JPH0452274A - Method for coating tool with thin film - Google Patents

Method for coating tool with thin film

Info

Publication number
JPH0452274A
JPH0452274A JP16169890A JP16169890A JPH0452274A JP H0452274 A JPH0452274 A JP H0452274A JP 16169890 A JP16169890 A JP 16169890A JP 16169890 A JP16169890 A JP 16169890A JP H0452274 A JPH0452274 A JP H0452274A
Authority
JP
Japan
Prior art keywords
edge parts
cutting edge
parts
tool
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16169890A
Other languages
Japanese (ja)
Inventor
Yasuo Suzuki
泰雄 鈴木
Koji Okamoto
康治 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP16169890A priority Critical patent/JPH0452274A/en
Publication of JPH0452274A publication Critical patent/JPH0452274A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To prevent the adhesion of metallic particles of large sizes at the edge parts of tools and near these parts by directing the edge parts of the tools toward the side opposite from an evaporating source. CONSTITUTION:The tools having the sharp edge parts, for example, many microdrills 8 are so mounted on the inner side of a supporting frame 16 that the respective edge parts 8a face the inner side. The supporting frame 16 is rotated and the metallic particles 6 are generated from the evaporating source 4 while a negative bias voltage is impressed to the supporting frame 16 and the microdrills 8 from an external bias power source 12. The generated metallic ions 6i turn round to the edge parts 8a of the microdrills 8 as well similarly in the other parts by passing the spacing of the supporting frame 16 and react with the gaseous nitrogen in the atmosphere, by which the nitride thin films of the metal are formed. The extreme heating of the edge parts 8a is averted and the film thicknesses of the thin films with which the edge parts 8a are coated are about the same as the film thicknesses in the other parts; therefore, the tools having a good cut are obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、例えばマイクロドリルのような刃先部の鋭
利な工具に対して、その刃先部の耐摩耗性等を改善する
ために、金属の窒化物薄膜を被覆する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is aimed at improving the wear resistance of a sharp cutting edge of a tool such as a micro drill. The present invention relates to a method of coating nitride thin films.

〔従来の技術〕[Conventional technology]

この種の薄膜被覆方法の従来例を第4図および第5図を
参照して説明する。
A conventional example of this type of thin film coating method will be explained with reference to FIGS. 4 and 5.

図示しない真空排気装置によって真空排気される真空容
器2内に、回転式のドラム10が収納されており、その
周囲に、刃先部の鋭利な工具の一例として多数の超硬調
のマイクロドリル(ここではドリル径が0.2mmφ〜
1mmφ程度のものをいう)8がその刃先部8aを外側
に向けて取り付けられている。
A rotary drum 10 is housed in a vacuum container 2 that is evacuated by a vacuum evacuation device (not shown), and around it there are a number of ultra-hard-tone micro drills (here, Drill diameter is 0.2mmφ~
(about 1 mmφ) is attached with its cutting edge 8a facing outward.

真空容器2の壁面には、ドラム10の四方に位置するよ
うに、複数のアーク式の蒸発源4が取り付けられている
。各蒸発源4は、アーク放電によって所要の金属から成
るカソードを局部的に溶解させて金属粒子6を蒸発させ
ることができる。この金属粒子6には、アーク放電を用
いているため、中性粒子6nの他に金属イオン61がか
なりの割合で(例えば60〜80%程度の割合で)含ま
れている。
A plurality of arc-type evaporation sources 4 are attached to the wall surface of the vacuum container 2 so as to be located on all sides of the drum 10. Each evaporation source 4 can evaporate metal particles 6 by locally melting a cathode made of a required metal by arc discharge. Since arc discharge is used in the metal particles 6, in addition to the neutral particles 6n, metal ions 61 are included in a considerable proportion (for example, in a proportion of about 60 to 80%).

