JPH0422566A - Pressure diecasting process - Google Patents

Pressure diecasting process

Info

Publication number
JPH0422566A
JPH0422566A JP12633590A JP12633590A JPH0422566A JP H0422566 A JPH0422566 A JP H0422566A JP 12633590 A JP12633590 A JP 12633590A JP 12633590 A JP12633590 A JP 12633590A JP H0422566 A JPH0422566 A JP H0422566A
Authority
JP
Japan
Prior art keywords
sand core
molten metal
pressurized gas
pressurized
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12633590A
Other languages
Japanese (ja)
Inventor
Keiichiro Noguchi
野口 啓一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP12633590A priority Critical patent/JPH0422566A/en
Publication of JPH0422566A publication Critical patent/JPH0422566A/en
Pending legal-status Critical Current

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To make the structure of a casting fine by supplying pressurized gas into the inside of a sand core to pressurize the molten metal and circulating the pressurized gas inside and outside the sand core to cool the sand core. CONSTITUTION:A casting mold 10 in which the sand core 18 is set is charged with the molten metal and this molten metal is pressurized by the compressed air supplied into a pressurizing cover 12 for pressure diecasting. The pressurized gas is supplied through a pressurized gas supply source 21, a supply passage 20 into the inside of the sand core 18. Then, the molten metal in the casting mold 10 is pressurized from the surface side of the sand core 18. Simultaneously, the pressurized gas supplied into the inside of the sand core 18 is circulated inside and outside the sand core 18 to cool the sand core 18. In this way, the molten metal is pressurized without deteriorating cooling properties in time of solidification of the molten metal.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、鋳型内に充填された溶湯を加圧気体で加圧し
つつ鋳造する加圧鋳造方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in a pressure casting method in which molten metal filled in a mold is cast while being pressurized with pressurized gas.

(従来の技術) 上記のような加圧鋳造方法を採用すると、加圧気体の加
圧力が溶湯に効果的に作用するため、複雑な形状の鋳物
、例えばエンジンにおけるアルミニウム製のシリンダヘ
ッドやシリンダブロック等を鋳造欠陥を生じさせること
なく鋳造できると共に、加圧力を余り大きくする必要が
ないので鋳型の負担が少なくなり、鋳型として砂型を用
いることができる等の利点がある。
(Prior art) When the pressure casting method described above is adopted, the pressurizing force of the pressurized gas acts effectively on the molten metal, so it is possible to produce castings with complex shapes, such as aluminum cylinder heads and cylinder blocks in engines. etc. can be cast without causing casting defects, and since there is no need to increase the pressing force too much, the burden on the mold is reduced, and there are advantages such as the ability to use a sand mold as the mold.

そして、溶湯を加圧することに伴う鋳造用材料強化のメ
カニズムや鋳造欠陥減少のメカニズムが明らかになるに
つれて、従来よりも小さい加圧力で優れた品質の鋳造品
を得られるようになってきた。
As the mechanism of strengthening casting materials and reducing casting defects due to pressurization of molten metal has become clearer, it has become possible to obtain cast products of excellent quality with less pressurizing force than before.

このため、公開特許公報昭63−137564号に示さ
れるように、乾燥砂からなる鋳型の内部に消失模型を埋
設した後、該消失模型に対して溶湯を注入し、溶湯の充
填が完了した後、鋳型に対して加圧気体を供給して鋳型
内の溶湯を加圧する方法、或いは、公表特許公報昭63
−501857号に示されるように、乾燥砂からなる鋳
型を加圧容器の内部に収納し、上記鋳型内に溶湯を充填
した後、上記加圧容器の内部に加圧気体を供給して鋳型
内の溶湯を加圧する方法等、種々の加圧鋳遣方法が提案
されている。
For this reason, as shown in Japanese Patent Publication No. 63-137564, after a vanishing model is buried inside a mold made of dry sand, molten metal is poured into the vanishing model, and after the filling of the molten metal is completed. , a method of pressurizing the molten metal in the mold by supplying pressurized gas to the mold, or published patent publication 1983
As shown in No. 501857, a mold made of dry sand is housed inside a pressurized container, the mold is filled with molten metal, and then pressurized gas is supplied to the inside of the pressurized container to fill the mold. Various pressure casting methods have been proposed, such as a method of pressurizing molten metal.

