JPH04520B2 - - Google Patents

Info

Publication number
JPH04520B2
JPH04520B2 JP60175719A JP17571985A JPH04520B2 JP H04520 B2 JPH04520 B2 JP H04520B2 JP 60175719 A JP60175719 A JP 60175719A JP 17571985 A JP17571985 A JP 17571985A JP H04520 B2 JPH04520 B2 JP H04520B2
Authority
JP
Japan
Prior art keywords
oils
oil
organic solvent
gas
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60175719A
Other languages
Japanese (ja)
Other versions
JPS6236497A (en
Inventor
Tadaaki Saeki
Isao Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP17571985A priority Critical patent/JPS6236497A/en
Publication of JPS6236497A publication Critical patent/JPS6236497A/en
Publication of JPH04520B2 publication Critical patent/JPH04520B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、有機溶剤に含有される油類を高純度
で、且つ効率よく回収するための新規な回収方法
に関する。 [従来の技術および問題点] 金属に付着した圧延油、切削油、焼入油等の油
類を脱脂する手段として、有機溶剤によつて洗浄
する方法が行われる。従来、上記の洗浄処理によ
り排出する油類を含有した有機溶剤(以下、有機
溶剤廃液という)は、蒸留によつて分離され、回
収された有機溶剤および油類は再利用に供されて
いる。ところが、通常の蒸留によつて回収される
釜残の油類は、有機溶剤が完全に除去されず、一
般に数千ppm以上、少なくとも500ppm以上の濃
度で含有されている。そのため、このような回収
された油類を例えば焼入油として使用した場合に
は、該油類に含有されている該有機溶剤が焼入時
の高熱で気化あるいは分解することにより、作業
環境を悪化するばかりでなく、焼入品の品質にも
悪影響を及ぼすという問題を生ずる。 [問題点を解決するための手段] 本発明者等は、有機溶剤廃液から、高純度の油
類を効率よく簡便に回収する方法を開発すべく鋭
意研究を重ねた。その結果、有機溶剤廃液を蒸留
して、該廃液中の有機溶剤を特定の濃度以下とな
るように除去した後、その釜残の油類にガスを吹
き込むことにより、該油類中の有機溶剤を常温に
おいても短時間でほぼ完全に除去し得ることを見
い出し、本発明を完成するに至つた。 本発明は、油類と有機溶剤との混合液を蒸留し
て、釜残液の油類中に含有される有機溶剤の濃度
を1000ppm以下にした後、釜残液の油類に実質的
に溶解しないガス(以下、非溶解性ガスという)
を吹き込むことを特徴とする油類の回収方法であ
る。 本発明の対象とする有機溶剤廃液は、有機溶剤
に比べて高沸点の油類を含有する有機溶剤であ
る。即ち、本発明においては油類と有機溶剤との
沸点の差が大きいほど、蒸留および後述するガス
の吹き込みによる該有機溶剤の分離が容易となり
好ましい。一般に、かかる沸点の差は50℃以上あ
れば充分であるが、特に70℃以上が望ましい。こ
のような油類としては、例えば焼入油、切削油、
圧延油として使用される油類が挙げられる。ま
た、有機溶剤としては、例えばジクロロメチレ
ン、1,1,1−トリクロルエタン、テトラクロ
ロエチレン、トリクロロエチレン等の塩素化炭化
水素系溶剤、シクロヘキサン、ベンゼン、トルエ
ン、キシレン等の芳香族系溶剤、メタノール、エ
タノール、イソプロパノール、ブタノール、ヘキ
サノール等のアルコール系溶剤、アセトン、メチ
ルエチルケトン、メチルイソブチルケトン等のケ
トン系溶剤などが挙げられる。本発明は、上記し
た有機溶剤のうち塩素化炭化水素系溶剤に油類が
溶解している有機溶剤廃液からの油類の回収に特
に有効である。 本発明においては、有機溶剤廃液を蒸留によつ
て有機溶剤の濃度が1000ppm以下となるように有
機溶剤を除去することが、次いで非溶解性ガスの
吹き込みによつて釜残の油類から、高純度の油類
を効率よく回収するために必要である。即ち、釜
残の油類に上記した濃度以上の有機溶剤が残存す
る場合、常温付近では大量のガス量を必要とする
ため、ガス中のバーテイクルによる油類の汚染、
あるいはガスによる油類の酸化を招く。また、有
機溶剤を含有する廃ガスが多量に発生するため、
別途に有機溶剤を補集する設備を必要とし、経済
的でない。しかしながら、一般に蒸留によつて釜
残の油類中における有機溶剤の残存量を可及的に
減少するには、精留塔を用いて長時間を要し、工
業的には極めて不経済であるため、該有機溶剤の
下限濃度は一般に100ppm程度である。本発明に
使用する蒸留装置は、公知の装置が特に制限なく
使用される。そのうち、真空蒸留装置が有機溶剤
の分離効率が高く、特に好適である。また、本発
明において蒸留は、一段で連続して行つてもよい
し、二段以上に分割して行つてもよい。 本発明において、蒸留により大部分の有機溶剤
を除去された釜残の油類は、非溶解性ガスを吹き
込むことにより、該油類中の有機溶剤を一般に
10ppm以下という極めて微量の濃度にすることが
できる。 上記の非溶解性ガスとしては、有機溶剤および
油類に実質的に溶解しないガスが特に制限なく使
用される。例えば、空気、窒素ガス、アルゴンガ
ス、炭酸ガス等が挙げられるが、空気が最も安価
であり好ましい。非溶解性ガスとして空気を使用
する場合には、釜残液に吹き込む前に乾燥剤と接
触させ除湿することが、油類中への水分の蓄積を
防止すると共に、油類の変質を防止でき好まし
い。 釜残の油類に対するガスの吹き込みは、該油類
とガスが充分に接触し得る態様であれば特に制限
されない。一般には、蒸留装置の釜残の油類中に
ノズルを設けて非溶解性ガスを供給すればよい。
上記した非溶解性ガスの供給量は、釜残液1に
対して一般に5〜50/分となるように吹き込む
ことにより、効率よく有機溶剤を除去することが
できる。また、非溶解性ガスを吹き込む釜残の油
類の温度は、油類の分解温度あるいは沸点より低
い温度であればよいが、一般に0℃から有機溶剤
の沸点未満の範囲内で行うのが経済的である。な
お、非溶解性ガスとして空気のように酸化性のガ
スを用いる場合には、油類の分解を防止するため
に、釜残液の温度を40℃以下、好ましくは5℃〜
30℃とすることが必要である。 また、前記釜残液への非溶解性ガスの吹き込み
は、蒸留装置内で常圧又真空下で蒸留に続いてお
こなつてもよいし、他の容器内で別途行つてもよ
い。 本発明において、釜残液を通過後の、有機溶剤
を含む非溶解性ガスよりなる廃ガスは、公知の方
法により含まれる有機溶剤を除去したのち、大気
中に放出するか、あるいは循環して使用すればよ
い。上記した有機溶剤の除去方法としては、例え
ば廃ガスを活性炭と接触させる方法、廃ガスを冷
