JPH0452233A - Method for selectively extracting eupopium - Google Patents

Method for selectively extracting eupopium

Info

Publication number
JPH0452233A
JPH0452233A JP2158613A JP15861390A JPH0452233A JP H0452233 A JPH0452233 A JP H0452233A JP 2158613 A JP2158613 A JP 2158613A JP 15861390 A JP15861390 A JP 15861390A JP H0452233 A JPH0452233 A JP H0452233A
Authority
JP
Japan
Prior art keywords
europium
rare earth
reducing agent
crown
extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2158613A
Other languages
Japanese (ja)
Other versions
JP2685081B2 (en
Inventor
Nobuo Takahashi
信夫 高橋
Satoshi Asano
聡 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Science & Tech Agency
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Science & Tech Agency
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Science & Tech Agency, Agency of Industrial Science and Technology filed Critical Science & Tech Agency
Priority to JP2158613A priority Critical patent/JP2685081B2/en
Publication of JPH0452233A publication Critical patent/JPH0452233A/en
Application granted granted Critical
Publication of JP2685081B2 publication Critical patent/JP2685081B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To easily and rapidly carry out the selective extraction separation of Eu from a concentrated rare earth element matrix by using a specific reducing agent, counter anion, and diluent in a reduction extraction method using a crown ether. CONSTITUTION:While reducing an aqueous solution containing Eu-containing rare earth element ions by means of a reducing agent, an organic solution containing a crown ether is brought into contact with the above, by which Eu is selectively extracted, In the above method, a Ga alloy containing, by weight, <=35% In and 1-8% zinc is used as a reducing agent, and 18-crown-6- ether or its derivative is used as a crown ether. Further, a fluorine-containing sulfonic acid free from oxidizing functional group is used as a counter anion, and a fluorine-containing organic compound free from oxidizing functional group is used as a diluent.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は光ファイバーの原料である低ユーロピウム・ガ
ドリニウム化合物など、特にユーロピウム(Eu)を含
まない希土類化合物の製造におけるユーロピウムの分離
、及びユーロピウムを含む希土類混合物からのユーロピ
ウムの分離回収、精製分離に関する。
The present invention relates to the separation of europium in the production of rare earth compounds that do not contain europium (Eu), such as low-europium gadolinium compounds that are raw materials for optical fibers, and the separation, recovery, and purification separation of europium from rare earth mixtures containing europium.

【従来の技術】[Conventional technology]