(発明が解決しようとする課題) しかるに、これらの各鋳造方法は、溶湯を乾燥砂の空隙
から加圧気体で加圧する方法、つまり溶湯をその外側か
ら加圧する方法であるから砂中子を用いない場合には効
果的であるが、砂中子がセットされた鋳型内に溶湯を供
給して鋳造する場合には、溶湯に対する加圧力が十分で
はない。
(Problems to be Solved by the Invention) However, each of these casting methods uses a sand core because the molten metal is pressurized with pressurized gas through the voids of dry sand, that is, the molten metal is pressurized from the outside. This is effective when there is no sand core, but when casting is performed by supplying molten metal into a mold in which a sand core is set, the pressure applied to the molten metal is not sufficient.

そこで、本発明者は、砂中子の内部にも加圧気体を供給
して溶湯を砂中子の表面側からつまり溶湯をその内側か
らも加圧する方法を考慮した。
Therefore, the present inventor considered a method of supplying pressurized gas to the inside of the sand core to pressurize the molten metal from the surface side of the sand core, that is, from the inside of the molten metal.

ところが、砂中子の内部に加圧気体を供給すると、従来
、砂中子の空隙を通じて外部に逃げていた溶湯の熱が外
部に放出され難くなってしまう。
However, when pressurized gas is supplied to the inside of the sand core, it becomes difficult for the heat of the molten metal, which conventionally escaped to the outside through the voids of the sand core, to be released to the outside.

このため、溶湯の凝固時における冷却性が悪化するので
、得られる鋳造品の内部組織が粗大になり、品質が低下
するという新たな問題が生じた。
As a result, cooling performance during solidification of the molten metal deteriorates, resulting in a new problem in that the internal structure of the resulting cast product becomes coarse and its quality deteriorates.

上記に鑑みて、本発明は、溶湯の凝固時における冷却性
の悪化を招くことなく溶湯を内側から加圧できるように
することを目的とする。
In view of the above, an object of the present invention is to make it possible to pressurize a molten metal from the inside without causing deterioration in cooling performance during solidification of the molten metal.

(課題を解決するための手段) 上記の目的を達成するため、本発明は、砂中子の内部に
供給される加圧気体を該砂中子の内外に流通させること
により、砂中子内の加圧気体を冷却媒体として利用する
ものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a method for distributing pressurized gas inside the sand core by circulating pressurized gas inside and outside the sand core. The pressurized gas is used as a cooling medium.

具体的に本発明が講じた解決手段は、砂中子がセットさ
れた鋳型内に溶湯を充填し、充填された溶湯を加圧して
鋳造する加圧鋳造方法を対象とし、上記砂中子の内部に
加圧気体を供給して鋳型内の溶湯を砂中子の表面側から
加圧すると共に、該砂中子の内部に供給される加圧気体
を該砂中子の内外に流通させて該砂中子を冷却する構成
とするものである。
Specifically, the solution taken by the present invention targets a pressure casting method in which a mold in which a sand core is set is filled with molten metal, and the filled molten metal is pressurized and cast. Pressurized gas is supplied to the inside of the mold to pressurize the molten metal in the mold from the surface side of the sand core, and the pressurized gas supplied to the inside of the sand core is circulated inside and outside of the sand core to melt the metal. The structure is such that the sand core is cooled.

(作用) 上記の構成により、砂中子の内部に加圧気体を供給して
鋳型内に充填された溶湯を砂中子の表面側から加圧する
ため、溶湯を加圧しながら鋳造することができる。
(Function) With the above configuration, pressurized gas is supplied to the inside of the sand core to pressurize the molten metal filled in the mold from the surface side of the sand core, so the molten metal can be cast while being pressurized. .

また、砂中子の内部に供給される加圧気体が該砂中子の
内外に流通するため、砂中子の熱は加圧空気によって砂
中子の外部に放出される。
Further, since the pressurized gas supplied to the inside of the sand core flows inside and outside the sand core, the heat of the sand core is released to the outside of the sand core by the pressurized air.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の一実施例に用いられ、フランジを有す
る有底筒状のアルミニウム製鋳造品を鋳造するための加
圧鋳造装置Aの全体構成を示している。
FIG. 1 shows the overall configuration of a pressure casting apparatus A used in an embodiment of the present invention for casting a bottomed cylindrical aluminum casting product having a flange.