却して有機溶剤を凝縮させる方法等がある。 [効果] 本発明の方法によれば、有機溶剤廃液から含有
される油類を一般に有機溶剤の濃度10ppm以下と
いう高純度で、しかも油類の変質などもなく、極
めて効率よく回収することが可能である。従つ
て、回収された油類は、焼入油としての油などの
用途に対しても全く支障なく使用することができ
る。また、有機溶剤も蒸留により高純度で回収で
きる。更に、本発明によれば、有機溶剤を用いた
油類の洗浄工程および該洗浄工程の前工程とな
る、前記油類を用いた金属加工処理工程におい
て、有機溶剤と油類とのラインをクローズド化す
ることが可能となる。 [実施例] 以下、本発明をより具体的に説明するため実施
例を示すが本発明はこれに限定されるものではな
い。 実施例1〜4、比較例1及び2 焼入油(光輝焼入油BR−2:丸善石油(株)製)
に浸漬後の金属部材をジクロロメタンで洗浄して
得られた廃液(焼入油のジクロロメタン濃度5重
量%)を100mmHgの圧力下で真空蒸留して第1表
に示す濃度でジクロロメタンを含む焼入油を釜残
液として夫々得た。これらの各焼入油に空気を第
1表に示す供給量で吹き込み、経時的に該焼入油
中のジクロロメタン濃度を測定した。なお、この
場合、焼入油の温度は50℃となるように調節し
た。また、上記処理後の油の劣化の程度を観察し
た。
[Industrial Application Field] The present invention relates to a novel recovery method for efficiently recovering oils contained in organic solvents with high purity. [Prior Art and Problems] As a means for degreasing oils such as rolling oil, cutting oil, and quenching oil adhering to metals, a method of cleaning with an organic solvent is used. Conventionally, organic solvents containing oils (hereinafter referred to as organic solvent waste liquid) discharged from the above-mentioned cleaning process are separated by distillation, and the recovered organic solvents and oils are reused. However, organic solvents are not completely removed from the bottom oils recovered by ordinary distillation, and they generally contain a concentration of several thousand ppm or more, at least 500 ppm or more. Therefore, when such recovered oils are used, for example, as quenching oil, the organic solvents contained in the oils will vaporize or decompose due to the high heat during quenching, thereby reducing the working environment. This results in problems such as not only deterioration but also adverse effects on the quality of the quenched product. [Means for Solving the Problems] The present inventors have conducted extensive research in order to develop a method for efficiently and easily recovering high-purity oils from organic solvent waste liquid. As a result, the organic solvent waste liquid is distilled to remove the organic solvent in the waste liquid to a specific concentration or less, and then the organic solvent in the oil is removed by blowing gas into the oils in the residue. The present inventors have discovered that it is possible to almost completely remove these substances in a short period of time even at room temperature, and have completed the present invention. In the present invention, after distilling a mixture of oils and an organic solvent to reduce the concentration of the organic solvent contained in the oils in the bottom liquid to 1000 ppm or less, the oils in the bottom liquid are substantially added to the oils in the bottom liquid. Gas that does not dissolve (hereinafter referred to as non-dissolved gas)
This is an oil recovery method characterized by blowing in. The organic solvent waste liquid targeted by the present invention is an organic solvent containing oils having a higher boiling point than the organic solvent. That is, in the present invention, the larger the difference in boiling point between the oil and the organic solvent, the easier the separation of the organic solvent by distillation and gas blowing, which will be described later, is preferred. Generally, it is sufficient if the boiling point difference is 50°C or more, but it is particularly desirable that the difference is 70°C or more. Examples of such oils include quenching oil, cutting oil,
