JPH0452068A - Pressurized casting method - Google Patents

Pressurized casting method

Info

Publication number
JPH0452068A
JPH0452068A JP16099890A JP16099890A JPH0452068A JP H0452068 A JPH0452068 A JP H0452068A JP 16099890 A JP16099890 A JP 16099890A JP 16099890 A JP16099890 A JP 16099890A JP H0452068 A JPH0452068 A JP H0452068A
Authority
JP
Japan
Prior art keywords
molten metal
cavity
sand mold
pressurized gas
pressurized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16099890A
Other languages
Japanese (ja)
Inventor
Keiichiro Noguchi
野口 啓一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP16099890A priority Critical patent/JPH0452068A/en
Publication of JPH0452068A publication Critical patent/JPH0452068A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To hardly develop casting defect and to make close of metallurgical structure in the obtd. casting by causing pressurized gas to flow into fine gap formed at between molten metal filled up in cavity and coating material layer on the cavity surface and pressurizing and cooling molten metal from surface side. CONSTITUTION:After filling up the molten metal in the cavity 15, at the time of storing the molten metal in pouring basin part 10c in a fixed sand mold 10, the pressurizing cover 12 is descended to seal the sprue 10b. Successively, by introducing the pressurized gas into inner part of the pressurizing cover 12 from a pressurized gas introducing passage in the pressurizing cover 12, the molten metal surface is pressurized and on the other hand, the pressurized gas is supplied into recessed part 14d in a movable sand mold 14 from a pressurized gas supplying passage 18. The molten metal in the cavity 15 is pressed to both cavity surfaces 10a, 14c with the pressurized force of gas. On the other hand, the pressurized gas applied to the recessed part 14d in the movable sand mold 14 is caused to flow upward to the fine gap formed at between the coating material layer 16 on the cavity surface 14c in the movable sand mold 14 and the molten metal, and further, caused to flow downward to the fine gap formed at between the coating material layer 11 on the cavity surface 10a in the fixed sand mold 10.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、鋳型内に充填された溶湯を加圧気体で加圧し
つつ鋳造する加圧鋳造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a pressure casting method in which molten metal filled in a mold is cast while being pressurized with pressurized gas.

(従来の技術) 上記のような加圧鋳造方法は、加圧気体の加圧力が溶湯
に効果的に作用するため、エンジンにおけるアルミニウ
ム製のシリンダヘッドやシリンダブロック等の複雑な形
状の鋳造品を鋳造欠陥を生じさせることなく鋳造できる
と共に、得られた鋳造品の組織の緻密化を図ることかで
きるという利点を有している。
(Prior art) In the pressure casting method described above, the pressure of pressurized gas acts effectively on the molten metal, so it is suitable for casting products with complex shapes such as aluminum cylinder heads and cylinder blocks in engines. This method has the advantage that it can be cast without producing casting defects, and that the structure of the obtained cast product can be made denser.

このため、実開昭63−41352号公報に示されるよ
うに、耐熱粒子からなる充填材中に消失模型を埋設した
後、該消失模型に対して溶湯を注入し、溶湯の充填が完
了した後、鋳型の湯口側から加圧気体を供給して鋳型内
の溶湯を加圧する鋳造方法が提案されている。
For this reason, as shown in Japanese Utility Model Application Publication No. 63-41352, after a dissipation model is buried in a filler made of heat-resistant particles, molten metal is poured into the dissipation model, and after the filling of the molten metal is completed. A casting method has been proposed in which pressurized gas is supplied from the sprue side of the mold to pressurize the molten metal in the mold.

(発明が解決しようとする課題) しかるに、上記のように湯口側から加圧気体を供給して
溶湯を加圧する鋳造方法では、加圧気体の加圧力が溶湯
に対して均一に加わり難いため、鋳造欠陥の防止及び鋳
造品の組織の緻密化という点で必ずしも満足できるもの
ではなかった。
(Problems to be Solved by the Invention) However, in the above-described casting method in which pressurized gas is supplied from the sprue side to pressurize the molten metal, it is difficult to uniformly apply the pressurizing force of the pressurized gas to the molten metal. It has not always been satisfactory in terms of prevention of casting defects and densification of the structure of the cast product.