第1図において、10は鋳物砂例えば珪砂6号にレジン
硬化剤を配合してなる自硬性砂により形成された固定砂
型であって、該固定砂型10は、鋳造品と対応する形状
を有し最大径が120mm程度であって内面に塗型剤が
塗布されたキャビティ10aと、溶湯を該固定砂型10
内に導くべく上下方向に伸び内面に塗型剤が塗布された
直径が20mm程度の湯口10bと、湯口10bの上端
に形成された皿状の湯溜まり部10cと、湯口10bの
下端からキャビティ10aの下方に伸び内面に塗型剤を
塗布された直径が10mm程度の湯道10dと、湯道1
0dとキャビティ10aの下端とを連通させる直径8m
m程度のゲート10eとを備えている。
In FIG. 1, reference numeral 10 denotes a fixed sand mold made of self-hardening sand made by mixing molding sand, for example, No. 6 silica sand with a resin hardening agent, and the fixed sand mold 10 has a shape corresponding to that of the cast product. A cavity 10a with a maximum diameter of about 120 mm and a mold coating agent applied to the inner surface, and a fixed sand mold 10 for pouring the molten metal.
A sprue 10b with a diameter of about 20 mm extends in the vertical direction to guide the mold into the inside, and a mold coating agent is applied to the inner surface of the sprue. A runner 10d with a diameter of about 10 mm extends downward and the inner surface is coated with a molding agent, and a runner 1
A diameter of 8 m that communicates 0d with the lower end of the cavity 10a.
It is equipped with a gate 10e of about m.

固定砂型10の湯口10bの上方には、ロボットに支持
された図示しない加圧用ユニットの下端部に設けられた
昇降可能な加圧蓋12が配置されており、該加圧蓋12
は、圧縮空気等からなる加圧気体を加圧蓋12の内部に
導くための加圧気体導入路(図示は省略している)を備
えている。
Above the sprue 10b of the fixed sand mold 10, a pressurizing lid 12 that can be raised and lowered is provided at the lower end of a pressurizing unit (not shown) supported by a robot.
is equipped with a pressurized gas introduction path (not shown) for guiding pressurized gas such as compressed air into the inside of the pressurizing lid 12.

固定砂型10のキャビティ10aの上方には、該キャビ
ティ10aの天井部を構成する可動砂型14が固定砂型
10に対して着脱自在に配設されており、該可動砂型1
4は適当数のエジェクトピン挿入孔14gを備えている
Above the cavity 10a of the fixed sand mold 10, a movable sand mold 14 constituting the ceiling of the cavity 10a is disposed so as to be detachable from the fixed sand mold 10.
4 is provided with an appropriate number of eject pin insertion holes 14g.

可動砂型10の中央部には、該固定砂型10を上下方向
に貫通する金属製筒状のジヨイント部材16が嵌着され
、該ジヨイント部材16はその下端部で砂中子18を保
持しており、これにより砂中子18は可動砂型14と共
に固定砂型10に対して着脱自在である。尚、ジヨイン
ト部材16の下端部は、鋳造後の型ばらし時における砂
中子18の離脱を容易ならしめるためテーパー状に形成
されている。
A metal cylindrical joint member 16 is fitted into the center of the movable sand mold 10 and passes through the fixed sand mold 10 in the vertical direction, and the joint member 16 holds a sand core 18 at its lower end. As a result, the sand core 18 can be attached to and removed from the fixed sand mold 10 together with the movable sand mold 14. The lower end of the joint member 16 is tapered to facilitate removal of the sand core 18 during demolding after casting.

ジヨイント部材16の中心部には、砂中子18の内部に
圧縮空気等の加圧気体を導くための加圧気体供給路20
が該ジヨイント部材16を貫通するように配設されてお
り、該加圧気体供給路20の上流端は加圧気体供給源2
1に接続されている。
At the center of the joint member 16, there is a pressurized gas supply path 20 for guiding pressurized gas such as compressed air into the inside of the sand core 18.
is arranged to pass through the joint member 16, and the upstream end of the pressurized gas supply path 20 is connected to the pressurized gas supply source 2.
Connected to 1.