Examples include oils used as rolling oil. Examples of organic solvents include chlorinated hydrocarbon solvents such as dichloromethylene, 1,1,1-trichloroethane, tetrachlorethylene, and trichloroethylene, aromatic solvents such as cyclohexane, benzene, toluene, and xylene, methanol, ethanol, Examples include alcohol solvents such as isopropanol, butanol, and hexanol, and ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone. The present invention is particularly effective for recovering oils from organic solvent waste liquids in which oils are dissolved in chlorinated hydrocarbon solvents among the organic solvents mentioned above. In the present invention, the organic solvent is removed by distillation so that the concentration of organic solvent becomes 1000 ppm or less, and then the high-concentration oil is removed from the residual oil by blowing insoluble gas. This is necessary to efficiently recover high-purity oils. In other words, if organic solvents with a concentration higher than the above concentration remain in the oils in the bottom of the pot, a large amount of gas is required at room temperature, so there is a risk of contamination of the oils due to vertake in the gas.
Alternatively, the gas may cause oxidation of the oil. In addition, large amounts of waste gas containing organic solvents are generated.
Separate equipment is required to collect the organic solvent, which is not economical. However, in order to reduce the residual amount of organic solvent in the oils in the bottom of the pot as much as possible by distillation, it generally requires a long time using a rectification column, which is extremely uneconomical from an industrial perspective. Therefore, the lower limit concentration of the organic solvent is generally about 100 ppm. As the distillation apparatus used in the present invention, any known apparatus can be used without particular restriction. Among these, a vacuum distillation apparatus is particularly suitable because it has a high efficiency in separating organic solvents. Further, in the present invention, the distillation may be carried out continuously in one stage or divided into two or more stages. In the present invention, the residual oils from which most of the organic solvents have been removed by distillation are generally removed by blowing insoluble gas into them.
It is possible to reduce the concentration to an extremely small amount of 10 ppm or less. As the above-mentioned insoluble gas, gases that are not substantially dissolved in organic solvents and oils can be used without particular limitation. Examples include air, nitrogen gas, argon gas, carbon dioxide gas, etc., but air is the cheapest and is preferred. When air is used as a non-dissolved gas, dehumidifying it by contacting it with a desiccant before blowing it into the residual liquid in the kettle will prevent moisture from accumulating in the oil and will also prevent deterioration of the quality of the oil. preferable. The blowing of gas into the oils in the bottom of the pot is not particularly limited as long as the oils and the gas can sufficiently come into contact with each other. Generally, a nozzle may be provided in the residual oil of the distillation apparatus to supply the insoluble gas.
