JPH0452188B2 - - Google Patents

Info

Publication number
JPH0452188B2
JPH0452188B2 JP5823785A JP5823785A JPH0452188B2 JP H0452188 B2 JPH0452188 B2 JP H0452188B2 JP 5823785 A JP5823785 A JP 5823785A JP 5823785 A JP5823785 A JP 5823785A JP H0452188 B2 JPH0452188 B2 JP H0452188B2
Authority
JP
Japan
Prior art keywords
coating
active oxygen
welding
manganese powder
oxygen content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5823785A
Other languages
Japanese (ja)
Other versions
JPS61219495A (en
Inventor
Yasuhiko Hatada
Eiichi Fukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel Welding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Welding and Engineering Co Ltd filed Critical Nippon Steel Welding and Engineering Co Ltd
Priority to JP5823785A priority Critical patent/JPS61219495A/en
Publication of JPS61219495A publication Critical patent/JPS61219495A/en
Publication of JPH0452188B2 publication Critical patent/JPH0452188B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、良好なる耐被覆われ性及び固着性を
得る低水素系被覆アーク溶接棒に関するものであ
る。 (従来の技術) 炭酸石灰粉及び螢石を主成分とする低水素系被
覆アーク溶接棒(以下溶接棒という。)の被覆剤
中には、脱酸剤としてMn及びSiを、また溶接金
属の強度、靭性向上のため、Mn、Si、Ni、Cr、
Mo等が金属粉、合金粉の形で添加されており、
溶接金属が所望の成分になるよう各成分が配合さ
れている。溶接棒は前述した組成を適宜配合され
た被覆剤を、適量の水ガラスと混練し、軟鋼心線
の周囲に被覆し、30〜200℃で連続的に乾燥し、
更に300〜400℃で所定時間焼成して製造される。 しかしながら、これらの金属粉あるいは合金粉
は、一般的にその粉体表面に吸着層を有し、一部
は表面に薄い酸化被膜を有しているが、このよう
な粉体を、水ガラス(Na2O・nSiO2・mH2Oあ
るいはK2O・nSiO2・mH2O)と混練した場合、
酸化被覆が形成されていないとか、酸化被膜が不
十分であると、水ガラスとの化学反応により、水
素ガスを発生することは周知の事実である。 特に金属マンガン粉と、水ガラスとの化学反応
により、塗装直後より乾燥工程においての30〜
200℃の高温で、著しい水素ガスを発生する。こ
の水素ガスは、高温雰囲気において固着化しつつ
ある被覆剤中に発生するからして、その発生部あ
るいは、散逸経路では、溶接棒の被覆われや、被
覆の固着性が劣化し、溶接棒製造上に多大なる悪
影響を及ぼしている。また、被覆われや、固着性
の劣化した溶接棒は、溶接作業中に脆弱となつた
被覆が欠け落ち、溶接金属にスラグの巻込み、ブ
ローホールピツトの発生等の欠陥を発生する欠点
がある。 以上の如く、金属マンガン粉表面が、十分に耐
アルカリ性を有していない場合は、水ガラスとの
化学反応により水素ガスを発生し、被覆われや被
覆固着性の劣化を引き起こし、ひいてはその溶接
棒を使用した場合、溶接欠陥を引き起こす問題が
あつた。 これらの問題に対し、従来の技術は、金属マン
ガン粉を表面を過マンガン酸カリウム等の酸化剤
による酸化させる方法、あるいは80〜150℃の高
温蒸気中に短時間暴露することにより酸化させる
方法があつたが、これらの方法では、金属マンガ
ン粉中の酸化被膜が過剰となり、二酸化マンガン
(MnO2)三二酸化マンガン(Mn2O3)、四三酸化
マンガン(Mn3O4)などの形態となり、被覆わ
れ等には悪影響はないが、溶接棒被覆の色が一定
化せず、色調の不安定化あるいは過剰酸素による
スパツタが発生したり、溶接アークが弱くなるな
どの溶接作業性が劣化していた。 (発明が解決しようとする問題点) 本発明は、上記欠陥に対応して良好なる被覆を
有する低水素系被覆アーク溶接棒を提供すべく検
討を加えた結果、特に被覆剤に配合する金属マン
ガン粉の活性酸素含有量を規制することにより、
水ガラスとの化学反応による水素ガスの発生量を
減少させ、耐被覆われ性と固着性が極めて良好、
かつ溶接棒外観の色調が安定した、即ち、生産性
及び溶接作業性の良好なる低水素系被覆アーク溶
接棒を得ることに成功した。 (問題点を解決するための手段) 本発明の要旨とするところは、被覆剤中に活性
酸素含有量0.05〜0.40%重量比の金属マンガン粉
を、1.0〜20.0%重量比添加したことを特徴とす
る低水素系被覆アーク溶接棒である。 ここでいう活性酸素とは、希硫酸液中におい
て、しゆう酸ナトリウムを酸化させ得る酸素であ
り、JIS M8233に規定される定量方法を、金属マ
ンガン粉中の活性酸素定量方法として適用し求め
たものである。 次に本発明の被覆剤中の活性酸素含有率0.05〜
0.40%重量比の金属マンガン粉の添加限定理由を
述べる。金属マンガン粉の添加主目的として、溶
接金属の脱酸及び合金添加があり、これを有効に
行うためには、最低1.0%重量比が必要であるこ
とから、下限を1.0%重量比とした。また20%重
量比を超した場合、溶接金属の脆化が著しく溶接
性が悪化するので、被覆剤中の金属マンガン粉の
上限を20%重量比とした。 なお、被覆剤の他の成分については、通常の低
水素系被覆剤と同様、主成分として適量の炭酸石
灰、螢石、水ガラス等を含むものである。従つて
炭酸石灰の添加量として、5〜65%重量比の範囲
が好ましい。また螢石の添加量としては2−26%
重量比の範囲がさらにアルミナ、マグネシヤ等の
ほか、粘結剤として適量の水ガラスを含有する。 炭酸石灰はガス発生剤、スラグ形成剤及びアー
ク安定剤としての役割を有するので添加されるも
のであるが、少量ではガス発生量が少なく、大気
のしやへいが不十分で、ブローホールが発生しや
すくなつたり、溶接金属の性状としてスラグの流
れあるいは塩基性が不足し、十分なものが得られ
ない。しかしあまり多量に添加すると、クラグの
粘性が過大となり、立向姿勢で溶接ビード形状が
悪くなる。 また螢石はスラグの粘性、流動性を調整するの
に必要であるが、添加量が多くても少なくても溶
接作業性が悪いが、2%重量比未満ではスラグの
粘性が大き過ぎ、ビードの母材に対するなじみが
悪くなる。一方、26%を超えるとスラグが流れ易
く、たとえば立向姿勢で溶融金属の垂れ落ちが起
こり、溶接作業性が悪くなる。 (作用) 以下、本発明の金属マンガン粉中の活性酸素含
有率及び金属マンガン添加率の限定理由を、作用
効果とともに詳しく述べる。 先ず、本発明の金属マンガン粉中の活性酸素含
有率について述べる。金属マンガン粉中の活性酸
素含有率を、0.05〜0.4%重量に制限したのは、
第1図から明らかな様に、金属マンガン粉中の活
性酸素含有率が、0.40%重量比を超えると、金属
マンガン粉の色調が不安定となり、溶接棒被覆の
色調に悪影響を及ぼし、さらにスパツタやブロー
ホールの発生など溶接作業性にも悪影響を及ぼ
す。 また金属マンガン粉中の活性酸素含有率が、
0.05%重量比未満では、溶接棒の被覆われ発生率
や、被覆脱落率が悪くなり、被覆固着性が不良と
なるからである。。なお、活性酸素量が0.05〜0.4
%の金属マンガン粉は、ふたなしの浅い容器に、
厚さ150mm以下の範囲で散布して、大気中に放置
して製造放置時間4日〜15日間で、各所定量のも
のを得て使用した。 第1図、第2図はCaCO3:55%、CaF2:18%、
TiO2:3%、SiO2:1%、Fe−Si:10%、その
他:6%に、上記JIS M8233の定量方法により求
めた0.02−0.40%重量比の活性酸素を含有する金
属マンガン粉を各々7%重量比添加し、水ガラス
はさらにJIS 1号 44Be(at 20℃)を配合被覆
剤100に対して、固形量8相当分を添加して混練
して、心線に被覆した低水素被覆アーク溶接棒
を、塗装後連続して60℃;20分、150℃;20分乾
燥したのち、400℃;60分で焼成した各溶接棒の
被覆われ発生率と、活性酸素含有率との関係(第
1図)、脱落率と活性酸素含有率及び色調安定度