上記に鑑みて、本発明は、鋳造欠陥の防止及び鋳造品組
織の緻密化の一層の向上を図ることにより、健全で高強
度の鋳造品が得られるようにすることを目的とする。
In view of the above, an object of the present invention is to prevent casting defects and further improve the densification of the structure of the cast product, thereby making it possible to obtain a cast product that is sound and has high strength.

(課題を解決するための手段) 上記の目的を達成するため、本発明は、キャビティ内に
充填された溶湯の表面に加圧気体を流通せしめることに
より、溶湯を表面側からも加圧するものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention allows pressurized gas to flow over the surface of the molten metal filled in the cavity, thereby pressurizing the molten metal from the surface side as well. be.

具体的に本発明か講じた解決手段は、キャビティ面に塗
型剤層が形成された鋳型のキャビティに溶湯を充填し、
該溶湯を鋳型の湯口側から加圧して鋳造する加圧鋳造方
法を対象とし、充填された溶湯と上記塗型剤層との間に
形成される微少空隙に加圧気体を流通せしめて上記溶湯
をその表面側から加圧、冷却する構成とするものである
Specifically, the solution taken by the present invention is to fill the cavity of a mold with a mold coating layer formed on the cavity surface with molten metal,
The molten metal is cast by pressurizing the molten metal from the sprue side of the mold, and the molten metal is cast by flowing a pressurized gas into the minute voids formed between the filled molten metal and the coating agent layer. The structure is such that pressure is applied and cooled from the surface side.

(作用) 上記の構成により、キャビティに充填された溶湯とキャ
ビティ面の塗型剤層との間に形成される微少空隙に加圧
気体を流通せしめて溶湯をその表面側から加圧、冷却す
るため、溶湯は、湯口側からの加圧力に加えてその表面
側からも加圧されるので、溶湯に対する加圧力が向上す
ると共に溶湯は略均−に加圧される。また、溶湯はその
表面側から冷却されるので、溶湯の凝固時間が短縮され
る。
(Function) With the above configuration, pressurized gas is made to flow through the minute voids formed between the molten metal filled in the cavity and the coating agent layer on the cavity surface, thereby pressurizing and cooling the molten metal from the surface side. Therefore, the molten metal is pressurized from the surface side in addition to the pressure applied from the sprue side, so that the pressure applied to the molten metal is increased and the molten metal is pressurized approximately evenly. Furthermore, since the molten metal is cooled from the surface side, the solidification time of the molten metal is shortened.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の一実施例に用いられ、フランジを有す
る有底筒状のアルミニウム製鋳造品を鋳造するための加
圧鋳造装置Aの断面構造を示している。
FIG. 1 shows a cross-sectional structure of a pressure casting apparatus A used in an embodiment of the present invention for casting a bottomed cylindrical aluminum casting product having a flange.

第1図において、10は鋳物砂例えば珪砂6号にレジン
硬化剤を配合してなる自硬性砂により形成された固定砂
型であって、該固定砂型10は、鋳造品と対応する形状
を有し最大径が120mm程度の円形断面のキャビティ
面10aと、該固定砂型10の内部に溶湯を導くべく上
下方向に延びる直径が20mm程度の湯口10bと、該
湯口10bの上端に形成された皿状の湯溜まり部10c
と、湯口10bの下端からキャビティ面10Hの下方に
延びる直径が10mm程度の湯道10dと、湯道10d
とキャビティ面10Hの下端開口部とを連通させる直径
8mm程度のゲート10eとを備えている。
In FIG. 1, reference numeral 10 denotes a fixed sand mold made of self-hardening sand made by mixing molding sand, for example, No. 6 silica sand with a resin hardening agent, and the fixed sand mold 10 has a shape corresponding to that of the cast product. A cavity surface 10a with a circular cross section with a maximum diameter of about 120 mm, a sprue 10b with a diameter of about 20 mm extending vertically to guide the molten metal into the inside of the fixed sand mold 10, and a dish-shaped sprue formed at the upper end of the sprue 10b. Hot water pool part 10c
, a runner 10d with a diameter of about 10 mm extending from the lower end of the sprue 10b to below the cavity surface 10H, and a runner 10d.
A gate 10e having a diameter of about 8 mm is provided to communicate the opening of the cavity surface 10H with the lower end opening of the cavity surface 10H.

