 40 ms at 60 Kvp. 100 ma at 40 in. Exposure was through a √2 aluminum step optical wedge. These were then processed with a standard hydroquinone/phenidone mixed developer, fixed in the usual manner, and washed with water. The obtained sensitometry was as follows.
【表】
電子顕微鏡写真は、比較例の乳剤が粒子サイズ
のバラツキのある標準スプラツシユ調製粒子を有
していたのに対し、本発明のそれらはより均一で
比較例の粒子のそれに近い粒度をもつていたこと
を示している。本発明の乳剤はトウ部分に比較例
よりもすぐれたグラジエントを与えたことがわか
る。
実施例 4
4種類のスプラツシユ調製した乳剤を本実施例
用に実施例1で教示したとおりに製造した。本発
明を代表する3種類の乳剤は、実施例2のものと
全く同一の種粒子を使用し、添加したAgNO3 1
モル当り0.2モル加えた。製造処理手順の変更は
下記のとおりであつた。
ハロゲン化銀組成物AgIBr(4%ヨウ化物)。
A溶液にのみアンモニアを添加。
ヨウ化物の添加−1/2をA溶液へ、1/2は最初の
硝酸銀スプラツシユの後に加えた。
最初のスプラツシユ中の銀の%は下記のとおり
変更した。比較例(種なし)も使用した。実施例
3に述べたようにして乳剤を再分散、増感、被
覆、オーバーコート、乾燥、露光および処理し
た。下記の結果が得られた。[Table] Electron micrographs show that the emulsions of the comparative example had standard splash preparation grains with variations in grain size, whereas those of the present invention were more uniform and had a grain size close to that of the grains of the comparative example. It shows that it was. It can be seen that the emulsion of the present invention provided a better gradient in the tow portion than the comparative example. Example 4 Four splash prepared emulsions were prepared for this example as taught in Example 1. Three types of emulsions representative of the present invention used exactly the same seed particles as those in Example 2, and added AgNO 3 1
Added 0.2 moles per mole. The changes to the manufacturing process were as follows. Silver halide composition AgIBr (4% iodide). Add ammonia only to solution A. Addition of iodide - 1/2 to solution A, 1/2 added after the initial silver nitrate splash. The percentage of silver in the initial splash was varied as follows. A comparative example (without seeds) was also used. The emulsion was redispersed, sensitized, coated, overcoated, dried, exposed and processed as described in Example 3. The following results were obtained.
【表】
熟成時間の短縮と熟成温度の低下のように処理
手順の変更を行つて他の実験も行なつた。全ての
場合で、本発明に従つて調製した乳剤は高いグラ
ジエントをもつていたが感度は幾分低下した。そ
して、全ての場合で、電子顕微鏡写真は、本発明
を代表する乳剤からの粒子は比較例のそれに近い
粒度を有しそして粒度は各比較例より均一である
ことを示している。これらの実験は、本発明の処
理手順の広範な有用性を証明している。
実施例 5
本発明の工程の有用性をさらに証明するため
に、2種類のスプラツシユ調製した乳剤を実施例
1に述べたようにして作製したが、種を一方に添
加し、他方(比較例)は種なしで調製した。種の
タイプと量は実施例2に記載したとおりであつ
た。沈殿処理の間、粒度の分析と電子顕微鏡検査
のために一定の間隔で試料を取り出した。これら
の結果は、本発明の乳剤(種使用)は比較例より
早く熟成しそして粒子はそれらの最適のサイズと
粒子サイズ分布にすみやかに到達したことを示し
ている。[Table] Other experiments were also performed with changes in the processing procedure, such as shortening the aging time and lowering the aging temperature. In all cases, the emulsions prepared according to the invention had high gradients, but the sensitivity was somewhat reduced. And in all cases, the electron micrographs show that the grains from the emulsions representative of the invention have grain sizes close to that of the comparative examples and that the grain sizes are more uniform than each of the comparative examples. These experiments demonstrate the widespread utility of the inventive procedure. Example 5 To further demonstrate the utility of the process of the invention, two splash-prepared emulsions were made as described in Example 1, but with seeds added to one and the other (comparative). was prepared without seeds. Seed type and amount were as described in Example 2. During the precipitation process, samples were taken at regular intervals for particle size analysis and electron microscopy. These results indicate that the emulsions of the present invention (seeded) matured faster than the comparative examples and the grains quickly reached their optimum size and grain size distribution.