従来よりユーロピウムと他の希土類元素とを分離しよう
とする幾つかの試みがされている。これらの試みは大き
くわけると、沈殿分離法と溶媒抽出法とに分けらる。 沈殿分離法は、例えば、ユーロピウムを含む希土類溶液
を不活性ガス雰囲気下で亜鉛と接触させてユーロピウム
を2価に還元した後、特公昭61−58533号に記載
されているように、硫酸によって2価のユーロピウムの
みを難溶性硫酸塩として沈殿分離する方法であり、ユー
ロピウムを比較的効率よく分離精製できる。しかし、こ
の方法でユーロピウムを回収する場合、分離した硫酸ユ
ーロピウムを精製するために溶解・還元・沈殿といった
精製工程を反復しなければならない、また、溶解か不十
分の場合には、未溶解分中にユーロピウムか残留し、ユ
ーロピウムの損失をもたらす。 さらに、当然のことながらこの方法は短時間、かつ連続
的な処理に適さない、さらに、硫酸ユーロピウムの溶解
度に近い溶解度をもつ軽希土類元素やアルカリ土類元素
の塩が共沈するが、これらの元素の完全な除去は実質的
に不可能で有り、高純度のユーロピウムは得られない。 また、沈殿分離法で希土類マトリックスからユーロピウ
ムを除去する場合には、硫酸ユーロピウムの溶解度の分
だけユーロピウムを分離できないから、全希土類中のユ
ーロピウムをnnX10PP以下に下げることは困龍で
ある。 溶媒抽出法は、酸化還元反応を伴なわないものと、伴な
うものとに分けられる。 酸化還元反応を伴わない抽出分離方法とは、例えば、特
公昭54−6520号のようにユーロピウムとユーロピ
ウムよりも重希土類側の希土類元素を酸性抽出剤を用い
て有機相中に抽出し、次いで水相中に逆抽出し、水相中
のユーロピウムより重希土類側の希土類元素のみを酸性
抽出剤を用いて有機相中に抽出し、ユーロピウムを水相
中に濃縮する方法である。しかし、この方法は、装置的
に非常に繁雑であり、かつ酸性抽出剤の使用のために、
ユーロピウムと近隣希土類元素との分離係数が1〜2と
小さく、ユーロピウムの分離に多くの抽出段数が必要と
され、分離できたとしても精製は実質的に不可能である
。 さらに、酸化還元反応を伴う抽出分離方法である還元抽
出法には、特公昭62−283814号のように還元処
理の後、酸性抽出剤を用いて3僅の希土類元素のみを抽
出し、2僅のユーロピウムを水相に残留させる方法であ
る。この方法でユーロピウムを回収する場合、ユーロピ
ウム以外のマトリックス元素を全て有機相中に抽出しな
ければならす、このため、粘土マトリックス中に極微量
にしか含まれていないユーロピウムを分離回収するため
には、ユーロピウムに対して当量で数百倍〜数十万倍の
抽出剤と、それに比例した装置とが必要である。また、
十分な収率を得るためには、非常に精密なPH制御が要
求され、例えばPHが高くなり抽出力か強くなりすぎる
と、ユーロピウムが抽出されて収率が低下し、逆にPH
が低くなり抽出力が弱くなると、ユーロピウム以外の希
土類元素の抽出が悪化し、得られるユーロピウムの純度
が低下する。また、2価のユーロピウムと塩基性が近い
ランタンやセリウムなどの軽希土類元素が水相中に残り
易いために、高純度のユーロピウムを得るためには別途
にこれらの不純物を除去する工程が必要である。 この還元抽出法をユーロピウムの少ない希土類元素を得
るなめに用いた場合、ランタンやセリウムなどの塩基性
の低い3価の希土類イオンが有機相中に抽出される。 Eu”=Eu”e−・ ・ ・ (1)しかし、(1)
式の平行が右辺に傾くので、3価のユーロピウムも生成
し、抽出されることになる。この結果、複数回の還元・
酸化防止剤の添加等を行っても、有機相より回収した希
土類元素中のユーロピウム濃度をnXloppm以下に
下げることはできない。 上記還元反応を伴う方法でユーロピウムの還元に用いら
れる還元剤としては、液状あるいは固体の亜鉛−水銀ア
マルガム、亜鉛固定床、亜鉛粉末等が使用されている。 しかし、液状アマルガムは、水銀の溶出率が高く、また
比重が大きい上に表面張力も高いなめ、水相や有機相と
混合しにくいという問題か有る。また、固体のアマルガ
ム及び亜鉛固定床は、表面積が限定されるなめ、還元効
率か悪く被還元溶液を循環する等により反応時間を長く
させる必要がある。また、亜鉛粉末を使用した場合には
、反応器中で分散しにくい付着物を形成するばかりでな
く、溶媒抽出時に亜鉛粉末が混入すると、相分離が悪化
する。
Several attempts have been made to separate europium from other rare earth elements. These attempts can be broadly divided into precipitation separation methods and solvent extraction methods. In the precipitation separation method, for example, a rare earth solution containing europium is brought into contact with zinc in an inert gas atmosphere to reduce europium to a divalent state, and then the europium is reduced to a divalent state using sulfuric acid as described in Japanese Patent Publication No. 61-58533. This method precipitates and separates only the valent europium as a sparingly soluble sulfate, and it is possible to separate and purify europium relatively efficiently. However, when recovering europium using this method, it is necessary to repeat the purification steps of dissolution, reduction, and precipitation to purify the separated europium sulfate. Some europium remains in the tank, resulting in a loss of europium. Furthermore, naturally, this method is not suitable for short-term and continuous processing, and salts of light rare earth elements and alkaline earth elements, which have solubility close to that of europium sulfate, co-precipitate. Complete removal of the element is virtually impossible, and high purity europium cannot be obtained. Furthermore, when removing europium from the rare earth matrix using a precipitation separation method, it is difficult to reduce the europium in all rare earths to less than nnX10PP because europium cannot be separated by the solubility of europium sulfate. Solvent extraction methods are divided into those that do not involve redox reactions and those that do. An extraction separation method that does not involve a redox reaction is, for example, as in Japanese Patent Publication No. 54-6520, in which europium and rare earth elements on the heavier rare earth side than europium are extracted into an organic phase using an acidic extractant, and then water is extracted. This method involves back-extracting the europium into the organic phase, extracting only the rare earth elements heavier than the europium in the aqueous phase into the organic phase using an acidic extractant, and concentrating europium in the aqueous phase. However, this method is very complicated in terms of equipment, and due to the use of acidic extractants,
The separation coefficient between europium and neighboring rare earth elements is as small as 1 to 2, and a large number of extraction stages are required to separate europium, making purification virtually impossible even if separation is possible. Furthermore, in the reductive extraction method, which is an extraction separation method that involves redox reactions, only 3 rare earth elements are extracted using an acidic extractant after reduction treatment as in Japanese Patent Publication No. 62-283814. This is a method in which the amount of europium remains in the aqueous phase. When recovering europium using this method, all matrix elements other than europium must be extracted into the organic phase. Therefore, in order to separate and recover europium, which is only contained in trace amounts in the clay matrix, An extractant whose equivalent amount is several hundred to several hundred thousand times that of europium is required, and equipment proportional to the amount is required. Also,
In order to obtain a sufficient yield, very precise pH control is required. For example, if the pH becomes high and the extraction power becomes too strong, europium will be extracted and the yield will decrease, and conversely, the pH will increase.
When the extraction power becomes lower and the extraction power becomes weaker, the extraction of rare earth elements other than europium deteriorates, and the purity of the obtained europium decreases. Additionally, light rare earth elements such as lanthanum and cerium, which are similar in basicity to divalent europium, tend to remain in the aqueous phase, so a separate process is required to remove these impurities in order to obtain high-purity europium. be. When this reductive extraction method is used to obtain rare earth elements with low amounts of europium, trivalent rare earth ions with low basicity such as lanthanum and cerium are extracted into the organic phase. Eu”=Eu”e−・ ・ ・ (1) However, (1)
Since the parallelism of the equation is tilted to the right side, trivalent europium will also be produced and extracted. As a result, multiple returns and
Even if an antioxidant is added, etc., the concentration of europium in the rare earth elements recovered from the organic phase cannot be lowered to below nXlopppm. As the reducing agent used to reduce europium in the method involving the above-mentioned reduction reaction, liquid or solid zinc-mercury amalgam, zinc fixed bed, zinc powder, etc. are used. However, liquid amalgam has a high mercury elution rate, a high specific gravity, and a high surface tension, so there are problems in that it is difficult to mix with an aqueous phase or an organic phase. In addition, solid amalgam and zinc fixed beds have limited surface areas, resulting in poor reduction efficiency and the need to lengthen the reaction time by circulating the solution to be reduced. Further, when zinc powder is used, not only does it form a deposit that is difficult to disperse in the reactor, but also phase separation is worsened if the zinc powder is mixed in during solvent extraction.