との関係(第2図)をそれぞれ示したものであ
る。 第2図中○印は色調の安定した溶接棒、△印は
やや褐色の色調を溶接棒被覆の表面の一部、ある
いは全面に呈している溶接棒、×印は赤褐色の色
調を溶接棒被覆の表面の一部あるいは全面に呈し
ている溶接棒を表わしている。 第1図、第2図から明らかな様に、活性酸素含
有率が低い金属マンガン粉を使用した溶接棒にお
いては、溶接棒の被覆表面に微細な被覆われが随
所に発生し、脱落率が高く、特に活性酸素含有率
0.05%重量比未満の金属マンガン粉を、添加した
溶接棒の脱落率は、20%以上の著しく高い値を示
している。 逆に0.40%重量比を超える活性酸素を含有した
金属マンガン粉を添加した溶接棒においては、被
覆剤表面の色むらが表われており、活性酸素含有
率の増加に比例して、被覆剤表面の色むらの程度
が激しくなる傾向にある。 以上の結果により、良好なる被覆固着性を有
し、かつ、色むらのない溶接棒を得るには、被覆
剤に添加される金属マンガン粉が、0.05〜0.40%
重量比の活性酸素を含有していることが必要であ
ることが判る。 (実施例) 次に本発明を実施例によりさらに詳細に説明す
る。 第1表は直径4mm、長さ400mmのJIS G3523該
当の鋼心線に、水ガラス(Be 44 at 20℃)で混
練した低水素系被覆剤を用いて、製造した溶接棒
で、溶接作業性と被覆の脱落率われ性を調査した
結果である。 なお本発明において使われている耐被覆われ性
及び固着性を詳細に検討するための一つの判定手
段として、第3図に概念図を示す装置の鋼製回転
箱1に、溶接棒を所定量装填し、所定の時間回転
させ、被覆の落ちる割合、すなわち脱落率を測定
し、これを被覆の脆弱さとして表わした。 ここで脱落率とは、脱落した被覆剤重量を、試
験前の全被覆重量で割つたものである。なお図に
おいて、2は駆動モータ、3は支持軸、4は減速
部であり、a、b、cは鋼製回転箱1の縦、横、
高さをそれぞれ示すものであつて、aは700mm、
bは100mmcは500mmのものを用いた。
(Industrial Application Field) The present invention relates to a low hydrogen-based coated arc welding rod that provides good coating resistance and adhesion. (Prior art) The coating material of a low-hydrogen coated arc welding rod (hereinafter referred to as a welding rod), which is mainly composed of carbonate lime powder and fluorite, contains Mn and Si as deoxidizers, and also contains Mn and Si as deoxidizing agents. To improve strength and toughness, Mn, Si, Ni, Cr,
Mo etc. are added in the form of metal powder or alloy powder,
Each component is blended so that the weld metal has the desired components. The welding rod is made by mixing a coating agent with the above-mentioned composition with an appropriate amount of water glass, coating it around a mild steel core wire, and drying it continuously at 30 to 200℃.
It is further manufactured by firing at 300 to 400°C for a predetermined period of time. However, these metal powders or alloy powders generally have an adsorption layer on the powder surface, and some have a thin oxide film on the surface. When mixed with Na 2 O・nSiO 2・mH 2 O or K 2 O・nSiO 2・mH 2 O),
It is a well-known fact that if an oxide coating is not formed or the oxide coating is insufficient, hydrogen gas is generated due to a chemical reaction with water glass. In particular, due to the chemical reaction between metallic manganese powder and water glass, the
Generates significant hydrogen gas at high temperatures of 200℃. Since this hydrogen gas is generated in the coating material that is solidifying in a high-temperature atmosphere, the hydrogen gas may cause the welding rod to be coated or the adhesion of the coating may deteriorate at the point where it is generated or on the dissipation path, making it difficult to manufacture welding rods. It has a huge negative impact on. In addition, welding rods with cracked coatings or deteriorated adhesion have the disadvantage that the fragile coating may chip off during welding work, causing defects such as slag entrainment in the weld metal and the formation of blowhole pits. be. As mentioned above, if the surface of metallic manganese powder does not have sufficient alkali resistance, it will generate hydrogen gas through chemical reaction with water glass, causing coating cracking and deterioration of coating adhesion, and eventually the welding rod. When using this, there was a problem that caused welding defects. To solve these problems, conventional techniques have been used to oxidize the surface of metallic manganese powder with an oxidizing agent such as potassium permanganate, or by exposing it to high-temperature steam at 80 to 150°C for a short time. However, with these methods, the oxide film in the metal manganese powder becomes excessive, and it becomes manganese dioxide (MnO 2 ), manganese sesquioxide (Mn 2 O 3 ), trimanganese tetroxide (Mn 3 O 4 ), etc. Although there is no negative effect on the coating cracks, etc., the color of the welding rod coating does not become constant, the color tone becomes unstable, spatter occurs due to excess oxygen, and welding workability deteriorates, such as weakening the welding arc. was. (Problems to be Solved by the Invention) The present invention has been developed in order to provide a low-hydrogen coated arc welding rod having a good coating in response to the above-mentioned defects. By regulating the active oxygen content of powder,