このような構成で、真空容器2内に窒素ガスをそこの圧
力が例えば数mmTorr〜100mmTorr程度に
なるように導入し、ドラム10を回転させながら、かつ
各マイクロドリル8にバイアス電源12からドラム10
を介して適当な(例えば−200V〜−400V程度の
)負のバイアス電圧を印加しながら、各蒸発源4から金
属粒子6を蒸発させると、その内の金属イオン61と雰
囲気中の窒素ガスとが各マイクロドリル8の表面で反応
することによって各マイクロドリル80表面に同金属の
窒化物薄膜が形成される。例えば、各蒸発源4からTi
を蒸発させると、TiN (窒化チタン)薄膜が形成さ
れる。
With such a configuration, nitrogen gas is introduced into the vacuum container 2 so that the pressure there becomes, for example, several mm Torr to 100 mm Torr, and while the drum 10 is being rotated, each micro drill 8 is connected to the drum 10 from the bias power supply 12.
When the metal particles 6 are evaporated from each evaporation source 4 while applying an appropriate negative bias voltage (for example, about -200V to -400V) through the By reacting on the surface of each micro-drill 8, a thin nitride film of the same metal is formed on the surface of each micro-drill 80. For example, Ti from each evaporation source 4
Upon evaporation, a thin film of TiN (titanium nitride) is formed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、上記方法だと、各マイクロドリル8の刃先部
8aが鋭利であるためそこにバイアス電圧による電界が
集中しく第5図中の14はその等電位面の一例を示す)
、蒸発源4より発生された金属イオン(例えばTi” 
) 6 iが刃先部8aに集中するという問題が起こる
。その結果、刃先部8aが金属イオン61のエネルギー
で局部的に極端に加熱(例えば本来400°C以下にし
たいのに刃先部8aだけが600〜1000°C程度に
なる)されて結晶の異常成長(これをノジュールと呼ぶ
)が多数生じ、また鋼製の工具ではなまり、その切れ味
が悪くなる。また、刃先部8aに被覆される薄膜の膜厚
が極端に厚くなり、このことからもその切れ味が悪くな
る。
However, in the above method, since the cutting edge 8a of each microdrill 8 is sharp, the electric field due to the bias voltage is concentrated there, and 14 in FIG. 5 shows an example of the equipotential surface.)
, metal ions (e.g. Ti”) generated from the evaporation source 4
) 6 i is concentrated on the cutting edge portion 8a. As a result, the cutting edge part 8a is locally extremely heated by the energy of the metal ions 61 (for example, only the cutting edge part 8a is heated to about 600 to 1000°C even though it is originally intended to be below 400°C), resulting in abnormal crystal growth. A large number of nodules (these are called nodules) are formed, and steel tools become dull and lose their sharpness. Furthermore, the thickness of the thin film covering the cutting edge portion 8a becomes extremely thick, which also makes the blade less sharp.

また、蒸発源4から発生するドロップレフト(イオン化
していない大きなサイズの中性粒子6n)が各マイクロ
ドリル8の刃先部8aおよびその近傍に付着して表面が
粗くなるという問題も起こる。その結果、このマイクロ
ドリル8によって例えばプリント基板等に穴をあける場
合に、滑らかな穴をあけることができなくなる。また、
スミャ現象(摩擦熱によってプリント基板を構成する絶
縁基板材が融けてそれが下の銅箔等に付着すること)が
発生しやすくなる。
Further, a problem occurs in that drop left (non-ionized large-sized neutral particles 6n) generated from the evaporation source 4 adheres to the cutting edge portion 8a of each microdrill 8 and its vicinity, making the surface rough. As a result, when drilling a hole in a printed circuit board or the like using the micro drill 8, it is no longer possible to make a smooth hole. Also,
Smear phenomenon (frictional heat causes the insulating substrate material constituting the printed circuit board to melt and adhere to the underlying copper foil, etc.) is likely to occur.

上記のような問題は、マイクロドリル以外の刃先部が鋭
利な工具についても同様に起こる。
The above problem also occurs with tools other than micro drills that have sharp cutting edges.