【発明が解決しようとする課題】[Problem to be solved by the invention]

近年、光ファイバー等に利用されるガドリニウム(Gd
)等にみられるように、ユーロピウムを含まない希土類
元素等が求められるようになり、これに従いユーロピウ
ムを含む希土類元素マトリックスから選択的にユーロピ
ウムを分離除去する方法が求められてきている。 上記従来の方法では、この要求を満たせないことは明ら
かであり、この要求を満たすべくクラウンエーテルを用
いた溶媒抽出法が検討されているが、未だ充分なものと
はなっていない。 本発明の目的は、簡便かつ迅速に濃厚な希土類元素マト
リックスよりユーロピウムを選択的に抽出分離する方法
を提供することである。
In recent years, gadolinium (Gd), which is used in optical fibers, etc.
), there is a growing demand for rare earth elements that do not contain europium, and a method for selectively separating and removing europium from a rare earth element matrix containing europium is also being sought. It is clear that the above-mentioned conventional methods cannot meet this requirement, and a solvent extraction method using crown ether has been studied to meet this requirement, but it has not yet been satisfactory. An object of the present invention is to provide a simple and rapid method for selectively extracting and separating europium from a concentrated rare earth element matrix.

【課題を解決するための手段】[Means to solve the problem]

上記課題を解決する本発明の方法は、ユーロピウムを含
む希土類元素イオンを含む水溶液を還元剤で還元しつつ
、クラウンエーテルを含む有機溶液を接触させてユーロ
ピウムを選択的に抽出する方法において、35重量%以
下のインジウムと、1〜8重量%の亜鉛を含むガリウム
合金を還元剤とし、18−クラウン−6−エーテルある
いはその誘導体をクラウンエーテルとして用い、弗素を
含みかつ酸化性の官能基を持たないスルホン酸を対アニ
オンとして用い、弗素を含みかつ酸化性の官能基を持た
ない有機化合物を希釈剤として用いる。
The method of the present invention for solving the above problems is a method of selectively extracting europium by reducing an aqueous solution containing rare earth element ions containing europium with a reducing agent and bringing an organic solution containing crown ether into contact with the aqueous solution containing rare earth element ions. % or less of indium and 1 to 8% by weight of zinc as the reducing agent, and 18-crown-6-ether or its derivatives as the crown ether, containing fluorine and having no oxidizing functional group. Sulfonic acid is used as a counter anion, and an organic compound containing fluorine and having no oxidizing functional group is used as a diluent.

【作用】[Effect]

