JPH0452190B2 - - Google Patents
Info
- Publication number
- JPH0452190B2 JPH0452190B2 JP17869286A JP17869286A JPH0452190B2 JP H0452190 B2 JPH0452190 B2 JP H0452190B2 JP 17869286 A JP17869286 A JP 17869286A JP 17869286 A JP17869286 A JP 17869286A JP H0452190 B2 JPH0452190 B2 JP H0452190B2
- Authority
- JP
- Japan
- Prior art keywords
- welding
- flux
- wire
- metal
- slag
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000003466 welding Methods 0.000 claims description 48
- 229910052751 metal Inorganic materials 0.000 claims description 25
- 239000002184 metal Substances 0.000 claims description 25
- 229910001026 inconel Inorganic materials 0.000 claims description 15
- 230000004907 flux Effects 0.000 claims description 12
- 239000010936 titanium Substances 0.000 claims description 9
- 229910052719 titanium Inorganic materials 0.000 claims description 9
- 239000000843 powder Substances 0.000 claims description 7
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 7
- 150000004649 carbonic acid derivatives Chemical class 0.000 claims description 6
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical group O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 4
- 150000002222 fluorine compounds Chemical class 0.000 claims description 4
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 description 17
- 239000000956 alloy Substances 0.000 description 17
- 239000002893 slag Substances 0.000 description 15
- 230000000694 effects Effects 0.000 description 6
- 239000011324 bead Substances 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 230000004927 fusion Effects 0.000 description 5
- 238000005275 alloying Methods 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 3
- 239000010953 base metal Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910019589 Cr—Fe Inorganic materials 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229910016569 AlF 3 Inorganic materials 0.000 description 1
- 229910016036 BaF 2 Inorganic materials 0.000 description 1
- 229910004261 CaF 2 Inorganic materials 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 101100513612 Microdochium nivale MnCO gene Proteins 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- DLHONNLASJQAHX-UHFFFAOYSA-N aluminum;potassium;oxygen(2-);silicon(4+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Si+4].[Si+4].[Si+4].[K+] DLHONNLASJQAHX-UHFFFAOYSA-N 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 210000001503 joint Anatomy 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 230000036284 oxygen consumption Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Landscapes