一方、加圧気体供給路20の下流側は砂中子18の下端
部に伸びており、該下流端には、加圧気体供給路20に
より導かれた加圧気体を砂中子18の内部に放出するノ
ズル22が取り付けられている。また、加圧気体供給路
20には、圧力調整弁24が介設されており、砂中子1
8内に供給する加圧気体の圧力を一定に保つことができ
る。さらに、砂中子18の内部におけるノズル22の下
方には、ノズル22から砂中子18内に放出され該砂中
子18から吸熱し高温化した加圧気体の温度を検知する
温度センサ26が配設されている。
On the other hand, the downstream side of the pressurized gas supply path 20 extends to the lower end of the sand core 18 , and the pressurized gas guided by the pressurized gas supply path 20 is supplied to the inside of the sand core 18 at the downstream end. A nozzle 22 is attached that emits water to the air. Further, a pressure regulating valve 24 is interposed in the pressurized gas supply path 20, and the sand core 1
The pressure of the pressurized gas supplied into the chamber 8 can be kept constant. Furthermore, below the nozzle 22 inside the sand core 18, there is a temperature sensor 26 that detects the temperature of the pressurized gas that is discharged from the nozzle 22 into the sand core 18, absorbs heat from the sand core 18, and becomes high temperature. It is arranged.

ジヨイント部材16の中心部における加圧気体供給路2
0の外側には、砂中子18の内部に放出された加圧気体
を該砂中子18の外部に排出するだめの加圧気体排出路
28が、加圧気体供給路20と同軸に配設されており、
該加圧気体排出路28の上流端はジヨイント部材16の
下端に設けられた開口部16aで開口している。また、
加圧気体排出路28には、該排出路28を流通する加圧
気体の流量を調整する流量調整弁30、及び該排出路2
8を流通する加圧気体の圧力を検知する圧力センサ32
が各々介設されている。
Pressurized gas supply path 2 in the center of the joint member 16
A pressurized gas discharge passage 28 for discharging the pressurized gas released inside the sand core 18 to the outside of the sand core 18 is disposed coaxially with the pressurized gas supply passage 20 on the outside of the sand core 18. has been established,
The upstream end of the pressurized gas discharge path 28 is open at an opening 16a provided at the lower end of the joint member 16. Also,
The pressurized gas discharge path 28 includes a flow rate adjustment valve 30 that adjusts the flow rate of the pressurized gas flowing through the discharge path 28, and
A pressure sensor 32 detects the pressure of pressurized gas flowing through 8.
are provided respectively.

尚、第1図において、36はCPUであって、該CPU
36は、温度センサ26からの温度信号を入力して該温
度信号に基づき加圧気体排出路28の流量調整弁30を
制御すると共に、圧力センサ32からの圧力信号を人力
して該圧力信号に基づき加圧気体供給路20の圧力調整
弁24を制御する。
In addition, in FIG. 1, 36 is a CPU, and the CPU
36 inputs the temperature signal from the temperature sensor 26 and controls the flow rate regulating valve 30 of the pressurized gas discharge path 28 based on the temperature signal, and also inputs the pressure signal from the pressure sensor 32 manually to convert the pressure signal into the pressure signal. Based on this, the pressure regulating valve 24 of the pressurized gas supply path 20 is controlled.

以下、上記構成の加圧鋳造方法八を用いて行なう加圧鋳
造方法について説明する。
Hereinafter, a pressure casting method performed using pressure casting method 8 having the above configuration will be explained.

まず、加圧蓋12を上昇させた状態で、溶湯を固定砂型
10の湯口1bから注入してキャビティ10a内に充填
する。
First, with the pressure lid 12 raised, molten metal is injected from the sprue 1b of the fixed sand mold 10 to fill the cavity 10a.

次に、キャビティ10a内に溶湯が充填され、その後、
湯溜まり部10cに溶湯が溜まると、加圧蓋12を下降
させて湯口10bを密封させる。
Next, the cavity 10a is filled with molten metal, and then,
When the molten metal accumulates in the pool portion 10c, the pressurizing lid 12 is lowered to seal the sprue 10b.