本発明では、3僅のユーロピウムが還元により他の粘土
イオンよりもイオン半径か増大し、特定のクラウンエー
テルの内径に取り込まれやすくなることに着目し、選択
的な抽出分離を行うのである。すなわち、ユーロピウム
を含む粘土水溶液を還元剤で還元し、同時に対アニオン
の共存下にクラウンエーテルを含む有機相を接触させ、
2価のユーロピウムのみを水相中から選択的に抽出除去
することによって、(1)式の平行を左辺側に進行しや
すくし、選択的にかつ完全なユーロピウムの分離を行う
という方法である。 ここで、還元と抽出を同時に行うことに注目しなければ
ならない、Eu”+e−;:Eu’+系の標準電極電位
が一部、35V(25℃)と、H”十e −: H系よ
りも低いことから、酸性溶液中では、空気を絶った状態
であっても、2価のユーロピウムは放置中に徐々に水素
イオンによって酸化されてしまう、そこで、還元方法と
しては、従来のように3価のユーロピウムを還元した後
、−旦還元荊を分離してから抽出操作に移るのではなく
、還元すると同時に抽出を行う事が望ましい、この目的
を満たす還元剤としては、抽出時は強い還元作用を示し
、かつ油水分離時は相分離を妨げないものでなくてはな
らず、これには亜鉛を含む液状合金が適している。 水銀を含まず、常温で液体状態を保つ耐食性の比較的高
い亜鉛合金としてはGa−3n−Zn系とGa−In−
Zn系が考えられる。しかし、前者は液状の相が不安定
で、水溶液中で使用すると微粉状の固体を析出しやすい
ため、Ga−InZn系の合金の方が実際には適してい
る。液温か常に25℃以上であればインジウムの添加は
必ずしも必要としないが、冬期10℃程度でも液状を保
つためには、インジウムを含む三元系である事が望まし
く、はぼGa73%、I n23%、Zn4%からなる
合金が最も低温で液状を保つ。 この組成から大きくずれて一部固相を折用した場合は、
あるいは低温のために保存中に、固相を分離した後使用
すれば、全く支障なく使用できる。 ユーロピウムを抽出する際、有機相及び水相の混合操作
時に抽出系内に前記亜鉛合金を共存させると、合金は微
細な液滴となり、亜鉛末同様に強い還元作用を示すが、
油水分離のための静置時には、合金の液滴は凝縮して水
相の下に溜まるため、相分離の支障とはならない、また
、亜鉛単独で使用した場合に見られる水素の発生も殆ど
ないなめ、密閉容器中で使用しても内圧が高くなるとい
うこともない、むしろ不活性ガス雰囲気で行った場合で
も、少量の酸素が混入していることが多いなめ、殆どの
場合容器の内圧は1気圧以下になる。 抽出剤としては、内孔径のほぼ等しい18−クラウン−
6−エーテルあるいはその誘導体の全てが2価のユーロ
ピウムの抽出剤として使用できる可能性がある。しかし
、現在比較的大量に生産され、二価のユーロピウムに対
する選択性が高く、かつ循環使用した場合の水への離溶
性の点から、ジシクロへキシル−18−クラウン−6−
エーテルか、特に本発明の目的に適している。 2価のユーロピウム及びクラウンエーテルと共に有機相
中でクリプテートを形成する対アニオンの条件としては
、2価のユーロピウムイオンに見合った構造的な嵩高さ
と、低PH領域でもアニオンとしての安定性を保ちかつ
塩基性の高い2価のユーロピウムとも高い親和力をもつ
ための分極性の高さと、そして強い還元性雰囲気下でも
分解されない化学的安定性とが考えられる。この条件を
満たすアニオンとしてはスルホン酸類全般が当てはまる
。しかし、より高いイオン内の分極性のためには、特に
分子内に弗素をもち、酸化性の基を持たないスルホン酸
が適していることが確認された。 ここで、スルホン酸の親油性が高すぎると、有機相中に
対アニオンが溶解して、あたかも酸性抽出剤のようにユ
ーロピウム以外の粘土イオンを抽出してしまうため、比
較的親油性の低いバーフルオルアルキルスルホン酸類、
そのなかでも特に入手か容易なトリフルオルメタンスル
ホン酸がこの目的に使用するには適している。 希釈剤としては、2価のユーロピウムを含むクリ1テー
トの溶解度が大きく、かつ耐還元性が高い希釈剤が適し
ており、特にトリフルオルメタンスルホン酸と構造的に
類似し親和力の高い弗素を含む希釈剤が使用できる。た
だし、余り弗素の含有率が高いと、反って溶融性が落ち
、また大量に生産されているものが少ないので、工業的
に使用する場合は、入手が容易なペンゾトリフルオリド
が最適ということができる。また、特にnX10g/Q
以上の高濃度のユーロピウムを有機相に抽出する必要が
ある場合は、有機相中のクリプテートの溶解度を上げる
ために、希釈剤中に酸性抽出剤を添加する事が望ましい
が、通常原料希土中のユーロピウム濃度は1%未満のた
め、ベンゾフルオライド単独でも多くの場合は十分使用
できる。 次に、実際にユーロピウムを粘土マトリックス中から分
離回収する条件、方法について述べる。 本性ではユーロピウムを有機相中に抽出するため、マト
リックスの粘土イオンの濃度は特に限定されず、従来法
では困雛な飽和溶液に近いnX100g/IQ程度の粘
土イオンを含む水溶液でも容易に処理することができる
。むしろ、マトリックス粘土濃度が濃厚な方が、ユーロ
ピウムの分配比およびマトリックス元素との分離係数が
増大し好ましい、陰イオン及び不純物は、酸化性かなけ
れば共存しても特に支障はない。 水相中の対アニオンの濃度及び、有機相中のクラウンエ
ーテルの濃度は、抽出するユーロピウム濃度の当量以上
あればよい、これらの濃度があまり過剰になっても特に
効果は期待されないばがりか、むしろ余り過剰になると
有機相中に結晶が析出する原因となる場合かあるので好
ましくない。 抽出時のPHは、極端に低いと、ユーロピウムか十分に
抽出されず、逆に高すぎると亜鉛合金か還元剤として機
能しにくくなるため、pH0,2〜3.0程度か良い、
望ましくは、pH1,0〜2.0で、この範囲内で還元
抽出操作を行うと、−層良い結果が得られやすい、たた
し、還元剤として液状亜鉛合金を使用した場合、亜鉛の
過剰な溶解はかなり少ないので、抽出前のpH値がほぼ
適正な値であれば、同じ液を繰り返し還元処理した場合
でも、pHの上昇は僅かであり、PH調整操作は全く必
要ない。 ユーロピウムを抽出した有機相は、水だけで完全に逆抽
出されるが、相分離性を早めるためには、0、IN程度
の塩酸を用いてもよい、ユーロピウムを逆抽出した後の
有機相は、そのままの状態で再びユーロピウムの抽出に
使用できる。 ユーロピウムの精製については、方法、条件ともに、基
本的に上記と同じであるか、希薄なユーロピウム溶液か
らユーロピウムを抽出し精製する際は、水溶液中の塩濃
度を高めるため、クラウンエーテルに抽出されにくい塩
類を水相中に共存させるとユーロピウムの分配比を一層
高めることかできる。
In the present invention, selective extraction and separation is performed by focusing on the fact that the ionic radius of just 3 europium increases compared to other clay ions through reduction, making it easier to incorporate into the inner diameter of a specific crown ether. That is, an aqueous clay solution containing europium is reduced with a reducing agent, and at the same time an organic phase containing a crown ether is brought into contact with it in the coexistence of a counter anion.
By selectively extracting and removing only divalent europium from the aqueous phase, the parallelism in equation (1) is made easier to proceed to the left side, and europium is selectively and completely separated. Here, it must be noted that reduction and extraction are performed at the same time.The standard electrode potential of the Eu''+e-;:Eu'+ system is partially 35V (25°C), and the H''+e-: Because it is lower than After reducing trivalent europium, it is preferable to perform extraction at the same time as reduction, rather than separating the reduced trumpet and then proceeding to the extraction operation.As a reducing agent that satisfies this purpose, it is recommended to use a strong reducing agent during extraction. It must be effective and not hinder phase separation during oil-water separation, and liquid alloys containing zinc are suitable for this purpose. As zinc alloys that do not contain mercury and have relatively high corrosion resistance and remain liquid at room temperature, Ga-3n-Zn and Ga-In-
Zn-based materials can be considered. However, since the former has an unstable liquid phase and tends to precipitate fine powder solids when used in an aqueous solution, Ga--InZn-based alloys are actually more suitable. It is not necessarily necessary to add indium if the liquid temperature is always above 25°C, but in order to maintain the liquid state even at around 10°C in winter, it is desirable to use a ternary system containing indium. %, an alloy consisting of 4% Zn remains liquid at the lowest temperature. If there is a large deviation from this composition and some of the solid phase is used,
Alternatively, if it is used after separating the solid phase during storage due to the low temperature, it can be used without any problems. When extracting europium, if the zinc alloy is allowed to coexist in the extraction system during the mixing operation of the organic phase and aqueous phase, the alloy becomes fine droplets and exhibits a strong reducing effect similar to zinc powder, but