- Nonmetallic Welding Materials (AREA)
Description
〔産業上の利用分野〕
本発明は、優れた溶接特性を持つインコネル合
金の自動および半自動溶接用フラツクス入りワイ
ヤに関する。
〔従来の技術〕
従来、インコネル合金による自動あるいは半自
動溶接において、ソリツドワイヤによるミグ溶接
が一般的である。また、高ニツケル合金のフラツ
クス入りワイヤは、特開昭58−6795号公報および
特開昭58−132393号公報に示されているが、いず
れも外皮に純Niを使用したものであり、インコ
ネル合金を外皮に用いたものは知られていない。
〔発明が解決しようとする問題点〕
ソリツドワイヤによるミグ溶接はビード表面に
硬い酸化被膜を生じて層を積ねて溶接する場合は
酸化被膜を巻込み、ブローホール、融合不良、溶
接割れなどの原因となる。そのために酸化被膜を
除去する必要があり、これに大きな手間を要す
る。また、インコネル合金は軟鋼に比較して熱伝
導性が悪いために下向溶接でのみ使用しており、
立向および横向溶接には適さない。立向および横
向溶接に適したテイグ溶接や被覆アーク溶接では
能率が悪く、特に被覆アーク溶接を場合は溶接者
の熱練度により溶接部の良否が大巾に異なる。特
開昭58−6795号公報のフラツクス入りワイヤは潜
弧溶接用であり、別に潜弧用フラツクスを必要と
し、溶接姿勢も下向専用である。また、特開昭58
−132393号公報のフラツクス入りワイヤも下向溶
接用であり、外皮がNiであるところから、例え
ば溶接スタート部は外皮から先に溶融するため、
フラツクス中の合金元素が十分溶融しないうちに
凝固するために、溶接金属が均一にならない。
本発明は、横向および立向姿勢も含めて能率よ
く溶接できると共に、均一で健全な溶接部を得る
インコネル合金溶接用フラツクス入りワイヤを提
供することを目的とする。
〔問題点を解決するための手段〕
本発明は、インコネル合金を外皮とするフラツ
クス入りワイヤであつて、フラツクスがワイヤ全
体の重量に対して10〜30%であり、フラツクスの
成分がワイヤ全体の重量比で、酸化チタン、およ
びチタン酸塩から選ばれた1種または2種以上
2.5〜15%、炭酸塩の1種または2種以上0.2〜7
%、SiO2、Al2O3およびそれらの化合物から選ば
れた1種または2種以上0.5〜5%、弗化物の1
種または2種以上0.05〜2%、TiおよびAlから
選ばれた1種または2種0.1〜2%、Ti、Alを含
めた金属粉末の1種または2種以上1〜7%であ
ることを特徴とするインコネル合金溶接用フラツ
クス入りワイヤである。
インコネル合金とは、Ni50重量%以上、Cr10
〜25重量%、Mo 0〜18重量%を含有するNi−
Cr系合金、Ni−Cr−Fe系合金およびNi−Cr−
Mo系合金である。
フラツクス入りワイヤの外皮にインコネル合金
を用いたのは、溶接金属の均一性を損わないため
である。
ワイヤに内蔵されるフラツクスは、ワイヤ全体
の重量に対して10〜30%であり、10%未満では溶
接中にスラグが溶融金属を十分覆うことができな
くなり、溶接金属が酸化したり、ブローホール、
融合不良や溶接割れ等の欠陥発生の原因となる。
また、30%を超えるとスラグが多くなりすぎて溶
融池を覆う等の問題を生じ、融合不良やスラグの
巻込み等の欠陥を生ずる原因となる。
酸化チタンおよびチタン酸塩の1種または2種
以上をワイヤの重量比で2.5〜15%用いるが、2.5
%未満では凝固後のスラグの剥離が悪くなり、15
%を超えるとスラグの量が多くなり、特に開先内
での溶接作業性を悪化させる。チタン酸塩として
は、例えばCaTiO3、BaTiO3、Na2TiO3、
Li2TiO3、K2TiO3等がある。
炭酸塩の1種または2種以上をワイヤの重量比
で0.2〜7%用いるが、これらはスラグの流動性
を改善して溶接金属と母材のなじみを良くするの
でビードの形状も良好になる。また開先内での溶
接において、スラグの溶融池へのかぶりを防止
し、スラグを脆くして除去し易くする。さらに、
溶接熱によつて分解した炭酸ガスが大気を遮断
し、溶接金属の酸化やブローホール等の発生を防
止し、スラグ形成剤としても溶接金属を保護す
る。0.2%未満ではその効果が期待できず、7%
を超えるとスパツタが多発するだけでなく、溶融
金属中の炭酸が増加して耐食性や靭性を悪化させ
る。炭酸塩としては、例えばLi2CO3、BaCO3、
CaCO3、Na2CO3、SrCO3、MnCO3、MgCO3等
がある。そして、好ましくはLi2CO3および
Na2CO3の1種または2種ワイヤの重量比で0.1〜
3%、その他の炭酸塩を0.1〜4%使用する。
SiO2、Al2O3またはそれらの化合物から選ばれ
た1種または2種以上をワイヤの重量比で0.5〜
5%用いるが、それらは酸化チタン、チタン酸塩
と共にアークを安定し、スラグの粘性を調整して
湯流れをよくするだけでなく、溶接金属表面に光
沢を与える。0.5%未満ではその効果が期待でき
ず、5%を超えるとスラグが硬化して、特に開先
内ではスラグの除去が困難になる。SiO2または
Al2O3の化合物としては、例えばマイカ、タル
ク、ベントナイカ、カリ長石等がある。
弗化物の1種または2種以上をワイヤの重量比
で0.05〜2%用いるが、これらの弗化物は溶接時
にワイヤの溶滴が溶融池に移行する過程で溶接熱
により分解し、弗素系ガスを発生し、移行する溶
滴や溶融池の近傍をシールドするので溶接金属の
ブローホールや割れの発生を防止する。0.05%未
満ではその効果が期待できず、2%を超えるとス
パツタや弗素系ガスが多くなり溶接作業性を悪化
させる。弗化物としては、例えば、CaF2、
Na3AlF6、K2SiF6、K2TiF6、BaF2、CeF2、
K2ZrF6、MgF2、AlF3等がある。
TiおよびAlから選ばれた1種または2種をワ