その後、上記の加圧気体導入路から加圧蓋12の内部に
例えば2.5気圧の圧縮空気を導入して場面を加圧する
。このようにすると、溶湯の凝固初期においては、パス
カルの原理により圧力は溶湯全体に略均−に加わるため
、溶湯がジヨイント部材16に押し付けられるので、ジ
ヨイント部材16と砂中子18との間がシールされる。
Thereafter, compressed air of, for example, 2.5 atmospheres is introduced into the pressurizing lid 12 from the pressurized gas introduction path to pressurize the scene. In this way, in the initial stage of solidification of the molten metal, pressure is applied almost uniformly to the entire molten metal due to Pascal's principle, so the molten metal is pressed against the joint member 16, so that there is a gap between the joint member 16 and the sand core 18. Sealed.

このようにして砂中子18はシールされている一方溶湯
により加熱されるため、砂中子18の内部は3気圧程度
に昇圧している。
In this way, the sand core 18 is sealed while being heated by the molten metal, so that the pressure inside the sand core 18 is increased to about 3 atmospheres.

このようにして溶湯を加圧すると、加圧容器の内部に加
圧気体を供給することにより溶湯を加圧する方法に比べ
て、装置が小型で済むと共に、加圧容器の蓋の開閉と注
湯・加圧とのタイミングの困難さが解消する。
Pressurizing the molten metal in this way requires a smaller device compared to the method of pressurizing the molten metal by supplying pressurized gas to the inside of the pressurized container.・Difficulty in timing with pressurization is resolved.

次に、圧縮空気を加圧気体供給路20から砂中子18の
内部に供給して溶湯を砂中子18の表面から加圧する一
方、砂中子18の内部の圧縮空気を加圧気体排出路28
から外部に排出して砂中子18の内部を冷却する。この
場合、温度センサ26からの温度信号に基づき流量調整
弁30の開度を調整して、砂中子18の内部の温度を約
100℃に維持すると共に、圧力センサ32からの圧力
信号に基づき圧力調整弁30の開度を調整して、砂中子
18の内部の圧力を約4.5気圧に維持することか好ま
しい。
Next, compressed air is supplied from the pressurized gas supply path 20 to the inside of the sand core 18 to pressurize the molten metal from the surface of the sand core 18, while the compressed air inside the sand core 18 is discharged as a pressurized gas. Road 28
The inside of the sand core 18 is cooled by discharging it to the outside. In this case, the opening degree of the flow rate regulating valve 30 is adjusted based on the temperature signal from the temperature sensor 26 to maintain the internal temperature of the sand core 18 at approximately 100°C, and based on the pressure signal from the pressure sensor 32 Preferably, the pressure inside the sand core 18 is maintained at about 4.5 atmospheres by adjusting the opening degree of the pressure regulating valve 30.

尚、上記実施例においては、鋳型として固定砂型10を
用いたか、これに代えて金型を用いる場合でも、本発明
の加圧鋳造方法を適用することができる。
In the above embodiments, the fixed sand mold 10 was used as the mold, or even if a metal mold was used instead, the pressure casting method of the present invention can be applied.

(発明の効果) 以上説明したように、本発明に係る加圧鋳造方法による
と、砂中子の内部に加圧気体を供給して溶湯を加圧する
一方、砂中子の内部に供給される加圧気体を砂中子の内
外に流通させるため、砂中子の熱は加圧空気によって砂
中子の外部に放出されるので、溶湯の凝固時における冷
却性の悪化を招くことなく溶湯を加圧できる。
(Effects of the Invention) As explained above, according to the pressure casting method according to the present invention, pressurized gas is supplied to the inside of the sand core to pressurize the molten metal, while the gas is supplied to the inside of the sand core. Since the pressurized gas is circulated inside and outside the sand core, the heat of the sand core is released to the outside of the sand core by the pressurized air, so the molten metal can be cooled without deteriorating the cooling performance when the molten metal solidifies. Can be pressurized.