固定砂型10のキャビティ面10aと、湯口10bS場
溜まり部10C1湯道10cl及びゲート10eの内面
には、例えば主成分としてのけい砂及び雲母と、粘結剤
としてのフェノール樹脂と、溶剤としてのアルコールと
からなる塗型剤が塗布されて該塗型剤からなる塗型剤層
11が形成されている。この場合、固定砂型10が上述
のように自硬性砂で形成されているため、キャビティ面
10aは凹凸状であって、塗型剤層11の表面も凹凸状
である。
The cavity surface 10a of the fixed sand mold 10, the sprue 10bS, the pool area 10C1, the runner 10cl, and the inner surface of the gate 10e contain, for example, silica sand and mica as main components, phenol resin as a binder, and alcohol as a solvent. A mold coating agent layer 11 made of the mold coating agent is formed by coating the mold coating agent. In this case, since the fixed sand mold 10 is made of self-hardening sand as described above, the cavity surface 10a is uneven, and the surface of the mold coating layer 11 is also uneven.

固定砂型10の湯口10bの上方には、ロボットに支持
された図示しない加圧用ユニットの下端部に設けられた
昇降可能な加圧蓋12が配置されており、該加圧蓋12
は、圧縮空気等からなる加圧気体を加圧蓋12の内部に
導くための加圧気体導入路(図示は省略している)を備
えている。
Above the sprue 10b of the fixed sand mold 10, a pressurizing lid 12 that can be raised and lowered is provided at the lower end of a pressurizing unit (not shown) supported by a robot.
is equipped with a pressurized gas introduction path (not shown) for guiding pressurized gas such as compressed air into the inside of the pressurizing lid 12.

固定砂型10のキャビティ10a面の上方には、厚肉の
円板部14aと該円板部14aの下面に突出する円柱部
14bとからなる可動砂型14が固定砂型10に対して
着脱自在に配設されており、可動砂型14が固定砂型1
0にセットされると、可動砂型のキャビティ面14cと
固定砂型10のキャビティ面10aとによって上記鋳造
品を鋳造するためのキャビティ15が形成される。
Above the cavity 10a surface of the fixed sand mold 10, a movable sand mold 14 consisting of a thick disk portion 14a and a cylindrical portion 14b protruding from the lower surface of the disk portion 14a is arranged so as to be detachable from the fixed sand mold 10. The movable sand mold 14 is the fixed sand mold 1.
When set to 0, the cavity surface 14c of the movable sand mold and the cavity surface 10a of the fixed sand mold 10 form a cavity 15 for casting the above-mentioned cast product.

可動砂型14の円柱部14bの下面中央には円形断面の
凹部14dが設けられており、該凹部14dの下端つま
り可動砂型14のキャビティ面14cにはガラス繊維か
らなるネット14eが張設されている。また、可動砂型
14のキャビティ面14cにも上記同様の成分からなる
塗型剤が塗布されて塗型剤層16が形成されており、こ
の塗型剤層16の表面も凹凸状である。
A recess 14d with a circular cross section is provided at the center of the lower surface of the cylindrical part 14b of the movable sand mold 14, and a net 14e made of glass fiber is stretched over the lower end of the recess 14d, that is, the cavity surface 14c of the movable sand mold 14. . Further, a mold coating agent made of the same components as described above is also applied to the cavity surface 14c of the movable sand mold 14 to form a mold coating layer 16, and the surface of this mold coating layer 16 is also uneven.