イヤの重量比で0.1〜2%を用いる。これらは強
力な脱酸、脱窒剤としてブローホールや溶接割れ
を防止する。0.1%未満ではその効果が期待でき
ず、2%を超えるとスラグの粘性が高くなりすぎ
て、立向および横向姿勢での溶接が困難になると
共にピツト、ブローホール等が発生する。
金属粉末は前記Ti、Alを含めてワイヤの重量
比で1〜7%を用いる。Ti、Al以外の金属粉末
は、一般に溶接時の酸化消耗の補充として、ある
いは合金元素をフラツクスから添加するために用
いられる。金属粉末の合計が1%未満では合金元
素の酸素消耗に対する補充が不足し、7%を超え
ると金属粉末以外のフラツクス原料とのバランス
が悪くなり、溶接作業性を悪化させる。Ti、Al
以外の金属粉末としては、例えばCr、Ni、Mo、
Nb、Mn、Co、V等がある。
〔発明の効果〕
本発明のインコネル合金溶接用フラツクス入り
ワイヤの効果については以下のとおりである。
(1) 外皮にインコネル合金を使用したことにより
フラツクスから多量の合金元素を添加しなくて
もよいので、溶接スタート部から終端部まで均
一な溶接金属が得られるため、欠陥を生じにく
く、安定した溶接部が得られる。
(2) 下向姿勢だけでなく、立向および横向姿勢に
おいても優れた作業性やビード形状が得られ
る。
(3) 溶着金属および溶接金属の機械的性質は、従
来の被覆アーク溶接棒やミグ溶接と同等あるい
はそれ以上である。
〔実施例〕
本発明を実施例により説明する。外皮として使
用したインコネル合金のストリツプは表1に示す
化学成分で、寸法は0.25×8mmであるH1はNi−
Cr−Fe系のインコネル合金であり、H2はNi−Cr
−Mo系のインコネル合金である。使用したフラ
ツクスは表2に示すF1〜F4の4種類であり、配
合割合はワイヤ全体に対する重量%で表わしたも
のである。
フラツクスとストリツプとの組合わせは表3の
とおりとし、冷間ロール成形方式によつてワイヤ
W1〜W4をワイヤ径1.2mmに、ワイヤW5〜W8を
ワイヤ径1.6mmに製造した。
各々のワイヤを、溶着金属の分析試験片および
機械試験片は下向姿勢で表4の溶接条件により、
立向溶接試験はV型開先の異材継手を上進により
表5の溶接条件で、横向肉盛溶接試験は母材に
SS41(寸法50mmt×300mm×400mm)を用いて表6
の溶接条件で各々行なつた。なお、立向溶接試験
の母材はSUS304とCr−Mo鋼板厚25mmの突合せ
継手を使用し、開先形状はV型、開先角度60°、
ルートフエース2mm、ルート間隔2mm、裏当てな
しとした。
(1) 溶着金属の化学成分の評価は、インコネル合
金溶接用フラツクス入りワイヤとしての規格が
ないのでAWS ERNiCr−3および
AWSERNiCrMo−3のワイヤ規格と比較した
ところ、これらの規格に満足する結果を得た。
化学成分分析結果は表7に、機械的性質は表8
に示した。
(2) 立向溶接試験は立向上進によつて行なつた。
結果は表9に示すが、スラグの巻込み、融合不
良、ブローホール等の溶接欠陥は認められず、
ビード外観は滑らかで良好なものであつた。継
手曲げ試験も割れは認められず優れた強度と伸
びを示し、継手引張試験は全てCr−Mo鋼側の
母材破断であつた。
(3) 横向肉盛溶接試験の結果は表10に示すが、ス
ラグの巻込み、融合不良、ブローホール等の溶
接欠陥は認められず、ビード外観も良好で、曲
げ試験についても優れた延性を示した。
[Industrial Field of Application] The present invention relates to a flux-cored wire for automatic and semi-automatic welding of Inconel alloys with excellent welding properties. [Prior Art] Conventionally, MIG welding using solid wire has been common in automatic or semi-automatic welding of Inconel alloys. Flux-cored wires made of high nickel alloy are shown in Japanese Patent Application Laid-open No. 58-6795 and Japanese Patent Application Laid-Open No. 58-132393, both of which use pure Ni for the outer sheath, and are made of Inconel alloy. There are no known products using this for the outer skin. [Problems to be solved by the invention] MIG welding using solid wire produces a hard oxide film on the bead surface, and when welding layers in layers, the oxide film gets rolled up, causing blowholes, poor fusion, weld cracks, etc. becomes. For this purpose, it is necessary to remove the oxide film, which requires a great deal of effort. Additionally, Inconel alloy has poor thermal conductivity compared to mild steel, so it is only used for downward welding.