When standing still for oil-water separation, the alloy droplets condense and accumulate under the water phase, so they do not interfere with phase separation, and there is almost no hydrogen generation, which is seen when zinc is used alone. In fact, even when used in a closed container, the internal pressure does not increase; in fact, even when used in an inert gas atmosphere, a small amount of oxygen is often mixed in, so in most cases the internal pressure of the container is low. The pressure becomes less than 1 atmosphere. As an extractant, 18-crown-
It is possible that all 6-ethers or their derivatives can be used as extractants for divalent europium. However, dicyclohexyl-18-crown-6-
Ethers are particularly suitable for the purposes of the present invention. The conditions for the counter anion to form cryptate in the organic phase with divalent europium and crown ether are that it has a structural bulk commensurate with the divalent europium ion, maintains stability as an anion even in a low pH region, and is a base. This is thought to be due to its high polarizability, which has a high affinity for divalent europium, which has high polarity, and its chemical stability, which does not decompose even in a strongly reducing atmosphere. Anions satisfying this condition include all sulfonic acids. However, it was confirmed that sulfonic acid, which has fluorine in its molecule and does not have an oxidizing group, is especially suitable for higher intraion polarizability. Here, if the lipophilicity of sulfonic acid is too high, the counteranion will dissolve in the organic phase and extract clay ions other than europium as if it were an acidic extractant. fluoroalkyl sulfonic acids,
Among them, trifluoromethanesulfonic acid, which is easily available, is particularly suitable for this purpose. As a diluent, a diluent that has high solubility of cri1tate containing divalent europium and high reduction resistance is suitable, and in particular, a diluent containing fluorine, which is structurally similar to trifluoromethanesulfonic acid and has a high affinity. Diluents can be used. However, if the fluorine content is too high, it will warp and reduce melting properties, and few products are produced in large quantities, so for industrial use, penzotrifluoride is the best because it is easy to obtain. I can do it. In addition, especially nX10g/Q
If it is necessary to extract europium at a higher concentration into the organic phase, it is desirable to add an acidic extractant to the diluent in order to increase the solubility of cryptate in the organic phase. Since the europium concentration in is less than 1%, benzofluoride alone is sufficient in many cases. Next, we will discuss the conditions and method for actually separating and recovering europium from the clay matrix. In nature, europium is extracted into the organic phase, so the concentration of clay ions in the matrix is not particularly limited, and even an aqueous solution containing clay ions with nX 100 g/IQ, which is close to a saturated solution, which is difficult to treat with conventional methods, can be easily treated. I can do it. On the contrary, it is preferable that the matrix clay concentration is high because the distribution ratio of europium and the separation coefficient from the matrix elements increase. Anions and impurities may coexist without any particular problem as long as they are not oxidizing. The concentration of the counter-anion in the aqueous phase and the concentration of crown ether in the organic phase need only be equal to or higher than the concentration of europium to be extracted.If these concentrations are too excessive, no particular effect is expected. On the contrary, if it is too excessive, it may cause precipitation of crystals in the organic phase, which is not preferable. If the pH during extraction is extremely low, europium will not be extracted sufficiently, and if it is too high, the zinc alloy will have difficulty functioning as a reducing agent.
Preferably, the pH is between 1.0 and 2.0, and if the reductive extraction operation is carried out within this range, good results are likely to be obtained. Since the dissolution is quite small, if the pH value before extraction is approximately an appropriate value, even if the same solution is subjected to repeated reduction treatments, the pH will only increase slightly and no pH adjustment operation is necessary. The organic phase from which europium has been extracted can be completely back-extracted with water alone, but in order to speed up the phase separation, hydrochloric acid of about 0,000 mL may be used.The organic phase after back-extracting europium can be , it can be used again for europium extraction in its intact state. Regarding the purification of europium, the method and conditions are basically the same as above, or when extracting and purifying europium from a dilute europium solution, it is difficult to extract into crown ether because the salt concentration in the aqueous solution is increased. By coexisting salts in the aqueous phase, the distribution ratio of europium can be further increased.