可動砂型14の中心部には、キャビティ15に圧縮空気
等の加圧気体を導入するための加圧気体供給路18が該
可動砂型14を上下方向に貫通して設けられ、該加圧気
体供給路18の上流端は図示しない加圧気体供給源に接
続されていると共に、その下流端は上記凹部14d内で
開口している。
A pressurized gas supply path 18 for introducing pressurized gas such as compressed air into the cavity 15 is provided in the center of the movable sand mold 14, passing through the movable sand mold 14 in the vertical direction. The upstream end of the passage 18 is connected to a pressurized gas supply source (not shown), and the downstream end thereof opens within the recess 14d.

以下、上記構成の加圧鋳造装置Aを用いて行なう加圧鋳
造方法について説明する。
Hereinafter, a pressure casting method performed using the pressure casting apparatus A having the above configuration will be described.

まず、加圧蓋12を上昇させた状態で、溶湯を固定砂型
10の湯口10bから注入してキャビティ15内に充填
する。この場合、固定砂型10のキャビティ面10aの
塗型剤層11及び可動砂型14のキャビティ面14Cの
塗型剤層16の表面は共に凹凸状であるため、キャビテ
ィ15に充填された溶湯と両塗型剤層11.16の表面
との間には各々微少な空隙が形成されている。
First, with the pressure lid 12 raised, molten metal is injected from the sprue 10b of the fixed sand mold 10 to fill the cavity 15. In this case, since the surfaces of the mold coating agent layer 11 on the cavity surface 10a of the fixed sand mold 10 and the mold coating agent layer 16 on the cavity surface 14C of the movable sand mold 14 are both uneven, the molten metal filled in the cavity 15 and both coatings are uneven. Minute voids are formed between the surfaces of the mold agent layers 11 and 16, respectively.

次に、キャビティ15内に溶湯が充填された後、固定砂
型10の湯溜まり部10cに溶湯が溜まると、加圧蓋1
2を下降させて湯口10bを密封する。
Next, after the cavity 15 is filled with molten metal, when the molten metal accumulates in the molten metal pool 10c of the fixed sand mold 10, the pressure lid 1
2 is lowered to seal the sprue 10b.

次に、加圧蓋12の加圧気体導入路から加圧蓋12の内
部に例えば165気圧の加圧気体を導入して場面を加圧
する一方、加圧気体供給路18から可動砂型14の凹部
14dに上記同様1.5気圧の加圧気体を供給する。
Next, pressurized gas of, for example, 165 atm is introduced into the pressurized lid 12 from the pressurized gas introduction path of the pressurized lid 12 to pressurize the scene, while the pressurized gas supply path 18 is introduced into the recess of the movable sand mold 14. 14d is supplied with pressurized gas of 1.5 atm as above.

このようにすると、キャビティ15内の溶湯は、固定砂
型10の湯口10b側から加えられた加圧気体の加圧力
によって両キャビティ面10a、14C側へ押圧される
。一方、可動砂型14の凹部14dに加えられた加圧気
体は、凹部14dの下端に張設されたネット14eの内
部を水平方向に流通した後、可動砂型14のキャビティ
面14cの塗型剤層16と溶湯との間に形成された微細
な空隙を上方に流通し、さらに、固定砂型10のキャビ
ティ面10aの塗型剤層11と溶湯との間に形成された
微細な空隙を下方に流通する。
In this way, the molten metal in the cavity 15 is pressed toward both cavity surfaces 10a and 14C by the pressurizing force of the pressurized gas applied from the sprue 10b side of the fixed sand mold 10. On the other hand, the pressurized gas applied to the recess 14d of the movable sand mold 14 flows horizontally inside the net 14e stretched over the lower end of the recess 14d, and then flows through the mold coating agent layer on the cavity surface 14c of the movable sand mold 14. 16 and the molten metal, and further flows downward through the fine gaps formed between the mold coating layer 11 on the cavity surface 10a of the fixed sand mold 10 and the molten metal. do.