そこでこの発明は、蒸発源より発注された金属イオンが
刃先部の鋭利な工具の刃先部に集中すること、ならびに
同工具の刃先部およびその近傍に大きなサイズの金属粒
子が付着することを防止することができる¥lI膜被覆
方法を提供することを主たる目的とする。
Therefore, this invention prevents metal ions ordered from an evaporation source from concentrating on the sharp cutting edge of a tool, and also prevents large-sized metal particles from adhering to the cutting edge of the tool and its vicinity. The main objective is to provide a method for coating a \lI film that can be applied.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、この発明の薄膜被覆方法は、
窒素ガス雰囲気中においてアーク式の蒸発源を用いて金
属粒子を蒸発させて、負のバイアス電圧を印加した刃先
部の鋭利な工具に対して前記金属の窒化物薄膜を被覆す
る際に、前記工具の刃先部を前記蒸発源に対して反対側
に向けておくことを特徴とする。
In order to achieve the above object, the thin film coating method of the present invention includes:
When coating a sharp-edged tool with a negative bias voltage by evaporating metal particles using an arc-type evaporation source in a nitrogen gas atmosphere, the tool is coated with a nitride thin film of the metal. The blade edge portion of the blade is directed toward the opposite side to the evaporation source.

その場合、前記工具を、負のバイアス電圧が印加された
導電性で籠状の支持枠の内側に、その刃先部を内側に向
けて取り付けておいても良い。
In that case, the tool may be attached with its cutting edge facing inward inside a conductive cage-like support frame to which a negative bias voltage is applied.

〔作用〕[Effect]

上記のように刃先部の鋭利な工具の刃先部を蒸発源に対
して反対側に向けておくと、刃先部に対する電界集中が
緩和されるので、蒸発源より発生された金属イオンが刃
先部に集中することが防止される。
As mentioned above, if the cutting edge of a tool with a sharp cutting edge is facing away from the evaporation source, the electric field concentration on the cutting edge will be alleviated, and the metal ions generated from the evaporation source will be directed to the cutting edge. Concentration is prevented.

また、蒸発源より発生されたイオン化していない金属粒
子が刃先部およびその近傍に入射する割合が大幅に減る
ので、刃先部およびその近傍に大きなサイズの金属粒子
が付着することが防止される。
Furthermore, since the proportion of non-ionized metal particles generated from the evaporation source entering the blade edge and its vicinity is significantly reduced, large-sized metal particles are prevented from adhering to the blade edge and its vicinity.

〔実施例〕〔Example〕

第1図は、この発明に係る薄膜被覆方法を実施する装置
の一例を示す概略横断面図である。第2図は、第1図の
装置の概略縦断面図である。第3図は、第1図中のマイ
クロドリル周りを部分的に拡大して示す図である。第4
図および第5図の例と同一または相当する部分には同一
符号を付し、以下においては当該従来例との相違点を主
に説明する。
FIG. 1 is a schematic cross-sectional view showing an example of an apparatus for implementing the thin film coating method according to the present invention. 2 is a schematic longitudinal sectional view of the device of FIG. 1; FIG. FIG. 3 is a partially enlarged view showing the area around the micro drill in FIG. 1. Fourth
The same reference numerals are given to the same or corresponding parts as in the example of FIG. 5 and FIG. 5, and the differences from the conventional example will be mainly explained below.

この例では、前述したような真空容器2内に、外部のモ
ータ22によって回転させられる回転軸18を通し、こ
れに籠状をした導電性の支持枠16を取り付けている。
In this example, a cage-shaped conductive support frame 16 is attached to a rotating shaft 18 that is rotated by an external motor 22 and passed through the vacuum container 2 as described above.

20は、電気絶縁機能および真空シール機能を有する軸
受である。2aは、窒素ガスを導入するガス導入口であ
る。
20 is a bearing having an electrical insulation function and a vacuum sealing function. 2a is a gas introduction port for introducing nitrogen gas.

そしてこの支持枠16の内側に、刃先部の鋭利な工具の
一例として前述したような多数のマイクロドリル8を、
各刃先部8aが内側に向くように、即ちその外側にある
蒸発源4に対して反対側に向くように取り付けている。
Inside this support frame 16, a large number of micro drills 8 as described above are installed as an example of a tool with a sharp cutting edge.
Each blade edge portion 8a is attached so as to face inward, that is, to face opposite to the evaporation source 4 located outside.