【実施例】【Example】

[実施例1] (1)ジシクロへキシル−18−クラウン−6エーテル
0.5M/Qを含むペンシトリフルオライド溶液50m
<7と、0.67M/(1’GdcQ 3(Gdとして
106g/(17)、1.2X10−’M/QのEuC
QiおよびLiCF35OsをIM/Q含むpH1,0
の水溶液50m<2と、Ga73%、In23%、Zn
4%からなる合金130gとを100mQ分液漏斗中に
取り、CO2により空気を追い出した後、10分間振盪
した。静置後、有機相は濾過し、有機相と同体積の0.
1規定(N)のHCQで逆抽出した。 (2)以上のようにして得られた抽残液、逆抽出液の分
析により、ユーロピウムおよびガドリニウムの分配比、
分離係数を求めた。また、合金中の亜鉛、ガリウム、イ
ンジウムかどの程度消費されたかをチエツクするために
、抽残液および逆抽液中の合金成分の濃度を得、その合
計量を求めた。 その結果を第1表に示す。 第1表 抽残液中のE u / G d比は2X10−’であっ
た。 また、溶解したガリウムおよびインジウムの量は全体の
8X10−’%であり殆ど無視できる。 [実施例2〕 (1)ジシクロへキシル−18−クラウン−6−エーテ
ル0.5M/Qを含むペンシトリフルオライド溶液60
mQと、1.3M/QGdcQ 3(Gdとして200
g/Q)、2.2X10−’M/QのEuCQs  (
Buとして0.034g/iおよびGd (CF3 S
Os ) 3を0.067M/Q含むPH1,Oの水溶
液60mQと、Ga73%、In23%、Zn4%から
なる合金130gとをLoom<2分液漏斗中に取り、
CO□により空気を追い出した後、10分間振盪した。 静置後、有機相は濾過せずに、有機相と同体積の0.1
規定(N)のHCQで逆抽出した。 (2)逆抽後の有機相は、再び(1)で得られた抽残液
と、亜鉛合金と共に振盪し、ユーロピウムを抽出した。 抽出は計5回くり返した。 (3)以上のようにしてえられた最終抽残液、および各
逆抽出液の分析より、抽出回数と抽残液中のE u /
 G d比との関係を求めた。第1図に試験結果を示す
。 実線例1に比べてGd濃度が高いため、トリフルオルメ
タンスルホン酸イオン濃度が低くても、4回抽出をくり
返せば、E u / G d比がippm未満まで精製
できることがわかる。 [実施例3コ (1)ジシクロへキシル−18−クラウン−6エーテル
0.5M/Qを含むペンシトリフルオライド溶液60m
(17と、1.3M/QGdCfl 3(Gdとして2
12g/(17)、2.4xlO−’M/QのEuCQ
 s  (Euとして0.036g/Q)およびGd 
(CF35O3)sを0.067M/Q、*た、不純物
としてCe、Nd、SmをそれぞれCe : 0.3m
g/Q、Nd : 0.6mg/Q、Sm:2mg/Q
含むpH1,0の水溶液60mQと、Ga73%、In
23%、Zn4%からなる合金130gとをLoomO
分液漏斗中に取り、CO2により空気を追い出した後、
10分間振盪した。静置後、有機相は濾過せずに、有機
相と同体積の0.1規定(N)のHOGで逆抽出した。 (2)逆抽後の有機相は、再び(1)で得られた抽残液
と、還元条件下でユーロピウムを抽出したにの抽出、逆
抽操作を計5回くり返した。 (3〉以上のようにしてえちれた最終抽残液、および抽
出操作前の原液中のGd中の赤土不純物濃度を分析し、
比較した結果を第2表に示した。 第2表 ユーロピウムが完全に有機相に抽出されているにもかか
わらす、従来法ではほぼ完全にユーロピウムと挙動を共
にする微量のセリウム、ネオジム等の軽希土か、共抽出
される事なく、水相中に残留していることから、軽希土
共存下のユーロピウムの精製法としても応用できること
が分かる。因に、ユーロピウムの回収率は、99.7%
より高く、また抽残液中のE u / G d比は、5
X10−7未満であった。 【発明の効果] 本発明の方法によれば、ユーロピウムおよび他の粘土イ
オンを含む水溶液から、選択的にユーロピウムのみを抽
出分離することができ、粘土全般、特にユーロピウムの
近隣の粘土元素からのユーロピウムの完全分離、あるい
は、ユーロピウムの分離回収、精製分野において、工業
的意義は極めて大きい。
[Example 1] (1) 50 ml of pencitrifluoride solution containing 0.5 M/Q of dicyclohexyl-18-crown-6 ether
<7 and 0.67M/(1'GdcQ 3 (106g/(17) as Gd, 1.2X10-'M/Q of EuC
pH 1,0 containing IM/Q with Qi and LiCF35Os
aqueous solution 50m<2, Ga73%, In23%, Zn
130 g of the alloy consisting of 4% were placed in a 100 mQ separatory funnel, and after expelling the air with CO2, it was shaken for 10 minutes. After standing still, the organic phase is filtered and added with the same volume of 0.
Back extracted with 1 normal (N) HCQ. (2) Analysis of the raffinate and back extract obtained as above revealed the distribution ratio of europium and gadolinium,
The separation coefficient was determined. In addition, in order to check the extent to which zinc, gallium, and indium in the alloy were consumed, the concentrations of the alloy components in the raffinate and the back extraction solution were obtained, and the total amount thereof was determined. The results are shown in Table 1. Table 1 The Eu/Gd ratio in the raffinate was 2X10-'. Further, the amount of dissolved gallium and indium is 8×10-'% of the total, which is almost negligible. [Example 2] (1) Pencitrifluoride solution containing 0.5 M/Q of dicyclohexyl-18-crown-6-ether 60
mQ and 1.3M/QGdcQ 3 (200 as Gd
g/Q), 2.2X10-'M/Q of EuCQs (
0.034 g/i as Bu and Gd (CF3 S
60 mQ of an aqueous solution of PH1,O containing 0.067 M/Q of Os ) 3 and 130 g of an alloy consisting of 73% Ga, 23% In, and 4% Zn were placed in a Loom<2 separatory funnel.