このようにして、可動砂型14の凹部14dから供給さ
れた加圧気体は、溶湯の表面に沿って流通しつつ溶湯を
その内部側へ均一に押圧するので、得られる鋳造品には
鋳造欠陥が生じ難いと共に、得られた鋳造品の組織は緻
密化している。
In this way, the pressurized gas supplied from the recess 14d of the movable sand mold 14 uniformly presses the molten metal inward while circulating along the surface of the molten metal, so that the resulting cast product has no casting defects. It is difficult for this to occur, and the structure of the obtained cast product is dense.

また、溶湯は加圧気体によって加圧されると共に、流通
する加圧気体に熱を奪われ冷却されるため、凝固時間が
短縮されるので、得られる鋳造品の組織は一層緻密にな
る。
In addition, the molten metal is pressurized by the pressurized gas, and the flowing pressurized gas removes heat and cools it, so the solidification time is shortened, and the structure of the resulting cast product becomes more dense.

第2図〜第4図は、本発明の一実施例に用いられる他の
加圧鋳造装置Bを示しており、該加圧鋳造装置Bは、上
記の加圧鋳造装置Aと次の点で異なっている。すなわち
、第2図及び第3図に示すように、固定砂型10のキャ
ビティ面10a及び可動砂型14のキャビティ面14c
には、可動砂型14の凹部14dからキャビティ面14
cに沿って延びた後、固定砂型10のキャビティ面10
aに沿って延びる微少な三角形の断面を有する適当数の
溝19a、19bが形成されていると共に、固定砂型1
0のキャビティ面14aの下方に、該キャビティ面10
aの底部10fの溝19cと連通し下方へ延びる加圧気
体排出路20が設けられている。
2 to 4 show another pressure casting apparatus B used in one embodiment of the present invention, and this pressure casting apparatus B has the following points from the above-mentioned pressure casting apparatus A. It's different. That is, as shown in FIGS. 2 and 3, the cavity surface 10a of the fixed sand mold 10 and the cavity surface 14c of the movable sand mold 14
, from the recess 14d of the movable sand mold 14 to the cavity surface 14.
After extending along c, the cavity surface 10 of the fixed sand mold 10
A suitable number of grooves 19a, 19b having a minute triangular cross section extending along the fixed sand mold 1 are formed.
Below the cavity surface 14a of 0, the cavity surface 10
A pressurized gas discharge passage 20 is provided which communicates with the groove 19c of the bottom 10f of the housing 10a and extends downward.

従って、本実施例の加圧鋳造装置Bを用い、第4図に示
すように、キャビティ15に溶湯22を供給した後、加
圧気体供給路18を通って可動砂型14の凹部14dに
加圧気体を供給すると、加圧気体は四部14d下端のネ
ット14eの内部を水平方向に流通した後、可動砂型1
4のキャビティ面14cに形成された溝19bを上方に
流通し、さらに、固定砂型10のキャビティ面10aに
形成された溝19aを下方に流通した後、底部10fの
溝19cを通って加圧気体排出路20から固定砂型10
の外部に流出するが、加圧気体はその流通過程で、溝1
9a、b、cと連通している両塗型剤層11.16と溶
湯22との間の微少空隙に流入して上記同様にキャビテ
ィ15内の溶湯を内部側へ均一に押圧する。
Therefore, using the pressure casting apparatus B of this embodiment, as shown in FIG. When the gas is supplied, the pressurized gas flows horizontally inside the net 14e at the lower end of the four parts 14d, and then moves into the movable sand mold 1.
The pressurized gas flows upward through the groove 19b formed on the cavity surface 14c of the fixed sand mold 10, and then flows downward through the groove 19a formed on the cavity surface 10a of the fixed sand mold 10, and then passes through the groove 19c on the bottom 10f. From the discharge channel 20 to the fixed sand mold 10
However, during the flow process, the pressurized gas flows out of the groove 1.
It flows into the minute gap between the molten metal 22 and both mold coating agent layers 11.16 communicating with mold coating agent layers 9a, b, and 9c, and uniformly presses the molten metal in the cavity 15 inward in the same manner as described above.