このため、本発明によると、砂中子を用いる場合である
にも拘らず、得られる鋳造品の組織を微細化することが
できる。
Therefore, according to the present invention, the structure of the obtained cast product can be refined even though a sand core is used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に用いる加圧鋳造装置の断面
図である。 A・・・加圧鋳造装置 10・・・固定砂型(鋳型) 18・・・砂中子 20・・・加圧気体供給路 24・・・圧力調整弁 26・・・温度センサ 28・・・加圧気体排出路 30・・・流量調整弁 ほか1名
FIG. 1 is a sectional view of a pressure casting apparatus used in an embodiment of the present invention. A... Pressure casting device 10... Fixed sand mold (mold) 18... Sand core 20... Pressurized gas supply path 24... Pressure adjustment valve 26... Temperature sensor 28... Pressurized gas discharge path 30...Flow rate adjustment valve and 1 other person

Claims (1)

【特許請求の範囲】[Claims] (1)砂中子がセットされた鋳型内に溶湯を充填し、充
填された溶湯を加圧して鋳造する加圧鋳造方法であって
、上記砂中子の内部に加圧気体を供給して鋳型内の溶湯
を砂中子の表面側から加圧すると共に、該砂中子の内部
に供給される加圧気体を該砂中子の内外に流通させて該
砂中子を冷却することを特徴とする加圧鋳造方法。
(1) A pressure casting method in which a mold in which a sand core is set is filled with molten metal, and the filled molten metal is pressurized and cast. The method is characterized in that the molten metal in the mold is pressurized from the surface side of the sand core, and the pressurized gas supplied to the inside of the sand core is circulated inside and outside of the sand core to cool the sand core. Pressure casting method.
JP12633590A 1990-05-15 1990-05-15 Pressure diecasting process Pending JPH0422566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12633590A JPH0422566A (en) 1990-05-15 1990-05-15 Pressure diecasting process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12633590A JPH0422566A (en) 1990-05-15 1990-05-15 Pressure diecasting process

Publications (1)

Publication Number Publication Date
JPH0422566A true JPH0422566A (en) 1992-01-27

Family

ID=14932634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12633590A Pending JPH0422566A (en) 1990-05-15 1990-05-15 Pressure diecasting process

Country Status (1)

Country Link
JP (1) JPH0422566A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109513899A (en) * 2018-11-15 2019-03-26 哈尔滨工业大学 A kind of large-scale intelligent fission synchronzed press device and boosting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109513899A (en) * 2018-11-15 2019-03-26 哈尔滨工业大学 A kind of large-scale intelligent fission synchronzed press device and boosting method
CN109513899B (en) * 2018-11-15 2020-07-14 哈尔滨工业大学 Large intelligent split synchronous pressurizing device and pressurizing method

Similar Documents

Publication Publication Date Title
FI77998B (en) PRECISIONSGJUTFOERFARANDE OCH GJUTFORM.
US4875518A (en) Method of and apparatus for low-pressure casting of light metal alloy
US20090151887A1 (en) Casting Method
JP2905939B2 (en) Molds and casting and cooling zones in continuous casting plants
AU2005281886B2 (en) Method and device for casting molten metal
GB2208817A (en) Low-pressure casting of light metal alloy
JPH03230860A (en) Pressurized casting method
JPH0422566A (en) Pressure diecasting process
CN207746381U (en) A kind of aluminum alloy chassis hollow thin-wall fore sub frame metal gravity casting die
JPH0138590B2 (en)
US7140415B1 (en) Method and apparatus for direct pour casting
MXPA03000286A (en) Method and device for rising casting with a sliding closure that is mounted on the mould frame.
JP2952523B2 (en) Component casting method and device
US11897028B2 (en) Controlled nozzle cooling (CNC) casting
HU207008B (en) Method and apparatus for low-pressure casting metals
GB2225970A (en) Low pressure casting of metal
JPH0452068A (en) Pressurized casting method
KR20220155155A (en) An equipment for Low Pressure Casting With Multiple Pressurization
JPH02151365A (en) Pressure casting method
JP2002079363A (en) Low velocity high pressure casting method
JPS5884661A (en) Method and device for pressure casting
RU2026151C1 (en) Method of casting with directed solidification of metal
JPH0241751A (en) Device for casting wheel for vehicle
JPH08174178A (en) Method for preheating die in die casting machine
JPH0647517A (en) Method for casting metal