The organic solvent can be efficiently removed by blowing the above-mentioned insoluble gas at a rate of generally 5 to 50 per minute of the remaining liquid in the pot. In addition, the temperature of the oil remaining in the pot to which the insoluble gas is blown may be lower than the decomposition temperature or boiling point of the oil, but it is generally economical to carry out the process within a range of 0°C to below the boiling point of the organic solvent. It is true. When using an oxidizing gas such as air as the non-dissolving gas, the temperature of the remaining liquid in the pot should be kept below 40°C, preferably between 5°C and 5°C to prevent decomposition of oils.
It is necessary to keep the temperature at 30℃. In addition, the insoluble gas may be blown into the bottom liquid in the distillation apparatus under normal pressure or vacuum following the distillation, or may be carried out separately in another container. In the present invention, the waste gas consisting of non-dissolved gas containing organic solvent after passing through the pot residue is discharged into the atmosphere or circulated after removing the organic solvent contained therein by a known method. Just use it. Examples of methods for removing the organic solvent described above include a method in which the waste gas is brought into contact with activated carbon, a method in which the waste gas is cooled to condense the organic solvent, and the like. [Effects] According to the method of the present invention, oils contained in organic solvent waste can be recovered extremely efficiently with high purity, generally with an organic solvent concentration of 10 ppm or less, and without deterioration of the oil. It is. Therefore, the recovered oils can be used as quenching oil without any problem. Furthermore, organic solvents can also be recovered with high purity by distillation. Further, according to the present invention, in the oil cleaning process using an organic solvent and the metal processing process using the oil, which is a pre-process to the cleaning process, the line between the organic solvent and the oil is closed. It becomes possible to convert into [Examples] Examples are shown below to more specifically explain the present invention, but the present invention is not limited thereto. Examples 1 to 4, Comparative Examples 1 and 2 Quenching oil (bright quenching oil BR-2: manufactured by Maruzen Oil Co., Ltd.)
The waste liquid obtained by washing metal parts with dichloromethane after immersion in water (quenching oil dichloromethane concentration 5% by weight) is vacuum distilled under a pressure of 100 mmHg to produce a quenching oil containing dichloromethane at the concentration shown in Table 1. were obtained as the remaining liquid in each pot. Air was blown into each of these quenching oils at the amounts shown in Table 1, and the dichloromethane concentration in the quenching oils was measured over time. In this case, the temperature of the quenching oil was adjusted to 50°C. In addition, the degree of deterioration of the oil after the above treatment was observed.