この加圧鋳造装置Bによると、加圧気体を溝19a、b
、cを介して両塗型剤層11.16と溶湯22との間の
微少空隙に流通せしめることができるため、固定砂型1
0及び可動砂型14の負荷が小さくなるので、加圧気体
の圧力を5〜7気圧程度に大きくすることができる。
According to this pressure casting apparatus B, the pressurized gas is poured into the grooves 19a, b.
, c, the fixed sand mold 1
Since the load on the movable sand mold 14 is reduced, the pressure of the pressurized gas can be increased to about 5 to 7 atmospheres.

尚、上記の場合、鋳型として固定砂型10及び可動砂型
14を用いたが、これに代えて金型を用いる場合でも、
本発明の加圧鋳造方法を適用することができる。
In the above case, the fixed sand mold 10 and the movable sand mold 14 were used as the molds, but even if a metal mold is used instead,
The pressure casting method of the present invention can be applied.

(発明の効果) 以上説明したように、本発明に係る加圧鋳造方法による
と、キャビティに充填された溶湯とキャビティ面の塗型
剤層との間に形成される微少空隙に加圧気体を流通せし
めて溶湯をその表面側から加圧、冷却するため、溶湯に
対する加圧力か向上すると共に溶湯を均一に加圧でき、
また溶湯の凝固時間を短縮できるので、得られる鋳造品
に鋳造欠陥が生じ難いと共に得られる鋳造品の金属組織
か緻密化する。
(Effects of the Invention) As explained above, according to the pressure casting method of the present invention, pressurized gas is introduced into the minute voids formed between the molten metal filled in the cavity and the mold coating layer on the cavity surface. Since the molten metal is pressurized and cooled from the surface side through circulation, the pressure applied to the molten metal is increased and the molten metal can be pressurized uniformly.
Furthermore, since the solidification time of the molten metal can be shortened, casting defects are less likely to occur in the obtained cast product, and the metal structure of the obtained cast product becomes denser.

このため、本発明の鋳造方法によると、健全で高強度な
鋳造品を得ることができる。
Therefore, according to the casting method of the present invention, a sound and high-strength cast product can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は本発明の一実施例に用いる加圧鋳造装
置を示し、第1図は−の加圧鋳造装置の縦断面図、第2
図は他の加圧鋳造装置の縦断面図、第3図及び第4図は
上記能の加圧鋳造装置の横断面図であって第3図は溶湯
の充填前、第4図は溶湯の充填後である。 10b・・・湯口 11・・・塗型剤層 12・・・加圧蓋 14・・・可動砂型 14C・・・キャビティ面 15・・・キャビティ 16・・・塗型剤層 19a、19b、19c・−・溝 22・・・溶湯
1 to 4 show a pressure casting apparatus used in an embodiment of the present invention, FIG.
The figure is a longitudinal cross-sectional view of another pressure casting apparatus, and Figures 3 and 4 are cross-sectional views of the pressure casting apparatus of the above-mentioned capacity. After filling. 10b... Sprue 11... Coating agent layer 12... Pressurizing lid 14... Movable sand mold 14C... Cavity surface 15... Cavity 16... Coating agent layer 19a, 19b, 19c・-・Groove 22... Molten metal

Claims (1)