Not suitable for vertical and horizontal welding. Teig welding and shielded arc welding, which are suitable for vertical and horizontal welding, are inefficient, and especially when shielded arc welding is used, the quality of the weld varies greatly depending on the welder's skill level. The flux-cored wire disclosed in Japanese Patent Application Laid-Open No. 58-6795 is for submerged arc welding, requires a separate submerged arc flux, and the welding position is only for downward welding. Also, JP-A-58
The flux-cored wire of Publication No. 132393 is also for downward welding, and since the outer sheath is Ni, for example, the welding start part melts from the outer sheath first.
Because the alloying elements in the flux solidify before they are sufficiently melted, the weld metal is not uniform. SUMMARY OF THE INVENTION An object of the present invention is to provide a flux-cored wire for Inconel alloy welding that enables efficient welding in both horizontal and vertical positions and provides a uniform and sound weld. [Means for Solving the Problems] The present invention is a flux-cored wire having an outer sheath made of an Inconel alloy, in which the flux accounts for 10 to 30% of the weight of the entire wire, and the flux component accounts for 10% to 30% of the weight of the entire wire. One or more selected from titanium oxide and titanate in weight ratio
2.5-15%, one or more carbonates 0.2-7
%, 0.5-5% of one or more selected from SiO 2 , Al 2 O 3 and their compounds, 1% of fluoride
0.05 to 2% of one or more kinds selected from Ti and Al, 0.1 to 2% of one or more selected from Ti and Al, and 1 to 7% of one or more kinds of metal powder including Ti and Al. This is a flux-cored wire for welding Inconel alloy. Inconel alloy is Ni50% by weight or more, Cr10
~25% by weight, Ni− containing 0 to 18% by weight of Mo
Cr-based alloy, Ni-Cr-Fe-based alloy and Ni-Cr-
It is a Mo-based alloy. Inconel alloy was used for the outer sheath of the flux-cored wire in order not to impair the uniformity of the weld metal. The flux built into the wire is 10 to 30% of the total weight of the wire, and if it is less than 10%, the slag will not be able to sufficiently cover the molten metal during welding, causing oxidation of the weld metal and blowholes. ,
This can cause defects such as poor fusion and weld cracks.
Moreover, if it exceeds 30%, there will be too much slag, causing problems such as covering the molten pool, and causing defects such as poor fusion and slag entrainment. One or more types of titanium oxide and titanates are used in a weight ratio of 2.5 to 15%, but 2.5
If it is less than 15%, the peeling of the slag after solidification becomes difficult.
%, the amount of slag increases, which worsens welding workability, especially within the groove. Examples of titanates include CaTiO 3 , BaTiO 3 , Na 2 TiO 3 ,
Examples include Li 2 TiO 3 and K 2 TiO 3 . One or more carbonates are used in an amount of 0.2 to 7% by weight of the wire, which improves the fluidity of the slag and improves the compatibility between the weld metal and the base metal, resulting in a better bead shape. . In addition, during welding within a groove, it prevents slag from covering the molten pool and makes the slag brittle so that it can be easily removed. moreover,
Carbon dioxide gas decomposed by welding heat blocks the atmosphere, prevents oxidation of weld metal and the occurrence of blowholes, etc., and also protects weld metal as a slag forming agent. If it is less than 0.2%, the effect cannot be expected, and 7%
Exceeding this value not only causes frequent spatter, but also increases carbonic acid in the molten metal, deteriorating corrosion resistance and toughness. Examples of carbonates include Li 2 CO 3 , BaCO 3 ,
Examples include CaCO 3 , Na 2 CO 3 , SrCO 3 , MnCO 3 and MgCO 3 . and preferably Li 2 CO 3 and
Weight ratio of Na 2 CO 3 type 1 or type 2 wire from 0.1 to
3% and other carbonates 0.1-4%. One or more selected from SiO 2 , Al 2 O 3 or their compounds in a wire weight ratio of 0.5 to
5% is used, and together with titanium oxide and titanate, they not only stabilize the arc and adjust the viscosity of the slag to improve the flow of the metal, but also give gloss to the surface of the weld metal. If it is less than 0.5%, no effect can be expected, and if it exceeds 5%, the slag will harden and it will be difficult to remove the slag, especially within the groove. SiO2 or