Reduces the amount of hydrogen gas generated due to chemical reaction with water glass, and has extremely good coating resistance and adhesion.
Furthermore, we succeeded in obtaining a low-hydrogen-based coated arc welding rod with a stable external color tone, that is, with good productivity and welding workability. (Means for Solving the Problems) The gist of the present invention is that metallic manganese powder with an active oxygen content of 0.05 to 0.40% by weight is added to the coating material in a weight ratio of 1.0 to 20.0%. This is a low-hydrogen coated arc welding rod. Active oxygen here refers to oxygen that can oxidize sodium oxalate in a dilute sulfuric acid solution, and was determined by applying the quantitative method specified in JIS M8233 as a method for quantifying active oxygen in metallic manganese powder. It is something. Next, the active oxygen content in the coating material of the present invention is 0.05~
The reason for limiting the addition of metallic manganese powder at a weight ratio of 0.40% will be explained. The main purpose of adding metallic manganese powder is to deoxidize the weld metal and add alloys, and in order to effectively accomplish this, a minimum weight ratio of 1.0% is required, so the lower limit was set at 1.0% weight ratio. Furthermore, if the weight ratio exceeds 20%, the weld metal becomes brittle and weldability deteriorates significantly, so the upper limit of the amount of metallic manganese powder in the coating material was set at 20% by weight. As for the other components of the coating material, the main components include appropriate amounts of lime carbonate, fluorite, water glass, etc., as with ordinary low-hydrogen coating materials. Therefore, the amount of carbonate lime to be added is preferably in the range of 5 to 65% by weight. The amount of fluorite added is 2-26%.
The weight ratio range further includes alumina, magnesia, etc., as well as an appropriate amount of water glass as a binder. Lime carbonate is added because it has the role of a gas generating agent, slag forming agent, and arc stabilizer, but if it is small, the amount of gas generated is small, the air is not sufficiently filtered, and blowholes occur. Otherwise, the properties of the weld metal may be insufficient in slag flow or basicity, making it impossible to obtain a sufficient weld metal. However, if too large a quantity is added, the viscosity of the crag becomes excessive and the shape of the weld bead becomes poor in the vertical position. In addition, fluorite is necessary to adjust the viscosity and fluidity of slag, and welding workability is poor whether the amount added is large or small, but if the weight ratio is less than 2%, the viscosity of the slag is too high and beads are formed. Compatibility with the base material becomes poor. On the other hand, if it exceeds 26%, the slag tends to flow, causing molten metal to drip down, for example, in an upright position, resulting in poor welding workability. (Function) Hereinafter, the reasons for limiting the active oxygen content and the addition rate of metal manganese in the metal manganese powder of the present invention will be described in detail together with the effects. First, the active oxygen content in the metallic manganese powder of the present invention will be described. The active oxygen content in the metallic manganese powder was limited to 0.05 to 0.4% by weight.