また、回転軸18を介して支持枠16およびそれに取り
付けられた各マイクロドリル8に、外部のバイアス電源
12から適当な(例えば−200V〜−400V程度の
)負のバイアス電圧を印加するようにしている。
Further, an appropriate negative bias voltage (for example, about -200V to -400V) is applied from an external bias power supply 12 to the support frame 16 and each microdrill 8 attached to it via the rotating shaft 18. There is.

なお、第2図に示すように、この例では蒸発源4を上下
2段に配置しているが、勿論それ以外、例えば支持枠1
6の上下方向の長さ等によっては1段でも良い。
In addition, as shown in FIG. 2, in this example, the evaporation sources 4 are arranged in two stages, upper and lower, but of course there are other evaporation sources, such as the support frame 1.
Depending on the vertical length of 6, etc., one stage may be sufficient.

成膜時は、従来の場合と同様に、真空容器2内に窒素ガ
スをそこの圧力が例えば数mmTorr〜100mmT
o r r程度になるように導入し、支持枠16を回転
させながら、かつ支持枠16および各マイクロドリル8
に対して前述したような負のバイアス電圧を印加しなが
ら、各蒸発源4から金属粒子6を発生させる。
During film formation, nitrogen gas is introduced into the vacuum container 2 at a pressure of, for example, several mmTorr to 100 mmT, as in the conventional case.
o r r, and while rotating the support frame 16, the support frame 16 and each micro drill 8
Metal particles 6 are generated from each evaporation source 4 while applying a negative bias voltage as described above to the evaporation source 4 .

その場合、この方法だと、バイアス電圧による等電位面
14は例えば第3図中に示すようになり、従来例の場合
と違って各マイクロドリル8の刃先部8aに対する電界
集中が緩和される。
In that case, with this method, the equipotential surface 14 due to the bias voltage becomes as shown in FIG. 3, for example, and the electric field concentration on the cutting edge portion 8a of each microdrill 8 is relaxed, unlike in the conventional case.

しかし、マイクロドリル8にはバイアス電圧が印加され
ているので、蒸発源4より発生された金属イオン61は
支持枠16の隙間を通ってマイクロドリル8の刃先部8
aにも他の部位と同様に回り込み、そこで雰囲気中の窒
素ガスと反応して、そこに同金属の窒化物薄膜が形成さ
れる。
However, since a bias voltage is applied to the microdrill 8, the metal ions 61 generated from the evaporation source 4 pass through the gap in the support frame 16 to the cutting edge portion 8 of the microdrill 8.
Similarly to other parts, the metal passes around a, reacts with nitrogen gas in the atmosphere, and forms a nitride thin film of the same metal there.

その結果、マイクロドリル8の刃先部8aが極端に加熱
されることがなくなり、しかも刃先部8aに被覆される
薄膜の膜厚も他の部位と同じ程度になるので、切れ味の
良好なものが得られる。
As a result, the cutting edge 8a of the micro drill 8 is not heated excessively, and the thickness of the thin film coated on the cutting edge 8a is about the same as that of other parts, resulting in good sharpness. It will be done.

また、蒸発源4より発生された中性粒子6nは、支持枠
16によって遮られるので、あるいはその隙間を通るも
のも電界による回り込みがなく直進するので、大きなサ
イズの中性粒子6nが(勿論小さいサイズのものも)マ
イクロドリル8の刃先部8aおよびその近傍に入射して
付着する割合は極端に減り、刃先部8aは非常に滑らか
になる。
Moreover, since the neutral particles 6n generated from the evaporation source 4 are blocked by the support frame 16, or those passing through the gap travel straight without being detoured by the electric field, the neutral particles 6n of large size (of course, small The proportion of particles incident on and adhering to the cutting edge 8a of the micro drill 8 and its vicinity is extremely reduced, and the cutting edge 8a becomes extremely smooth.