【表】
実施例 6
同様の方法で、さらに2種類のスプラツシユ調
製した乳剤を前に述べた処理手順に従つて作製し
た。この場合、実施例4の試料1と同じ手順に従
つたが1/2のI-を“A”に加え、1/2のI-を最初の
銀のスプラツシユから初めて7分間にわたり混合
容器に加えた。一方の乳剤は種を有したが他方は
比較例であつた。乳剤の熟成および再分散後、乳
剤を増感させた。これらの処理手順の間、乳剤の
種々異なつた試料は、イオウ増感剤の異なるレベ
ルでおよび異なる熟成時間で増感処理した。セン
シトメトリーの結果は、本発明の教示に従つて製
造した乳剤は比較例より広い増感寛容度をもつこ
とを示す。結果は下記のとおりであつた。結晶パラメーター
Vol.(μ3) σg
比較例 0.32 2.16
実施例 0.30 1.56
増感条件:
両方にAgモル当り1.3mgのAuCl3;Agモル当り
0.1gのNaSCN
比較例に対してAgモル当り1.7mgのNa2S2O3・
5H2O
実験例に対してAgモル当り2.7mgのNa2S2O3・
5H2O
代表的な安定剤を添加、試料を被覆した。
露光、現像条件:
コダツクモデル101プロセスおよびコントロー
ルセンシトメータ、2√2階段光学くさびを介して
の1/5秒露光;84〓のHSD中で90秒現像。
結果:EXAMPLE 6 In a similar manner, two additional splash-prepared emulsions were made according to the procedure described above. In this case, we followed the same procedure as Sample 1 in Example 4, but added 1/2 I - to "A" and added 1/2 I - to the mixing vessel over a period of 7 minutes starting from the first silver splash. Ta. One emulsion had seeds while the other was a comparative example. After ripening and redispersion of the emulsion, the emulsion was sensitized. During these processing procedures, different samples of the emulsion were sensitized with different levels of sulfur sensitizer and with different ripening times. Sensitometric results indicate that emulsions prepared according to the teachings of the present invention have broader sensitization latitude than the comparative examples. The results were as follows. Crystal parameter Vol. (μ 3 ) σg Comparative example 0.32 2.16 Example 0.30 1.56 Sensitization conditions: 1.3 mg of AuCl 3 per Ag mole in both;
1.7 mg Na 2 S 2 O 3 / Ag mole vs. 0.1 g NaSCN comparative example.
5H 2 O 2.7 mg Na 2 S 2 O 3 per Ag mole for the experimental example.