As is clear from Figure 1, when the active oxygen content in the metallic manganese powder exceeds 0.40% by weight, the color tone of the metallic manganese powder becomes unstable, adversely affecting the color tone of the welding rod coating, and causing spatter. It also has a negative effect on welding workability, such as the occurrence of blowholes. In addition, the active oxygen content in the metallic manganese powder is
This is because if the weight ratio is less than 0.05%, the rate of occurrence of coating cracking of the welding rod and the rate of shedding of the coating will be poor, and the coating adhesion will be poor. . In addition, the amount of active oxygen is 0.05 to 0.4
% metallic manganese powder in a shallow container without a lid.
Each predetermined amount of each product was obtained by spraying it in a thickness of 150 mm or less and leaving it in the atmosphere for 4 to 15 days. Figures 1 and 2 show CaCO 3 : 55%, CaF 2 : 18%,
TiO2 : 3%, SiO2 : 1%, Fe-Si: 10%, others: 6%, and metallic manganese powder containing active oxygen at a weight ratio of 0.02-0.40% determined by the above JIS M8233 quantitative method. The water glass was further mixed with JIS No. 1 44Be (at 20°C) and the equivalent of 8 solids was added to 100 parts of the coating material and kneaded. After coating, coated arc welding rods were continuously dried at 60℃ for 20 minutes, at 150℃ for 20 minutes, and then fired at 400℃ for 60 minutes. Figure 1 shows the relationship between shedding rate, active oxygen content, and color stability (Figure 2). In Figure 2, the ○ marks are welding rods with a stable color tone, the △ marks are welding rods with a slightly brownish color on part or the entire surface of the welding rod coating, and the × marks are welding rods with a reddish-brown color on the welding rod coating. The welding rod is exposed on a part or the entire surface of the welding rod. As is clear from Figures 1 and 2, in welding rods using metallic manganese powder with a low active oxygen content, fine coating cracks occur here and there on the coating surface of the welding rod, and the dropout rate is high. , especially active oxygen content
The dropout rate of welding rods to which less than 0.05% by weight of metallic manganese powder was added is significantly high, at 20% or more. On the other hand, in welding rods to which metallic manganese powder containing active oxygen exceeding 0.40% weight ratio was added, color unevenness appeared on the surface of the coating, and the surface of the coating increased in proportion to the increase in active oxygen content. The degree of color unevenness tends to become more severe. From the above results, in order to obtain a welding rod with good coating adhesion and no uneven color, it is necessary to add 0.05 to 0.40% of metallic manganese powder to the coating material.
It can be seen that it is necessary to contain active oxygen in a weight ratio. (Example) Next, the present invention will be explained in more detail with reference to Examples. Table 1 shows the welding workability of welding rods manufactured using a low-hydrogen coating mixed with water glass (Be 44 at 20°C) on a JIS G3523 steel core wire with a diameter of 4 mm and a length of 400 mm. This is the result of investigating the shedding rate and fragility of the coating. As a means of determining in detail the coating resistance and adhesion used in the present invention, a predetermined amount of welding rods was placed in the steel rotating box 1 of the device whose conceptual diagram is shown in FIG. The coating was loaded and rotated for a predetermined period of time, and the rate at which the coating fell off, that is, the shedding rate, was measured, and this was expressed as the fragility of the coating. The shedding rate here is the weight of the coating material that has fallen off divided by the total weight of the coating before the test. In the figure, 2 is a drive motor, 3 is a support shaft, 4 is a reduction unit, and a, b, and c are the vertical, horizontal, and vertical directions of the steel rotating box 1.
Each shows the height, where a is 700mm,
b is 100mm, c is 500mm.