【表】 * 劣化 ○……劣化なし
×……劣化あり
比較例 3 実施例1において、空気の吹き込みを行うこと
なく、更に、実施例1と同様な条件で蒸留を続け
た結果、240分後におけるジクロロメタン濃度は
150ppmであつた。 実施例 5〜8 実施例1において、ジクロロメタンに代えて第
2表に示す有機溶剤を用いた以外は同様にして焼
入油の回収を行つた。結果を第2表に併せて示
す。
[Table] * Deterioration ○……No deterioration
×... Comparative example with deterioration 3 In Example 1, distillation was continued under the same conditions as in Example 1 without blowing air. As a result, the dichloromethane concentration after 240 minutes was
It was 150ppm. Examples 5 to 8 Quenching oil was recovered in the same manner as in Example 1, except that the organic solvents shown in Table 2 were used instead of dichloromethane. The results are also shown in Table 2.

【表】【table】

Claims (1)

【特許請求の範囲】 1 油類と有機溶剤との混合物を蒸留して、釜残
液の油類中に含有される有機溶剤の濃度を
1000ppm以下とした後、釜残液の油類に空気を吹
き込むことを特徴とする油類の回収方法。 2 蒸留を真空蒸留によつて行う特許請求の範囲
第1項記載の方法。 3 釜残液に吹き込むガス量が50〜5001/1−釜
残液である特許請求の範囲第1項記載の方法。
[Claims] 1. Distilling a mixture of oils and organic solvents to reduce the concentration of organic solvents contained in the oils in the pot residue.
A method for recovering oil, which is characterized by blowing air into the oil remaining in the pot after reducing the concentration to 1000 ppm or less. 2. The method according to claim 1, wherein the distillation is carried out by vacuum distillation. 3. The method according to claim 1, wherein the amount of gas blown into the pot residual liquid is 50 to 500 1/1 - pot residual liquid.
JP17571985A 1985-08-12 1985-08-12 Recovery of oils Granted JPS6236497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17571985A JPS6236497A (en) 1985-08-12 1985-08-12 Recovery of oils

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17571985A JPS6236497A (en) 1985-08-12 1985-08-12 Recovery of oils

Publications (2)

Publication Number Publication Date
JPS6236497A JPS6236497A (en) 1987-02-17
JPH04520B2 true JPH04520B2 (en) 1992-01-07

Family

ID=16001040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17571985A Granted JPS6236497A (en) 1985-08-12 1985-08-12 Recovery of oils

Country Status (1)

Country Link
JP (1) JPS6236497A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0171501B1 (en) * 1996-08-28 1999-03-20 이성래 Apparatus and process for reclaiming waste oil
DE19806208C1 (en) * 1998-02-16 1999-06-24 Ghalamfarsa S M C Mostofizadeh None given
CN108148673A (en) * 2017-12-28 2018-06-12 上海天汉环境资源有限公司 A kind of extractant for being used to lubricate oil decolorization and the extraction process extracted using it

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723694A (en) * 1980-06-09 1982-02-06 Shell Int Research Removal of volatile matter from contaminated seal oil
JPS5945398A (en) * 1982-09-08 1984-03-14 Tokuyama Soda Co Ltd Purification of lubricating oil

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723694A (en) * 1980-06-09 1982-02-06 Shell Int Research Removal of volatile matter from contaminated seal oil
JPS5945398A (en) * 1982-09-08 1984-03-14 Tokuyama Soda Co Ltd Purification of lubricating oil

Also Published As

Publication number Publication date
JPS6236497A (en) 1987-02-17

Similar Documents

Publication Publication Date Title
JPS62212351A (en) Distillation for separating amine from amine aqueous solution
US4374283A (en) Purification of aqueous effluent streams containing BPA and phenol
JPH04520B2 (en)
US4892624A (en) Workup of distillation residues from the purification of caprolactam
EP1270548B1 (en) Purification method of cyclohexanone-oxime
WO2010066017A1 (en) Process for purifying waste sulfuric acid
EP0553208B1 (en) Method and composition for cleaning articles
US4496760A (en) Process of decomposition of a complex of ortho-benzoyl benzoic acid, hydrogen fluoride and boron trifluoride
JPH0753509A (en) Recovery of caprolactam and alkali metal carbonate from distillation residue
JPS61239628A (en) Cleaning of semiconductor substrate
JP2003144801A (en) Method and apparatus for regenerating/recovering solvent by using side cut column
JP4276349B2 (en) Inden production method
JPH06279401A (en) Method of purifying n-methyl-2-pyrrolidone
US4000204A (en) Process for the purification of vinylidene chloride
JP4361696B2 (en) Purification method of allyl alcohol
EP0416763A1 (en) Methods and compositions for cleaning articles
HU202172B (en) Process for cleaning 2-(4-isobutylphenyl)-propionic acid
EP0252454A2 (en) Removal of hydrogen fluoride from 2,2,3,3-tetrafluorooxetane
JP2002020370A (en) Method for removing hydrogen chloride from mixture containing n-alkyl-2-pyrrolidone and hydrogen chloride
JPS6050179B2 (en) Benzyl benzoate recovery method
JP2526261B2 (en) How to remove benzene or toluene from waste gas
US3749648A (en) Recovery of spent sulfuric acid from chlorinated and nitrated benzoic acid derivatives
JPH1143451A (en) Azeotrope and its separation
SU1028668A1 (en) Method for recovering caprlactam from contaminated organic solvent
NL7905504A (en) PROCESS FOR THE PURIFICATION OF ETHYL DIGLYCOL AND DIPROPYLENE GLYCOL.