5H 2 O typical stabilizer was added to coat the sample. Exposure and development conditions: Kodak Model 101 Process and Control Sensitometer, 1/5 second exposure through 2 √2 step optical wedge; 90 second development in 84〓 HSD. result:
【表】
この製品はよりすぐれた熟成寛容度を示す他
に、同等の感度でより高いグラジエントを示す。
実施例 7
直接用画陽乳剤を下記のAg(I)Br種結晶の存在
下でスプラツシユ処理手順によつて沈殿したヨウ
臭化銀から製造した。3種類の乳剤を作つた。一
つ目、すなわち比較例は種を用いなかつた。二つ
目は0.0086μ3のAg(I)Br種を用い、三つ目は
0.0378μ3のAg(I)Br種を用いた。これらの乳剤を、
ゼラチン中に再分散させ、テトラアザウンデカン
でかぶらせ、通常の界面活性剤、かぶり防止剤お
よび被覆助剤をそれに加えた。各々の乳剤は、前
に述べたとおり支持体に被覆し、この被覆からの
ストリツプをEGおよびGセンシトメータによつ
てタングステンフラツシユに10-2秒間露光した。
これらのストリツプを次にDP−2中で90秒現像
し、続いて定着、洗浄、乾燥した。センシトメト
リーの結果は、比較例に等しい感光速度でより高
いグラジエントが得られたことを示す。
実施例 8
スプラツシユ技術によつて乳剤を調製した。ま
ず、BDJ技術を用いて種乳剤をその場で形成さ
せた。この工程は下記のとおりであつた。
単分散性AgIBrCl(約0.5%I、18.8%Brおよび
8.07%Cl)の調製
容積の最初の50%は120〓、pAg6.17における
単分散性BDJ混合である。すべての銀のうちの
50%を以下の手順で添加した。
a すべての硝酸銀のうちの1.7%(3.4%の種硝
酸銀)をシングルジエツト法により添加する、
b すべての硝酸銀のうちの37.5%(75%の種硝
酸銀)を添加して1.3%よう化物、52%臭化物
および46.7%塩化物のハライド組成物における
BDJ沈殿により硝酸銀の各ユニツト(1.5モル)
に対して0.2マイクロモルのロジウムを与える
量の塩化ロジウムを用いて種結晶の沈殿を続行
する、
c 100%塩化物を用いるBDJ沈殿により種結晶
の沈殿(すべての硝酸銀のうちの50%を添加し
て)を終了させる。
この時点で、粒子サイズ分析器による分析は、
V=0.0056μ3およびσg=1.40の結晶を示した。
次に、温度を110〓に下げ、KClを急速に加え
た(加えるべく残りのAgNO3の量の1.4倍)。温
度は100〓に降下し、pAgは9.96であつた。1分
後AgNO3(残りの50容量%)を添加しそして得ら
れた乳剤を5分間攪拌した。AgNO3の添加後温
度は108〓になり、5分後に104〓に降下した。
pAgは7.56であつた。
この最終的な乳剤は粒子サイズ分析器で分析
し、V=0.0150μ3およびσg=1.55の結晶を含むこ
とがわかつた。
実施例 9
BDJ法で調製した種(AgIBr、2.5%I-−粒子
サイズ約0.0378μ3)の試料を混合容器に入れ、十
分なヨウ化カリウムを加えて試料の全部をAgIに
変換した。スブラツシユ−沈殿プロセス(実施例
1参照)をこれらの種について行なつた。この乳
剤から作つたフイルムは、上述したようにして増
感および被覆した後に処理して同等のセンシトメ
トリーを得た。粒子を分析したところサイズと形
状が均一であることがわかつた。[Table] This product exhibits better aging latitude as well as higher gradients with equivalent sensitivity. Example 7 A direct-grade emulsion was prepared from silver iodobromide precipitated by a splash processing procedure in the presence of Ag(I)Br seed crystals as described below. Three types of emulsions were made. The first, comparative example, did not use seeds. The second one uses 0.0086μ3 Ag(I)Br species, and the third one uses
0.0378μ3 of Ag(I)Br species was used. These emulsions,
It was redispersed in gelatin, covered with tetraazaundecane, and the usual surfactants, antifoggants and coating aids were added thereto. Each emulsion was coated on a support as described above and a strip from the coating was exposed to a tungsten flash for 10 -2 seconds in an EG and G sensitometer.