【特許請求の範囲】[Claims] (1)キャビティ面に塗型剤層が形成された鋳型のキャ
ビティに溶湯を充填し、該溶湯を鋳型の湯口側から加圧
して鋳造する加圧鋳造方法であって、充填された溶湯と
上記塗型剤層との間に形成される微少空隙に加圧気体を
流通せしめて上記溶湯をその表面側から加圧、冷却する
ことを特徴とする加圧鋳造方法。
(1) A pressure casting method in which a cavity of a mold in which a coating agent layer is formed on the cavity surface is filled with molten metal, and the molten metal is pressurized and cast from the sprue side of the mold, and the filled molten metal and the above-mentioned A pressure casting method characterized in that the molten metal is pressurized and cooled from the surface side by passing pressurized gas through minute voids formed between the molten metal and the mold coating layer.
JP16099890A 1990-06-19 1990-06-19 Pressurized casting method Pending JPH0452068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16099890A JPH0452068A (en) 1990-06-19 1990-06-19 Pressurized casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16099890A JPH0452068A (en) 1990-06-19 1990-06-19 Pressurized casting method

Publications (1)

Publication Number Publication Date
JPH0452068A true JPH0452068A (en) 1992-02-20

Family

ID=15726630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16099890A Pending JPH0452068A (en) 1990-06-19 1990-06-19 Pressurized casting method

Country Status (1)

Country Link
JP (1) JPH0452068A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010269345A (en) * 2009-05-22 2010-12-02 Foundry Tech Consulting:Kk Casting method
WO2015129134A1 (en) * 2014-02-28 2015-09-03 日立金属株式会社 Method for producing cast article and breathable mold

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010269345A (en) * 2009-05-22 2010-12-02 Foundry Tech Consulting:Kk Casting method
WO2015129134A1 (en) * 2014-02-28 2015-09-03 日立金属株式会社 Method for producing cast article and breathable mold
JPWO2015129134A1 (en) * 2014-02-28 2017-03-30 日立金属株式会社 Method for producing cast article and breathable mold
US10232431B2 (en) 2014-02-28 2019-03-19 Hitachi Metals, Ltd. Production method of castings and gas-permeable casting mold
US10471498B2 (en) 2014-02-28 2019-11-12 Hitachi Metals, Ltd. Production method of castings and gas-permeable casting mold

Similar Documents

Publication Publication Date Title
CN101618428B (en) Method for casting hub casts of aerogenerators
US20090151887A1 (en) Casting Method
CN102921902B (en) Composite shaping technique method of iron pattern coated sand and iron type core assembly
CN202984579U (en) Cylinder cover casting die
CN101618429B (en) Method for casting hub casts of aerogenerators
CN101293276B (en) Method for casting brass ware
CN110976814B (en) Semi-continuous antigravity pouring method for aluminum alloy automobile frame
CN110014125B (en) Casting structure of core-spun craft sand core combination of diesel engine cylinder body
JP4891245B2 (en) Method and apparatus for casting molten metal
JPH0455773B2 (en)
CN108296468A (en) A kind of pressure regulation supercharging casting machine fills the casting device and casting method of type High Pressure Solidification with low pressure
JPH03230860A (en) Pressurized casting method
CN108097923A (en) A kind of differential pressure pressurization casting machine fills the casting device and casting method of type High Pressure Solidification with low pressure
JPH0452068A (en) Pressurized casting method
CN103182480A (en) Gravity casting process for engine cylinder cover
JP2013132644A (en) Die casting method
US11897028B2 (en) Controlled nozzle cooling (CNC) casting
JP2005305466A (en) Molten metal forging apparatus and molten metal forging method
JPS62220241A (en) Casting mold and vacuum casting method using said casting mold
JP2005131682A (en) Metallic mold for casting and metallic mold casting method
CN105798272A (en) Automobile mold casting cast by compounding alloy gray iron and ordinary gray iron, gating system and casting method
JP2001225161A (en) Reduced pressure die, reduced pressure- and pressurized die for casting light alloy casting by gravity die casting method and casting device using this reduced pressure die and reduced pressure- and pressurized die
JPH0422566A (en) Pressure diecasting process
KR102195019B1 (en) Manufacturing apparatus for an allumium alloy flange and manufacturing method thereof
CN106363136A (en) Feed-head-free glass mold bottom casting method