【表】 (1) 記号T1〜T10は、本発明による活性酸素
を含有した金属マンガン粉を、本発明範囲内に
添加した低水素系溶接棒で被覆の耐われ性、被
覆のの固着性及び色調ともに良好なる被覆状態
を有している。 (2) 記号T11,12,14は、金属マンガン中
の活性酸素含有率が、本発明から低く外れてお
り、固着性において不良である。 (3) 信号T13は、本発明範囲の金属マンガンの
活性酸素含有率が、本発明範囲から多く外れて
おり、スパツタが多発し、溶接作業性不良であ
る。 (発明の効果) 以上の結果から明らかなように、本発明の溶接
棒は被覆固着性、色調、及び溶接作業性ともに従
来棒と比較して良好なる結果を得ることができ
た。
[Table] (1) Symbols T1 to T10 are low-hydrogen welding rods to which metallic manganese powder containing active oxygen according to the present invention has been added within the range of the present invention, and the coating resistance, coating adhesion, and It has a good coating condition with good color tone. (2) In samples T11, 12, and 14, the active oxygen content in the metal manganese was low and deviated from the present invention, and the adhesion was poor. (3) Signal T13 indicates that the active oxygen content of the metal manganese is much outside the range of the present invention, and spatter occurs frequently, resulting in poor welding workability. (Effects of the Invention) As is clear from the above results, the welding rod of the present invention was able to obtain better results in terms of coating adhesion, color tone, and welding workability compared to the conventional rod.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は金属マンガン粉中の活性酸素含有率と
被覆われ発生率の関係を示す図表、第2図は金属
マンガン粉中の活性酸素含有率と脱落率の関係を
示す図表、第3図は被覆の脱落率を測定する装置
の説明図である。 1:回転箱(鋼製)、2:駆動モーター、3:
支持軸、4:減速部。
Figure 1 is a chart showing the relationship between the active oxygen content in metallic manganese powder and the incidence of coating, Figure 2 is a chart showing the relationship between the active oxygen content in metallic manganese powder and the shedding rate, and Figure 3 is a chart showing the relationship between the active oxygen content in metallic manganese powder and the shedding rate. FIG. 2 is an explanatory diagram of a device for measuring the shedding rate of a coating. 1: Rotating box (made of steel), 2: Drive motor, 3:
Support shaft, 4: Reduction part.