These strips were then developed in DP-2 for 90 seconds, followed by fixing, washing, and drying. The sensitometric results show that a higher gradient was obtained with a photospeed equal to the comparative example. Example 8 An emulsion was prepared by splash technique. First, a seed emulsion was formed in situ using the BDJ technique. This process was as follows. Monodisperse AgIBrCl (approximately 0.5% I, 18.8% Br and
Preparation of 8.07% Cl) The first 50% of the volume is a monodisperse BDJ mixture at 120㎓, pAg 6.17. of all silver
50% was added using the following procedure. a 1.7% of the total silver nitrate (3.4% seed silver nitrate) is added by single-jet method; b 37.5% of the total silver nitrate (75% seed silver nitrate) is added to 1.3% iodide; In halide composition of 52% bromide and 46.7% chloride
Each unit (1.5 mol) of silver nitrate by BDJ precipitation
Continue seed precipitation with an amount of rhodium chloride to give 0.2 micromoles of rhodium for c. Seed crystal precipitation by BDJ precipitation using 100% chloride (adding 50% of all silver nitrate) ). At this point, the analysis by the particle size analyzer is
It showed crystals with V= 0.0056μ3 and σg=1.40. The temperature was then lowered to 110° and KCl was rapidly added (1.4 times the amount of remaining AgNO3 to be added). The temperature dropped to 100㎓ and the pAg was 9.96. After 1 minute AgNO 3 (remaining 50% by volume) was added and the resulting emulsion was stirred for 5 minutes. After the addition of AgNO 3 the temperature was 108〓 and after 5 minutes it dropped to 104〓.
pAg was 7.56. This final emulsion was analyzed with a grain size analyzer and was found to contain crystals with V= 0.0150μ3 and σg=1.55. Example 9 A sample of the seeds prepared by the BDJ method (AgIBr, 2.5% I - particle size approximately 0.0378μ 3 ) was placed in a mixing vessel and sufficient potassium iodide was added to convert all of the sample to AgI. A scrub precipitation process (see Example 1) was carried out on these species. Films made from this emulsion were sensitized and coated as described above and then processed to obtain equivalent sensitometry. Analysis of the particles showed that they were uniform in size and shape.
【表】
実施例 10
BDJ法で調製した種(Ag1.5%、I-98.5%、
Br-、粒子サイズ0.04μ3)の試料を調製した。
AgIBr(2%I-)のスブラツシユ調製用の溶液を
下記のとおり調製した。
A 溶液(「ヒール」(Heel)、調製容器中で調合
したもの)
蒸留水 955c.c.
NH4Br固体 310g
0.5N KI 120g
ゼラチン 40g
種 (AgNO3の1モル当り0.2モル)
40.6℃に保持
B 溶液(第1の銀):
蒸留水 1020c.c.
硝酸タリウムの溶液(8g/水中) 5.4c.c.
3N AgO3 320c.c.
29.8℃に保持
C 溶液(第2の銀):
蒸留水 373c.c.
3N AgNO3 680c.c.
硝酸タリウム(上記参照) 4.4c.c.
120℃に保持
処理手順
・第1の銀の前5分、A溶液に種添加
・第1の銀の前1分、B溶液に12M NH4OH191
c.c.を添加
・時間=0で、BをAに30秒かけて添加
・時間=3分で、CをAに15分かけて添加
・時間=9分で、氷酢酸124c.c.で熟成を停止
・実施例1に記述したとおりの凝固および洗浄処
理
次にこのようにして調製した乳剤を、前述のよ
うにしてゼラチン中に再分散させ、金とイオウで
増感させ、湿潤剤、かぶり防止剤等を添加し、被
覆し、オーバーコートした。比較のため、一つの
要素をハロゲン化銀の種結晶を添加しないこと以
外は同じ条件で作製し、増感し、被覆した。この
被覆からの試料を上述したようにして露光し、現
像し、定着し、洗浄し、乾燥させ、次のセンシト
メトリーを得た。[Table] Example 10 Seeds prepared by BDJ method (Ag1.5%, I - 98.5%,
A sample of Br − , particle size 0.04 μ 3 ) was prepared.