従って、上記マイクロドリル8を例えばプリント基板の
穴あけに用いる場合、従来の方法で被覆されたマイクロ
ドリル8の場合は例えば3000ヒツト(回)程度でス
ミャ現象が発生する等して使えなくなっていたのに対し
て、上記方法で被覆されたマイクロドリル8の場合は例
えば10000ヒツト程度も使用することができ、しか
も滑らかな穴をあけることができる。
Therefore, when the micro drill 8 is used, for example, for drilling holes in printed circuit boards, the micro drill 8 coated by the conventional method suffers from a smear phenomenon after about 3,000 hits, making it unusable. On the other hand, in the case of the micro drill 8 coated by the above method, for example, about 10,000 drill holes can be used, and smooth holes can be made.

なお、上記方法ではコーティング時間が従来の方法より
も長くなると想像されるが、元々刃先部8aは鋭利であ
り上記のように反対向きにしても適当量(必要以上厚く
なく)iil膜が形成されるので、時間は実際上は変わ
らない。
Although it is assumed that the coating time will be longer in the above method than in the conventional method, the cutting edge 8a is originally sharp, and even if it is turned in the opposite direction as described above, an appropriate amount (not thicker than necessary) of the IIL film will be formed. Therefore, time does not actually change.

また、上記方法は、前述したようなTi以外のIVaV
a族金属r、Hf)、更にはVa族金属(V、Nb 、
、Ta )やVIa族金属(Cr、Mo、W)の窒化物
薄膜の被覆にも勿論適用することができる。
Further, the above method can be applied to IVaV other than Ti as described above.
A group metals r, Hf), and even Va group metals (V, Nb,
, Ta) or group VIa metals (Cr, Mo, W).

また、上記方法は、前述したようなマイクロドリル以外
の刃先部が鋭利な工具への薄膜被覆にも勿論適用するこ
とができる。
Furthermore, the above-mentioned method can of course be applied to thin-film coating tools with sharp cutting edges other than the aforementioned microdrills.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、蒸発源より発生された
金属イオンが刃先部の鋭利な工具の刃先部に集中するこ
と、ならびに同工具の刃先部およびその近傍に大きなサ
イズの金属粒子が付着することを防止することができる
。従って、表面が滑らかでしかも切れ味の良い工具を得
ることができる。
As described above, according to the present invention, metal ions generated from the evaporation source concentrate on the cutting edge of the tool, which has a sharp cutting edge, and large-sized metal particles adhere to the cutting edge of the tool and its vicinity. This can be prevented. Therefore, a tool with a smooth surface and good sharpness can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明に係る薄膜被覆方法を実施する装置
の一例を示す概略横断面図である。第2図は、第1図の
装置の概略縦断面図である。第3図は、第1図中のマイ
クロドリル周りを部分的に拡大して示す図である。第4
図は、従来の薄膜被覆方法を実施する装置の一例を示す
概略横断面図である。第5図は、第4図中のマイクロド
リル周りを部分的に拡大して示す図である。 2・・・真空容器、4・・・アーク式の蒸発源、6、・
・金属粒子、6n・・・中性粒子、6i−・、金属イオ
ン、8・・・マイクロドリル、8a、・、刃先部、12
・・・バイアス電源、16・・・支持枠。
FIG. 1 is a schematic cross-sectional view showing an example of an apparatus for implementing the thin film coating method according to the present invention. 2 is a schematic longitudinal sectional view of the device of FIG. 1; FIG. FIG. 3 is a partially enlarged view showing the area around the micro drill in FIG. 1. Fourth
The figure is a schematic cross-sectional view showing an example of an apparatus for carrying out a conventional thin film coating method. FIG. 5 is a partially enlarged view showing the area around the micro drill in FIG. 4. 2...vacuum container, 4...arc type evaporation source, 6...
・Metal particle, 6n... Neutral particle, 6i-., Metal ion, 8... Micro drill, 8a,... Blade tip, 12
...Bias power supply, 16...Support frame.