After expelling the air with CO□, it was shaken for 10 minutes. After standing still, the organic phase is not filtered, but the same volume as the organic phase is 0.1
Back extraction was performed with normal (N) HCQ. (2) The organic phase after back extraction was shaken again with the raffinate obtained in (1) and the zinc alloy to extract europium. The extraction was repeated a total of 5 times. (3) From the analysis of the final raffinate obtained as described above and each back-extraction, the number of extractions and E u / in the raffinate were determined.
The relationship with the Gd ratio was determined. Figure 1 shows the test results. Since the Gd concentration is higher than in solid line example 1, it can be seen that even if the trifluoromethanesulfonic acid ion concentration is low, by repeating the extraction four times, it can be purified to an E u /G d ratio of less than ippm. [Example 3 (1) 60ml of pencitrifluoride solution containing 0.5M/Q dicyclohexyl-18-crown-6 ether
(17 and 1.3M/QGdCfl 3 (Gd as 2
12g/(17), 2.4xlO-'M/Q of EuCQ
s (0.036g/Q as Eu) and Gd
(CF35O3)s at 0.067M/Q, Ce: 0.3m each with Ce, Nd, and Sm as impurities
g/Q, Nd: 0.6mg/Q, Sm: 2mg/Q
60 mQ of aqueous solution with pH 1.0 containing 73% Ga, In
LoomO
After taking it in a separatory funnel and expelling the air with CO2,
Shake for 10 minutes. After standing still, the organic phase was back-extracted with 0.1 normal (N) HOG in the same volume as the organic phase without being filtered. (2) After the back extraction, the organic phase was extracted with the raffinate obtained in (1) again under reducing conditions to extract europium, and the back extraction operation was repeated five times in total. (3) Analyze the red clay impurity concentration in Gd in the final raffinate solution extracted as above and the stock solution before the extraction operation,
The comparison results are shown in Table 2. Table 2 Despite the fact that europium is completely extracted into the organic phase, in conventional methods, trace amounts of light rare earths such as cerium and neodymium, which behave almost completely with europium, are not co-extracted. The fact that it remains in the aqueous phase indicates that it can also be applied as a purification method for europium in the coexistence of light rare earths. Incidentally, the recovery rate of europium is 99.7%.
higher, and the E u / G d ratio in the raffinate is 5
It was less than X10-7. Effects of the Invention According to the method of the present invention, only europium can be selectively extracted and separated from an aqueous solution containing europium and other clay ions, and europium can be extracted from clays in general, and especially europium from clay elements neighboring europium. It has extremely great industrial significance in the field of complete separation of europium, separation, recovery, and purification of europium.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例2における、ユーロピウムの
抽出回数と抽残液中のE u / G d比との関係を
示したグラフである。
FIG. 1 is a graph showing the relationship between the number of extractions of europium and the E u /G d ratio in the raffinate in Example 2 of the present invention.