A solution for preparing a scrub of AgIBr (2% I − ) was prepared as follows. A Solution (“Heel”, prepared in a preparation vessel) Distilled water 955 c.c. NH 4 Br solid 310 g 0.5N KI 120 g Gelatin 40 g Seed (0.2 mol per mol of AgNO 3 ) Maintained at 40.6°C B Solution (first silver): Distilled water 1020 c.c. Thallium nitrate solution (8 g/water) 5.4 cc 3N AgO 3 320 c.c. Maintained at 29.8°C C Solution (second silver): Distilled water 373 c. c. 3N AgNO 3 680c.c. Thallium nitrate (see above) 4.4cc Maintain at 120℃ Processing procedure - 5 minutes before first silver, add seed to A solution - 1 minute before first silver, B solution 12M NH4OH191
Add cc, time = 0, add B to A over 30 seconds, time = 3 minutes, add C to A over 15 minutes, time = 9 minutes, ripen with 124 c.c. of glacial acetic acid. Stopping - Coagulation and washing treatment as described in Example 1. The emulsion thus prepared is then redispersed in gelatin as described above, sensitized with gold and sulfur, wetting agent and antifogging agent. agent, etc. were added, coated, and overcoated. For comparison, one element was prepared, sensitized, and coated under the same conditions but without the addition of silver halide seeds. Samples from this coating were exposed, developed, fixed, washed and dried as described above and the following sensitometry was obtained.
【表】
もの
本発明の教示に従つて作つた乳剤から調製した
フイルムは、優れたグラジエントとトツプ濃度を
有するが比較例より幾分感度が低かつた。電子顕
微鏡による検査によれば、粒子はサイズと形状が
均一であつた。
実施例 11
実施例1の手順に従つて、使用される種乳剤ま
たは粒子のサイズを変えてさらに2種類のスプラ
ツシユ調製乳剤を調製した。一つのケースでは、
BDJ法で調製した種は約0.06μ3(約2.5%I-)の
AgIBr種であり、第二のケースでは、約0.39μ3
(約2.5%I-)のAgIBr種であつた。乳剤を粒子サ
イズ分析器および電子顕微鏡写真で分析したとこ
ろ、均一な粒度を含有することがわかつた。これ
はかなり大きな種粒子を本発明の範囲内において
使用できることを示している。種容量(μ3)
最終結晶容量(μ3) σg
0.039 0.24 1.48
0.06 0.44 1.27
実施例 12および13
同様の方法で、BDJ法で調製したAgIBr(約2.5
%I-)の種とさらに少量のロジウム(実施例12)
または鉛(実施例13)を含むものを用いてさらに
スプラツシユ調製乳剤を製造した。これらの種粒
子を調製する方法はよく知られており、そして米
国特許第4221863号に詳しく記載されている。こ
れらのスプラツシユ調製した乳剤を再分散させ次
にかぶらせて粒子の良好な均一性をもつすぐれた
品質の直接ポジ要素を得た。
実施例 14
2種類の混合物すなわち通常のスプラツシユ混
合物(比較例)と種結晶を用いた混合物(実験
例)を、実験例4の試料1と同様にして作つた
が、1/2のI-をA溶液に加え、1/2のI-を第1の銀
溶液の添加から開始して7分間にわたり加えた。
増感処理:
両方に対して、Agのモル当り1.37mgのAuCl3、
Agのモル当り0.11gのNaSCN
比較例に対して、Agのモル当り1.66mgの
Na2S2O3・5H2O
実験例に対して、Agのモル当り2.66mgの
Na2S2O3・5H2O
比較例の熟成:50分
実験例 :70分
実施例6と同様な露光と現像の後の結果:Films prepared from emulsions made in accordance with the teachings of the present invention had excellent gradients and top densities, but were somewhat less sensitive than the comparative examples. The particles were uniform in size and shape when examined by electron microscopy. Example 11 Two additional splash preparation emulsions were prepared following the procedure of Example 1, varying the seed emulsion or particle size used. In one case,
Seeds prepared by the BDJ method have approximately 0.06 μ 3 (approximately 2.5% I - ).
AgIBr species, in the second case approximately 0.39μ 3
(approximately 2.5% I - ) of AgIBr species. The emulsion was analyzed by grain size analyzer and electron micrograph and was found to contain uniform grain size. This indicates that fairly large seed particles can be used within the scope of the present invention. Seed volume (μ 3 ) Final crystal volume (μ 3 ) σg 0.039 0.24 1.48 0.06 0.44 1.27 Examples 12 and 13 In a similar manner, AgIBr (approximately 2.5
% I- ) seeds and even a small amount of rhodium (Example 12)
Alternatively, a splash preparation emulsion was produced using one containing lead (Example 13). Methods for preparing these seed particles are well known and described in detail in US Pat. No. 4,221,863. These splash prepared emulsions were redispersed and then fogged to yield excellent quality direct positive elements with good grain uniformity. Example 14 Two mixtures, a normal splash mixture (comparative example) and a mixture using seed crystals (experimental example), were prepared in the same manner as Sample 1 of Experimental Example 4, but with 1/2 of the I - In addition to solution A, 1/2 I - was added over a period of 7 minutes starting from the addition of the first silver solution. Sensitization treatment: 1.37 mg AuCl 3 per mole of Ag for both,
0.11 g of NaSCN per mole of Ag vs. 1.66 mg of NaSCN per mole of Ag.
Na 2 S 2 O 3・5H 2 O For the experimental example, 2.66 mg per mole of Ag.
Na 2 S 2 O 3・5H 2 O Aging of comparative example: 50 minutes Experimental example: 70 minutes Results after exposure and development as in Example 6:
【表】
この結果は、本発明の教示に従つて作つた乳剤
は比較例の乳剤と比較してより高いグラジエント
およびわずかに早い感度を示す。TABLE The results show that the emulsion made according to the teachings of the present invention has a higher gradient and slightly faster sensitivity compared to the comparative emulsion.
Claims (1)
カリハロゲン化物および(b)単分散性ハロゲン化銀
種結晶を含有する水溶液に硝酸銀をスプラツシユ
法によつて加えることを特徴とする粒子サイズ分
布の狭いハロゲン化銀乳剤の製法。 2 単分散性種結晶(b)が平衡ダブルジエツト法に
よつて調製されたものである特許請求の範囲第1
項記載の方法。 3 アルカリ金属ハロゲン化物の一部を最初に加
え、残部を硝酸銀の一部を加えた後に加える特許
請求の範囲第1項記載の方法。[Claims] 1. Silver nitrate is added by a splash method to an aqueous solution containing (a) one or more alkali halides in a protective colloid and (b) monodisperse silver halide seed crystals. A method for producing a silver halide emulsion with a narrow grain size distribution. 2. Claim 1 in which the monodisperse seed crystal (b) is prepared by the equilibrium double jet method.
The method described in section. 3. The method of claim 1, wherein a portion of the alkali metal halide is added first and the remainder is added after adding a portion of the silver nitrate.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US64780884A | 1984-09-06 | 1984-09-06 | |
US647808 | 1984-09-06 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6172229A JPS6172229A (en) | 1986-04-14 |
JPH0443569B2 true JPH0443569B2 (en) | 1992-07-17 |
Family
ID=24598347
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19500185A Granted JPS6172229A (en) | 1984-09-06 | 1985-09-05 | Making of silver halide emulsion splash prepared |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0174018B1 (en) |
JP (1) | JPS6172229A (en) |
DE (1) | DE3582633D1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06105339B2 (en) * | 1986-06-18 | 1994-12-21 | コニカ株式会社 | Silver halide photographic light-sensitive emulsion, method for producing the same, and silver halide photographic light-sensitive material using the emulsion |
US4794070A (en) * | 1987-06-09 | 1988-12-27 | Minnesota Mining And Manufacturing Company | Automatically processible photographic element comprising a non-silver halide layer containing bromide |
DE69327234T2 (en) * | 1993-07-02 | 2000-05-11 | Minnesota Mining And Mfg. Co., Saint Paul | Process for the preparation of monodisperse silver halide emulsions |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5542739A (en) * | 1978-09-20 | 1980-03-26 | Nippon Telegr & Teleph Corp <Ntt> | Cylinder cutting method and device with multi blade |
JPS581408A (en) * | 1981-06-25 | 1983-01-06 | 小堀 しづ | Hair brush and comb |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1162689B (en) * | 1962-11-15 | 1964-02-06 | Perutz Photowerke G M B H | Process for the preparation of light-sensitive photographic emulsions |
DE1597587A1 (en) * | 1966-11-12 | 1970-06-25 | Fuji Photo Film Co Ltd | Process for the preparation of a photographic light-sensitive silver halide emulsion |
JPS5448521A (en) * | 1977-09-16 | 1979-04-17 | Konishiroku Photo Ind Co Ltd | Manufacture of silver halide crystais |
US4339532A (en) * | 1981-01-08 | 1982-07-13 | Polaroid Corporation | Novel photosensitive silver halide emulsion and method of preparing same |
-
1985
- 1985-09-04 DE DE8585111158T patent/DE3582633D1/en not_active Expired - Lifetime
- 1985-09-04 EP EP19850111158 patent/EP0174018B1/en not_active Expired
- 1985-09-05 JP JP19500185A patent/JPS6172229A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5542739A (en) * | 1978-09-20 | 1980-03-26 | Nippon Telegr & Teleph Corp <Ntt> | Cylinder cutting method and device with multi blade |
JPS581408A (en) * | 1981-06-25 | 1983-01-06 | 小堀 しづ | Hair brush and comb |
Also Published As
Publication number | Publication date |
---|---|
EP0174018A2 (en) | 1986-03-12 |
JPS6172229A (en) | 1986-04-14 |
DE3582633D1 (en) | 1991-05-29 |
EP0174018B1 (en) | 1991-04-24 |
EP0174018A3 (en) | 1988-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4722886A (en) | Process for preparing a photographic emulsion containing tabular grains having narrow size distribution | |
JP2714643B2 (en) | Silver halide photographic emulsion | |
JPH0564328B2 (en) | ||
US5017469A (en) | Twinned emulsions made from silver iodide seed crystals having an aspect ratio of at least 2:1 | |
JPS6158027B2 (en) | ||
EP0584644B1 (en) | Silver halide photographic emulsion | |
JPS5824772B2 (en) | Novel method for producing silver halide crystals | |
JPH0833598B2 (en) | A method for stabilizing high chloride crystals with modified crystal habit using bromide shell. | |
US5318888A (en) | Large tabular grains with novel size distribution and process for rapid manufacture | |
JPS63107814A (en) | Manufacture of photographic emulsion containing high sensitivity flat plate-form particle | |
JPH0443569B2 (en) | ||
JPH06266033A (en) | Silver halide photographic emulsion, silver halide photographic sensitive material and its processing method | |
EP0569971B1 (en) | Silver halide emulsion | |
US4678744A (en) | Splash-prepared silver halide emulsions with a uniform particle size distribution | |
JP3393260B2 (en) | Photosensitive silver halide emulsion, silver halide photographic material, and method of processing silver halide photographic material | |
JP3664447B2 (en) | Method for producing a silver halide photographic emulsion | |
JPH0711679B2 (en) | Method for producing silver halide emulsion | |
EP0645671A1 (en) | Silver halide photographic emulsion | |
JPS6046415B2 (en) | silver halide photographic emulsion | |
JP3388914B2 (en) | Silver halide emulsion | |
JP3041377B2 (en) | Silver halide emulsion and light-sensitive material containing the emulsion | |
US6656675B2 (en) | Method of preparing a silver halide photographic emulsion | |
EP0462543A1 (en) | Silver halide emulsions having high sensitivity and pressure resistance | |
JPH07114123A (en) | Production of silver halide photographic emulsion and silver halide photographic sensitive material using that | |
EP0611118A2 (en) | Silver halide-photographic light-sensitive material |