Claims (2)

【特許請求の範囲】[Claims] (1)窒素ガス雰囲気中においてアーク式の蒸発源を用
いて金属粒子を蒸発させて、負のバイアス電圧を印加し
た刃先部の鋭利な工具に対して前記金属の窒化物薄膜を
被覆する際に、前記工具の刃先部を前記蒸発源に対して
反対側に向けておくことを特徴とする工具への薄膜被覆
方法。
(1) Metal particles are evaporated using an arc type evaporation source in a nitrogen gas atmosphere, and a nitride thin film of the metal is coated on a tool with a sharp cutting edge to which a negative bias voltage is applied. . A method for coating a tool with a thin film, characterized in that the cutting edge of the tool is directed toward the opposite side to the evaporation source.
(2)前記工具を、負のバイアス電圧が印加された導電
性で籠状の支持枠の内側に、その刃先部を内側に向けて
取り付けておく請求項1記載の工具への薄膜被覆方法。
(2) The method for coating a tool with a thin film according to claim 1, wherein the tool is mounted inside an electrically conductive cage-like support frame to which a negative bias voltage is applied, with its cutting edge facing inward.
JP16169890A 1990-06-20 1990-06-20 Method for coating tool with thin film Pending JPH0452274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16169890A JPH0452274A (en) 1990-06-20 1990-06-20 Method for coating tool with thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16169890A JPH0452274A (en) 1990-06-20 1990-06-20 Method for coating tool with thin film

Publications (1)

Publication Number Publication Date
JPH0452274A true JPH0452274A (en) 1992-02-20

Family

ID=15740168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16169890A Pending JPH0452274A (en) 1990-06-20 1990-06-20 Method for coating tool with thin film

Country Status (1)

Country Link
JP (1) JPH0452274A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138286A (en) * 2005-10-17 2007-06-07 Kobe Steel Ltd Arc ion plating apparatus
US7586592B2 (en) 2004-11-16 2009-09-08 Kabushiki Kaisha Nippon Conlux Sheet recognizing device and method
WO2012089306A1 (en) * 2010-12-28 2012-07-05 Oerlikon Trading Ag, Trübbach Holder for boring head coating

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7586592B2 (en) 2004-11-16 2009-09-08 Kabushiki Kaisha Nippon Conlux Sheet recognizing device and method
JP2007138286A (en) * 2005-10-17 2007-06-07 Kobe Steel Ltd Arc ion plating apparatus
WO2012089306A1 (en) * 2010-12-28 2012-07-05 Oerlikon Trading Ag, Trübbach Holder for boring head coating
CN103261475A (en) * 2010-12-28 2013-08-21 欧瑞康贸易股份公司(特吕巴赫) Holder for boring head coating
US9869023B2 (en) 2010-12-28 2018-01-16 Oerlikon Surface Solutions Ag, Pfäffikon Holder for drill-head coating

Similar Documents

Publication Publication Date Title
US7294852B2 (en) Transparent conductive films and processes for forming them
KR100800223B1 (en) Arc ion plating apparatus
US4173522A (en) Method and apparatus for producing carbon coatings by sputtering
JP2007138286A (en) Arc ion plating apparatus
JP4240471B2 (en) Method for forming transparent conductive film
JP4756434B2 (en) Film forming device
JPH0452274A (en) Method for coating tool with thin film
CN107186373B (en) A kind of titanium-based multilayer film solder and preparation method thereof
JP5142849B2 (en) Film forming apparatus and film forming method
JP2007507602A5 (en)
CN106796863B (en) The coating member carried out by ion exposure removes film method and film removing device
WO2017020535A1 (en) Copper/aluminium alloy crystal oscillation plate coating process
WO2017020534A1 (en) Silver/aluminium alloy crystal oscillation plate coating process
JP4541045B2 (en) Film forming method and covering member using the film forming method
JP3758248B2 (en) Method for forming compound thin film
JP2875892B2 (en) Method of forming cubic boron nitride film
JPS5842771A (en) Ion planting device
JPH0266846A (en) Method of reparing partially damaged parts, in particular, anticathode
JPH11279756A (en) Formation of transparent conductive film
JPS5937564B2 (en) Method for forming end face electrodes of electronic components
JPS6116346B2 (en)
JPH05148649A (en) Formation of film
JPS59153882A (en) Vapor deposition method by sputtering
JP2010159498A (en) Coating film forming method
JPH0470392B2 (en)