Examples of Al 2 O 3 compounds include mica, talc, bentonica, and potassium feldspar. One or more fluorides are used in a weight ratio of 0.05 to 2% of the wire, but these fluorides are decomposed by the welding heat during welding as the droplets of the wire transfer to the molten pool, producing fluorine-based gas. It generates and shields the vicinity of migrating droplets and molten pools, thus preventing the occurrence of blowholes and cracks in the weld metal. If it is less than 0.05%, no effect can be expected, and if it exceeds 2%, spatter and fluorine-based gas will increase, worsening welding workability. Examples of fluorides include CaF 2 ,
Na 3 AlF 6 , K 2 SiF 6 , K 2 TiF 6 , BaF 2 , CeF 2 ,
Examples include K 2 ZrF 6 , MgF 2 and AlF 3 . One or two selected from Ti and Al are used in an amount of 0.1 to 2% by weight of the wire. These act as powerful deoxidizing and denitrifying agents to prevent blowholes and weld cracks. If it is less than 0.1%, no effect can be expected, and if it exceeds 2%, the viscosity of the slag becomes too high, making it difficult to weld in vertical or horizontal positions, and causing pits, blowholes, etc. The metal powder used is 1 to 7% by weight of the wire, including the aforementioned Ti and Al. Metal powders other than Ti and Al are generally used to supplement oxidation consumption during welding or to add alloying elements from flux. If the total amount of metal powder is less than 1%, there will be insufficient replenishment for the oxygen consumption of the alloying elements, and if it exceeds 7%, the balance with flux materials other than metal powder will be poor, resulting in poor welding workability. Ti, Al
Other metal powders include, for example, Cr, Ni, Mo,
There are Nb, Mn, Co, V, etc. [Effects of the Invention] The effects of the flux-cored wire for welding Inconel alloy of the present invention are as follows. (1) By using Inconel alloy for the outer skin, there is no need to add large amounts of alloying elements from the flux, so weld metal that is uniform from the welding start to the welding end is less likely to cause defects and is stable. A weld is obtained. (2) Excellent workability and bead shape can be obtained not only in the downward position but also in the vertical and horizontal positions. (3) The mechanical properties of the deposited metal and weld metal are equivalent to or better than those of conventional coated arc welding rods and MIG welding. [Example] The present invention will be explained with reference to an example. The Inconel alloy strip used as the outer skin has the chemical composition shown in Table 1, and the dimensions are 0.25 x 8 mm.H1 is Ni-
It is a Cr-Fe based Inconel alloy, and H2 is Ni-Cr
-Mo-based Inconel alloy. The fluxes used were four types, F1 to F4, shown in Table 2, and the blending ratios are expressed in weight % with respect to the entire wire. The combinations of flux and strip are as shown in Table 3, and the wire is formed by cold roll forming.
Wires W1 to W4 were manufactured with a wire diameter of 1.2 mm, and wires W5 to W8 were manufactured with a wire diameter of 1.6 mm. Each wire was welded under the welding conditions shown in Table 4 with the weld metal analysis test piece and mechanical test piece facing downward.
The vertical welding test was performed by moving a dissimilar metal joint with a V-shaped groove upward under the welding conditions shown in Table 5, and the horizontal overlay welding test was performed by welding a dissimilar metal joint with a V-shaped groove on the base metal.
Table 6 using SS41 (dimensions 50mmt x 300mm x 400mm)
Each welding was carried out under the following welding conditions. The base material for the vertical welding test was a butt joint made of SUS304 and Cr-Mo steel plates with a thickness of 25 mm, the groove shape was V-shaped, the groove angle was 60°,
The root face was 2 mm, the root spacing was 2 mm, and there was no backing. (1) The chemical composition of the weld metal was evaluated using AWS ERNiCr-3 and
When compared with the wire standards of AWSERNiCrMo-3, results satisfying these standards were obtained.
Chemical component analysis results are shown in Table 7, and mechanical properties are shown in Table 8.
It was shown to. (2) Vertical welding tests were conducted by advancing vertically.
The results are shown in Table 9, and no welding defects such as slag entrainment, poor fusion, or blowholes were observed.
The bead appearance was smooth and good. No cracks were observed in the joint bending test, which showed excellent strength and elongation, and in all the joint tensile tests, the base metal fractured on the Cr-Mo steel side. (3) The results of the lateral overlay welding tests are shown in Table 10, and no welding defects such as slag entrainment, poor fusion, or blowholes were observed, the bead appearance was good, and the welding showed excellent ductility in the bending test. Indicated.