Claims (1)

【特許請求の範囲】[Claims] 1 被覆剤中に活性酸素含有量が0.05〜0.40%
(重量比)である金属マンガンを、1.0〜20%(重
量比)を配合添加したことを特徴とする低水素系
被覆アーク溶接棒。
1 Active oxygen content in coating material is 0.05-0.40%
A low hydrogen-based coated arc welding rod characterized by containing 1.0 to 20% (weight ratio) of metallic manganese.
JP5823785A 1985-03-25 1985-03-25 Low hydrogen coated electrode Granted JPS61219495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5823785A JPS61219495A (en) 1985-03-25 1985-03-25 Low hydrogen coated electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5823785A JPS61219495A (en) 1985-03-25 1985-03-25 Low hydrogen coated electrode

Publications (2)

Publication Number Publication Date
JPS61219495A JPS61219495A (en) 1986-09-29
JPH0452188B2 true JPH0452188B2 (en) 1992-08-21

Family

ID=13078489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5823785A Granted JPS61219495A (en) 1985-03-25 1985-03-25 Low hydrogen coated electrode

Country Status (1)

Country Link
JP (1) JPS61219495A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6504894B2 (en) * 2015-04-13 2019-04-24 株式会社神戸製鋼所 Coated arc welding rod

Also Published As

Publication number Publication date
JPS61219495A (en) 1986-09-29

Similar Documents

Publication Publication Date Title
US3805016A (en) Tubular composite welding wire filled with potassium compounds containing flux
JPS62173096A (en) Welding bead and electrode for manufacture thereof
JPH03180298A (en) Flux cored wire for gas shielded arc welding
JP2008246507A (en) Ni-based alloy flux-cored wire
US3501354A (en) Alkali metal aluminate bonded welding flux and manufacture thereof and coated welding electrode
US2544334A (en) Weld rod, flux, and method
US3580748A (en) Welding flux component
US3670135A (en) Arc welding electrode and process for stainless steel
US3480487A (en) Arc welding compositions
PL80948B1 (en)
JPH0468079B2 (en)
JPH0452188B2 (en)
US2191473A (en) Welding composition
US1599056A (en) Electrode for welding and like purposes
JP4662641B2 (en) Stainless steel coated arc welding rod
US1972063A (en) Coated ferrous welding electrode
JP2907794B2 (en) Ceramic backing material for carbon dioxide arc welding
JP2711061B2 (en) Stainless steel flux cored wire
JP2942142B2 (en) Low hydrogen coated arc welding rod
JPS5877790A (en) Sintered flux for submerged arc welding
JP3856650B2 (en) Stainless steel coated arc welding rod
JPS6048280B2 (en) Manufacturing method of low hydrogen coated arc welding rod
JPS63199093A (en) Arc welding electrode coated on stainless core wire
JPH07110431B2 (en) Low hydrogen system coated arc welding rod for weathering steel
JPH0994694A (en) Flux cored wire for stainless steel