Claims (1)

【特許請求の範囲】[Claims] ユーロピウムを含む希土類元素イオンを含む水溶液を還
元剤で還元しつつ、クラウンエーテルを含む有機溶液を
接触させて、ユーロピウムを選択的に抽出する方法にお
いて、35重量%以下のインジウムと1〜8重量%の亜
鉛を含むガリウム合金を還元剤とし、18−クラウン−
6−エーテルあるいはその誘導体をクラウンエーテルと
して用い、弗素を含みかつ酸化性の官能基を持たないス
ルホン酸を対アニオンとして用い、弗素を含みかつ酸化
性の官能基を持たない有機化合物を希釈剤として用いる
ことを特徴とするユーロピウムの選択抽出方法。
A method for selectively extracting europium by contacting an aqueous solution containing rare earth element ions containing europium with a reducing agent and an organic solution containing crown ether, wherein 35% by weight or less of indium and 1 to 8% by weight of indium. Using a gallium alloy containing zinc as a reducing agent, 18-crown-
6-ether or a derivative thereof is used as a crown ether, a sulfonic acid containing fluorine and having no oxidizing functional group is used as a counter anion, and an organic compound containing fluorine and having no oxidizing functional group is used as a diluent. A selective extraction method for europium, characterized in that it is used.
JP2158613A 1990-06-19 1990-06-19 Europium Selective Extraction Method Expired - Lifetime JP2685081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2158613A JP2685081B2 (en) 1990-06-19 1990-06-19 Europium Selective Extraction Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2158613A JP2685081B2 (en) 1990-06-19 1990-06-19 Europium Selective Extraction Method

Publications (2)

Publication Number Publication Date
JPH0452233A true JPH0452233A (en) 1992-02-20
JP2685081B2 JP2685081B2 (en) 1997-12-03

Family

ID=15675538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2158613A Expired - Lifetime JP2685081B2 (en) 1990-06-19 1990-06-19 Europium Selective Extraction Method

Country Status (1)

Country Link
JP (1) JP2685081B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7041262B2 (en) 2000-10-13 2006-05-09 National Institute For Research In Inorganic Materials Method for separating metal ions
JP2007001880A (en) * 2005-06-21 2007-01-11 Toshiba Corp Fluorescent complex and illuminating device given by using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7041262B2 (en) 2000-10-13 2006-05-09 National Institute For Research In Inorganic Materials Method for separating metal ions
JP2007001880A (en) * 2005-06-21 2007-01-11 Toshiba Corp Fluorescent complex and illuminating device given by using the same
JP4559922B2 (en) * 2005-06-21 2010-10-13 株式会社東芝 Fluorescent complex and lighting device using the same

Also Published As

Publication number Publication date
JP2685081B2 (en) 1997-12-03

Similar Documents

Publication Publication Date Title
JP6336469B2 (en) Method for producing scandium-containing solid material with high scandium content
CN111630001A (en) Method for producing high-purity scandium oxide
CN106244828A (en) A kind of impurity-removing method containing vanadium leachate
CA1321705C (en) Preparation of ultra-pure silver nitrate
JPH05254832A (en) Extraction of cerium from aqueous solution of mixture of rare-earth element
US3558268A (en) Process for recovering rhenium values from ion exchange materials
JP3275681B2 (en) Production method of high purity scandium oxide
JPH09208222A (en) Production of high purity rare earth metal oxide
JP2000239753A (en) Method for separating and purifying tellurium
JPH0452233A (en) Method for selectively extracting eupopium
FI65813C (en) HYDROMETALLURGICAL METHOD FOR BEHANDLING AV NICKELSKAERSTEN
JPS6037059B2 (en) Method for purifying gallium solutions by liquid-liquid extraction with quaternary ammonium salts
CN112194154A (en) Method for extracting rubidium chloride from rubidium-containing high-salt brine in short process
JPS6179736A (en) Recovering method of platinum group metal
JPS6157900B2 (en)
Alguacil et al. Rare Earths Recovery using Ionic Liquids and Deep Eutectic Solvents
JPH0514013B2 (en)
CN112239221A (en) Method for extracting rubidium chloride from rubidium-containing high-salinity brine
JPH11293357A (en) Selective recovery of cobalt compound
JPS6158533B2 (en)
JP3206432B2 (en) Low alpha low oxygen metal scandium and method for producing the same
JPH04198017A (en) Purification of scandium oxide
JPH06144802A (en) Recovery of iodine from waste liquid containing organoiodine compound
JPH0465014B2 (en)
JPH10204554A (en) Method for refining zirconium and/or hafnium compound

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term