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】【table】
Claims (1)
ヤであつて、フラツクスがワイヤ全体の重量に対
して10〜30%であり、フラツクスの成分がワイヤ
全体の重量比で、酸化チタンおよびチタン酸塩か
ら選ばれた1種または2種以上2.5〜15%、炭酸
塩の1種または2種以上0.2〜7%、SiO2、Al2O3
およびそれらの化合物から選ばれた1種または2
種以上0.5〜5%、弗化物の1種または2種以上
0.05〜2%、TiおよびAlから選ばれた1種また
は2種0.1〜2%、TiおよびAlを含めた金属粉末
の1種または2種以上1〜7%であることを特徴
とするインコネル合金溶接用フラツクス入りワイ
ヤ。1. A flux-cored wire having an outer sheath of Inconel, in which the flux is 10 to 30% of the weight of the entire wire, and the flux component is selected from titanium oxide and titanate in proportion to the weight of the entire wire. 2.5-15% of one or more kinds of carbonates, 0.2-7% of one or more kinds of carbonates, SiO 2 , Al 2 O 3
and one or two selected from these compounds
0.5-5% of species or more, one or more fluorides
0.05-2%, 0.1-2% of one or two selected from Ti and Al, and 1-7% of one or more metal powders including Ti and Al. Flux-cored wire for welding.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17869286A JPS6336995A (en) | 1986-07-31 | 1986-07-31 | Flux cored wire for welding 'inconel(r)' alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17869286A JPS6336995A (en) | 1986-07-31 | 1986-07-31 | Flux cored wire for welding 'inconel(r)' alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6336995A JPS6336995A (en) | 1988-02-17 |
JPH0452190B2 true JPH0452190B2 (en) | 1992-08-21 |
Family
ID=16052878
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17869286A Granted JPS6336995A (en) | 1986-07-31 | 1986-07-31 | Flux cored wire for welding 'inconel(r)' alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6336995A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2796398B1 (en) * | 1999-07-12 | 2002-02-22 | Pechiney Electrometallurgie | CALCIUM METAL PELLETS FOR THE TREATMENT OF STEEL BY THE FURNISHED WIRE TECHNIQUE |
-
1986
- 1986-07-31 JP JP17869286A patent/JPS6336995A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6336995A (en) | 1988-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4149063A (en) | Flux cored wire for welding Ni-Cr-Fe alloys | |
JP5198481B2 (en) | Ni-based alloy flux cored wire | |
JP6809533B2 (en) | Flux-cored wire, welded joint manufacturing method, and welded joint | |
US4449031A (en) | Tubular composite arc welding electrode for vertical up welding of stainless steel and nickel-base alloys | |
JP2019025524A (en) | Flux-cored wire for gas-shielded arc welding, and manufacturing method of welded joint | |
US20060266799A1 (en) | Slag detachability | |
CN111819029B (en) | Method for manufacturing flux-cored wire, and method for manufacturing welded joint | |
JP2019048324A (en) | Flux-cored wire for gas shield arc-welding, and method of manufacturing weld joint | |
JP4425756B2 (en) | Flux-cored wire for horizontal fillet welding | |
JP2614969B2 (en) | Gas shielded arc welding titania-based flux cored wire | |
JP2019025525A (en) | Flux-cored wire for gas-shielded arc welding, and manufacturing method of welded joint | |
JP2614967B2 (en) | Gas shielded arc welding metal flux cored wire | |
JP2675894B2 (en) | Flux-cored wire for welding high strength austenitic stainless steel | |
JP5361797B2 (en) | Flux-cored wire for horizontal fillet gas shielded arc welding | |
JPH0771760B2 (en) | Self shielded arc welding flux cored wire for all position welding | |
JPH0452190B2 (en) | ||
JP2687033B2 (en) | Flux-cored wire for welding highly corrosion-resistant stainless steel | |
JPS63220996A (en) | Filler metal for tig welding | |
JPH0521677B2 (en) | ||
JP3540889B2 (en) | Flux-cored wire for stainless steel welding | |
JP3828088B2 (en) | Flux-cored wire for fillet welding | |
KR20190118898A (en) | Titania Based Flux Cored Wire of Gas Shielded Arc Welding for excellent hot cracking resistance | |
JP7401345B2 (en) | Ni-based alloy flux-cored wire | |
JPH04319093A (en) | Flux cored wire for nickel alloy 'hastelloy c-276(r)' welding | |
JP3481146B2 (en) | Flux-cored wire for stainless steel welding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |