JPH0451961B2 - - Google Patents

Info

Publication number
JPH0451961B2
JPH0451961B2 JP12340882A JP12340882A JPH0451961B2 JP H0451961 B2 JPH0451961 B2 JP H0451961B2 JP 12340882 A JP12340882 A JP 12340882A JP 12340882 A JP12340882 A JP 12340882A JP H0451961 B2 JPH0451961 B2 JP H0451961B2
Authority
JP
Japan
Prior art keywords
transformer
signal
frequency
induction motor
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12340882A
Other languages
Japanese (ja)
Other versions
JPS5913310A (en
Inventor
Moriaki Takechi
Hideo Shinohara
Toshihiko Fujiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP12340882A priority Critical patent/JPS5913310A/en
Publication of JPS5913310A publication Critical patent/JPS5913310A/en
Publication of JPH0451961B2 publication Critical patent/JPH0451961B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transformer Cooling (AREA)

Description

【発明の詳細な説明】 この発明は、例えば送油風冷式などの強制冷却
式変圧器の冷却装置に関し、特に冷却器用送油ポ
ンプ及びフアン運転のための所要電力(以下、補
機損失と記す)の低減を図るための改良に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cooling system for a forced cooling type transformer such as an oil feed air-cooled type, and particularly relates to a cooling system for a forced cooling type transformer such as an oil feed air-cooled type, and particularly relates to a cooling device for a forced cooling type transformer such as an oil feed air-cooled type, and in particular to a cooling device for a forced cooling type transformer such as an oil feed pump and fan operation (hereinafter referred to as auxiliary loss). related to improvements aimed at reducing

第1図は従来の送油風冷式変圧器の冷却装置を
中心とした構成図であり、1は変圧器本体で冷却
媒体である油が入つている。2は冷却器、3は冷
却媒体である油を変圧器本体1と冷却器2との間
で循環させる送油ポンプ及びモータ(以下送油ポ
ンプモータと記す)、4は冷却器2に送られる油
を冷却する送風用のフアンとモータ(以下フアン
モータと記す)、5は変圧器の負荷電流あるいは
油温を検出する検出部、6は検出部5で検出した
変圧器の負荷状態に応じて送油ポンプモータ3や
フアンモータ4の電源回路を電磁接触器7により
開閉させる制御部、8は冷却装置全体の電源を開
閉するノーフユーズ遮断器、9は制御部6、電磁
接触器7、ノーフユーズ遮断器8などを収納する
冷却器制御盤、10は商用電源である。なお、送
油ポンプモータ3及びフアンモータ4は誘導電動
機である。
FIG. 1 is a block diagram mainly showing a cooling device for a conventional oil-feeding, air-cooled transformer. 1 is the transformer body, which contains oil as a cooling medium. 2 is a cooler; 3 is an oil pump and motor (hereinafter referred to as oil pump motor) that circulates oil, which is a cooling medium, between the transformer body 1 and the cooler 2; and 4 is sent to the cooler 2. A fan and a motor for blowing air to cool the oil (hereinafter referred to as fan motor); 5 a detection unit that detects the load current or oil temperature of the transformer; 6 a detection unit that detects the load state of the transformer detected by the detection unit 5; A control unit that opens and closes the power supply circuit of the oil pump motor 3 and fan motor 4 using an electromagnetic contactor 7, 8 a no-use circuit breaker that opens and closes the power supply for the entire cooling system, and 9 a control unit 6, an electromagnetic contactor 7, and a no-use circuit breaker. 10 is a commercial power supply. Note that the oil feed pump motor 3 and the fan motor 4 are induction motors.

第2図は第1図の冷却装置の主要部分を示すブ
ロツク図であり、4台又は4群の冷却器を接続し
た場合を示している。なお、第1図、第2図にお
いて、各機器や装置間の接続線のうち、実線は電
力線、破線は信号線、一点鎖線は電磁接触器への
制御線を示し、以下の図においても同様とする。
FIG. 2 is a block diagram showing the main parts of the cooling device shown in FIG. 1, and shows a case where four coolers or four groups of coolers are connected. In Figures 1 and 2, among the connection lines between each device and device, solid lines indicate power lines, broken lines indicate signal lines, and dash-dotted lines indicate control lines to electromagnetic contactors. The same applies to the following figures. shall be.

従来の送油風冷式変圧器は上記のように構成さ
れ、冷却装置は、定格負荷状態において変圧器の
温度が規定の温度上昇限度以下となるよう選定さ
れている。従つて変圧器の負荷が定格負荷より低
減した軽負荷状態では、変圧器の発生損失は定格
負荷状態より低減し、一部の冷却器を停止しても
変圧器は規定の温度上昇限度以下で運転すること
が可能である。このため、検出部5で検出した変
圧器負荷電流や変圧器温度など変圧器の負荷状態
に応じて電磁接触器7を開閉して冷却器2の運転
台数を制御することが行われている。この場合の
冷却装置全体の補機損失は冷却器の運転台数に比
例し、定格運転時に比べ補機損失を低減すること
ができる。
A conventional oil-feeding, air-cooled transformer is constructed as described above, and the cooling device is selected so that the temperature of the transformer is below a specified temperature rise limit under rated load conditions. Therefore, under light load conditions where the load on the transformer is lower than the rated load, the loss generated by the transformer will be lower than under the rated load condition, and even if some coolers are stopped, the temperature of the transformer will remain below the specified temperature rise limit. It is possible to drive. For this reason, the number of operating coolers 2 is controlled by opening and closing the electromagnetic contactor 7 according to the load state of the transformer, such as the transformer load current and transformer temperature detected by the detection unit 5. In this case, the auxiliary equipment loss of the entire cooling system is proportional to the number of operating coolers, and the auxiliary equipment loss can be reduced compared to the case of rated operation.

しかるに、近年、省エネルギー化の観点から、
変圧器についても更に補機損失の低減が要求され
ている。
However, in recent years, from the perspective of energy saving,
Transformers are also required to further reduce auxiliary loss.

変圧器用冷却装置として従来の装置に比べて更
に補機損失の低減を図る方法として、冷却器2の
送油ポンプモータ3及びフアンモータ4を可変電
圧可変周波数逆変換器(以下可変周波インバータ
と記す)で駆動し、送油ポンプ及びフアンの回転
数制御を行うことが考えられる。
As a method for further reducing auxiliary losses as a transformer cooling device compared to conventional devices, the oil feed pump motor 3 and fan motor 4 of the cooler 2 are replaced with a variable voltage variable frequency inverter (hereinafter referred to as a variable frequency inverter). ) to control the rotational speed of the oil pump and fan.

第3図は、改良された冷却装置の主要部分を示
すブロツク図であり、4台(又は4群)の冷却器
を接続した場合を示している。第3図において、
2〜5,7g,10は第2図と同一であり、12
は商用電源10よりの電力を制御部13の出力信
号によつて定まる周波数の電力に変換し、送油ポ
ンプ3とフアンモータ4に供給する可変周波イン
バータ、13は検出部5の信号にもとづいて送油
ポンプモータ3及びフアンモータ4の駆動周波数
を決定し、その信号を可変周波インバータ12に
出力する制御部である。
FIG. 3 is a block diagram showing the main parts of the improved cooling device, and shows a case in which four (or four groups) of coolers are connected. In Figure 3,
2-5, 7g, 10 are the same as in Figure 2, 12
is a variable frequency inverter that converts the electric power from the commercial power supply 10 into electric power with a frequency determined by the output signal of the control unit 13 and supplies it to the oil pump 3 and the fan motor 4; This is a control unit that determines the drive frequencies of the oil feed pump motor 3 and fan motor 4 and outputs the signals to the variable frequency inverter 12.

上記のように構成された冷却装置において、可
変周波インバータ12の出力周波数を変化すれ
ば、送油ポンプモータ3及びフアンモータ4の回
転数が変化し、送油量及び送風量が変化するの
で、冷却器2の冷却能力と補機損失が変化する。
In the cooling system configured as described above, if the output frequency of the variable frequency inverter 12 is changed, the rotation speeds of the oil pump motor 3 and the fan motor 4 are changed, and the amount of oil and air blown changes. The cooling capacity of the cooler 2 and the auxiliary equipment loss change.

第4図及び第5図は送油ポンプモータ3及びフ
アンモータ4の回転数Nと冷却器の冷却能力C及
び補機損失Wの特性の一例を示すものであり、送
油ポンプとフアンの軸動力が回転数のほぼ3乗に
比例して変化するのに対し、送油ポンプとフアン
の回転数変化に対する冷却能力の変化は、一般に
補機損失の変化に比べて緩やかであるので、冷却
装置全体の冷却能力の変化を送油ポンプモータ3
及びフアンモータ4の回転数変化によつて行う
と、従来装置の如く冷却器の運転台数の変化によ
つて行う場合に比べ同一冷却能力でも補機損失が
低下する。
Figures 4 and 5 show an example of the characteristics of the rotational speed N of the oil pump motor 3 and fan motor 4, the cooling capacity C of the cooler, and the auxiliary equipment loss W. While power changes approximately in proportion to the cube of the rotational speed, changes in cooling capacity due to changes in the rotational speed of oil pumps and fans are generally more gradual than changes in auxiliary equipment loss. Changes in the overall cooling capacity of the oil pump motor 3
If this is done by changing the rotational speed of the fan motor 4, the auxiliary equipment loss will be lower even with the same cooling capacity, compared to the case where it is done by changing the number of operating coolers as in the conventional device.

従つて検出部5で検出した信号をもとに、制御
部13において変圧器の負荷状態に応じた所要冷
却能力を求め、これに対応する送油ポンプモータ
3及びフアンモータ4の回転数が得られるよう可
変周波インバータ12の出力周波数を制御すれ
ば、従来の冷却装置に比べて補機損失を低減でき
る。この場合、送油ポンプモータ及びフアンモー
タの回転数を低減するほど補機損失は低下する
が、冷却器の冷却能力も低下するので、変圧器の
温度上昇による限界や、巻線温度の上昇に伴う変
圧器本体損失の増加の面から限度があり、第6図
aの如く変圧器負荷電流に対応して、所要の回転
数が定まる。
Therefore, based on the signal detected by the detection unit 5, the control unit 13 determines the required cooling capacity according to the load condition of the transformer, and obtains the corresponding rotational speed of the oil pump motor 3 and fan motor 4. If the output frequency of the variable frequency inverter 12 is controlled so as to reduce the auxiliary equipment loss compared to conventional cooling devices. In this case, the lower the rotational speed of the oil pump motor and fan motor, the lower the auxiliary equipment loss will be, but the cooling capacity of the cooler will also decrease, so the limit due to the temperature rise of the transformer and the increase in winding temperature will decrease. There is a limit due to the accompanying increase in loss in the transformer body, and the required rotation speed is determined in accordance with the transformer load current as shown in FIG. 6a.

しかるに、通常、変圧器の負荷電流は一定でな
く、一般に第6図bの如く時間と共に変化する変
動負荷である。変圧器が第6図bの如き変動負荷
で運転されている状態で送油ポンプモータ及びフ
アンモータの回転数を第6図aに従つて制御する
と、送油ポンプモータ及びフアンモータの回転数
は、変圧器の負荷変動に対応して第6図cの如く
常時変化する。このため、送油ポンプ及びフアン
モータは僅かな負荷変動に対しても加速又は減速
されることとなり、過渡電流による効率の悪化や
温度上昇、機械的変動応力による損傷などを受け
るおそれがある。
However, the load current of a transformer is usually not constant, but is generally a variable load that changes over time as shown in FIG. 6b. If the rotation speeds of the oil feed pump motor and fan motor are controlled according to FIG. 6a while the transformer is being operated with a variable load as shown in FIG. 6b, the rotation speeds of the oil feed pump motor and fan motor will be as follows. , constantly changes as shown in FIG. 6c in response to changes in the load of the transformer. As a result, the oil pump and fan motor are accelerated or decelerated even in response to slight load fluctuations, and there is a risk that efficiency may deteriorate due to transient currents, temperature rises, and damage may occur due to mechanical fluctuation stress.

この発明は、上記の欠点を除去するためになさ
れたもので、送油ポンプモータ及びフアンモータ
を可変周波インバータで駆動することにより補機
損失の低減を図るとともに、変圧器負荷の変動に
よる頻繁な加減速を防止することを目的とする。
This invention was made in order to eliminate the above-mentioned drawbacks, and by driving the oil pump motor and fan motor with a variable frequency inverter, it aims to reduce auxiliary equipment loss, and also reduces the loss of auxiliary equipment due to frequent changes in transformer load. The purpose is to prevent acceleration and deceleration.

第7図はこの発明の一実施例を示すものであ
り、第7図において、2〜5及び7,8,10,
12は第3図と同一のものであり、14は検出部
5で検出した変圧器負荷電流が予め設定した電流
区分の何れに該当するかを判別するレベル判別
部、15は電流区分に対応して予め設定した回転
数が得られるよう可変周波インバータ12の出力
周波数を制御する制御部である。
FIG. 7 shows an embodiment of the present invention, and in FIG. 7, 2 to 5 and 7, 8, 10,
Reference numeral 12 is the same as that shown in FIG. 3, 14 is a level determination unit that determines which of the preset current classifications the transformer load current detected by the detection unit 5 corresponds to, and 15 corresponds to the current classification. This is a control unit that controls the output frequency of the variable frequency inverter 12 so that a preset rotation speed is obtained.

第8図aは電流区分に対応する回転数の設定例
を示し、負荷電流IがI1以下の場合、N1,I1以上
I2以下の場合N2,I2以上の場合Noに設定した場
合を示している。
Figure 8a shows an example of setting the rotation speed corresponding to the current classification. When the load current I is less than I 1 , N 1
The case where the setting is N 2 when I 2 or less, and No when I 2 or more is shown.

この発明の効果を第8図b及び第8図cによつ
て説明する。
The effects of this invention will be explained with reference to FIGS. 8b and 8c.

上記のように構成したものにおいては、変圧器
が第8図bの如き変動負荷で運転されている場合
にも、送油ポンプモータ及びフアンモータの回転
数の変化は第8図cの如く変圧器負荷電流が閾値
I1又はI2を昇降する場合に限られ、閾値を昇降し
ない負荷変動に対しては一定に保たれるので、変
圧器の負荷変動に伴う頻繁な加速減速を防止する
ことができる。
With the above configuration, even when the transformer is operated with a variable load as shown in Figure 8b, the rotational speed of the oil pump motor and fan motor changes as shown in Figure 8c. device load current is threshold
It is limited to when I 1 or I 2 is raised or lowered, and is kept constant for load fluctuations that do not raise or lower the threshold, so frequent acceleration and deceleration accompanying load fluctuations of the transformer can be prevented.

なお、第8図aの一点鎖線は第6図aで与えら
れる回転数を示しており、各電流区分に対応する
回転数を、第8図aの如く第6図aより高く設定
すれば、変圧器の運転温度は第6図aの場合に比
べて低く維持することができる。
Note that the dashed line in FIG. 8a indicates the rotation speed given in FIG. 6a, and if the rotation speed corresponding to each current division is set higher than that in FIG. 6a as shown in FIG. The operating temperature of the transformer can be maintained lower than in the case of FIG. 6a.

第9図aはこの発明の他の実施例を示すもの
で、回転数の低下に対する変圧器負荷電流の閾値
を、回転数の増加に対する閾値に比べて低く設定
し、ヒステリシス特性を付加したものを示してい
る。
FIG. 9a shows another embodiment of the present invention, in which the threshold of the transformer load current for a decrease in rotational speed is set lower than the threshold for an increase in rotational speed, and a hysteresis characteristic is added. It shows.

この発明の効果を第9図b及び第9図cによつ
て説明する。変圧器の負荷が閾値I2を中心に変動
する場合、第8図aの場合には閾値I2をこえる毎
に回転数が変化するが、第9図aの如くヒステリ
シスを付加した場合は、負荷電流がI2をこえて回
転数がNoに設定された後、負荷電流がI2より若
干低下しても、I2′を下廻るまで回転数はNoに維
持されるので、閾値近辺での負荷変動による頻繁
な加速減速を防止することができる。
The effects of this invention will be explained with reference to FIGS. 9b and 9c. When the load on the transformer fluctuates around the threshold value I2 , in the case of Figure 8a, the rotation speed changes every time it exceeds the threshold value I2 , but if hysteresis is added as in Figure 9a, After the load current exceeds I 2 and the rotation speed is set to N o , even if the load current slightly decreases below I 2 , the rotation speed will be maintained at N o until it falls below I 2 ′, so the threshold value Frequent acceleration and deceleration due to load fluctuations in the vicinity can be prevented.

なお、上記の説明では、検出部5で変圧器負荷
電流を検出して可変周波インバータを制御する場
合について説明したが、検出部5で変圧器油温又
は巻線温度など変圧器の運転状態に対応する他の
信号を検出する場合に適用しても同様の効果が期
待できる。
In addition, in the above explanation, the case where the variable frequency inverter is controlled by detecting the transformer load current with the detection unit 5 was explained, but the detection unit 5 detects the transformer operating state such as the transformer oil temperature or the winding temperature. Similar effects can be expected when applied to detect other corresponding signals.

また、上記実施例では送油風冷式変圧器につい
て述べたが、送油自冷式や油入風冷式など送油ポ
ンプモータあるいはフアンモータの何れか一方の
みを有する冷却方式や、他の冷却媒体による冷却
方式、例えば送油水冷式変圧器に本発明を適用し
ても同様な効果が期待できる。
In addition, although the above embodiment describes an oil feed air-cooled transformer, it is also possible to use a cooling system that has only either an oil feed pump motor or a fan motor, such as an oil feed self-cooling type or an oil-immersed air-cooled type, or other cooling methods. Similar effects can be expected even when the present invention is applied to a cooling system using a cooling medium, for example, an oil-fed water-cooled transformer.

この発明は、以上説明したように、冷却器を可
変周波インバータで駆動し、その出力周波数を変
圧器の負荷電流に対応して階段状に制御すること
により、補機損失を低減し、同時に変圧器負荷の
変動による頻繁な加減速を防止することができ
る。
As explained above, this invention reduces auxiliary machine losses and at the same time transforms the Frequent acceleration/deceleration due to fluctuations in equipment load can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の送油風冷式変圧器の冷却装置を
中心とした構成図、第2図は第1図の冷却装置の
ブロツク図、第3図は改良された冷却装置のブロ
ツク図、第4図は冷却器の駆動周波数(回転数)
と冷却能力の特性例を示す図、第5図は冷却器の
駆動周波数(回転数)と補機損失の特性例を示す
図、第6図は冷却器運転状態説明図、第7図はこ
の発明の一実施例を示すブロツク図、第8図はこ
の発明の一実施例による冷却器運転状態説明図、
第9図はこの発明の他の実施例による冷却器運転
状態説明図である。 図において、1は変圧器本体、2は冷却器、3
は送油ポンプモータ、4はフアンモータ、5は検
出部、10は電源、12は可変周波インバータ、
14はレベル判別部、15は制御部。なお、図中
同一符号は同一あるいは相当する部分を示す。
Fig. 1 is a block diagram mainly showing the cooling system of a conventional oil-feeding air-cooled transformer, Fig. 2 is a block diagram of the cooling system shown in Fig. 1, and Fig. 3 is a block diagram of an improved cooling system. Figure 4 shows the driving frequency (rotation speed) of the cooler.
Figure 5 is a diagram showing an example of the characteristics of cooling capacity and cooling capacity, Figure 5 is a diagram showing an example of the characteristics of cooler drive frequency (rotation speed) and auxiliary equipment loss, Figure 6 is a diagram explaining the operating state of the cooler, and Figure 7 is this diagram. A block diagram showing an embodiment of the invention, FIG. 8 is an explanatory diagram of the operating state of a cooler according to an embodiment of the invention,
FIG. 9 is an explanatory diagram of the operating state of a cooler according to another embodiment of the present invention. In the figure, 1 is the transformer body, 2 is the cooler, and 3
is an oil pump motor, 4 is a fan motor, 5 is a detection unit, 10 is a power supply, 12 is a variable frequency inverter,
14 is a level discrimination section, and 15 is a control section. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 変圧器内の冷却媒体を誘導電動機によるフア
ンまたはポンプで冷却してなる冷却機構、前記変
圧器の運転状態を検出する検出部、この検出部か
らの信号レベルが複数の区分のいずれの区分に属
するかを判別するレベル判別部、このレベル判別
部で判別した区分に応じて前記誘導電動機へ供給
する出力周波数を決定し、周波数指定信号を発生
する制御部、およびこの制御部からの指令に基づ
いて電源を所定の周波数の電力に変換し、前記誘
導電動機を変速駆動する可変電圧可変周波数逆変
換器を備え、前記検出部で検出した信号レベルと
前記可変電圧可変周波数逆変換器の出力周波数と
の対応を階段状に設定したことを特徴とする変圧
器冷却装置。 2 検出部は変圧器の負荷電流を検出する電流検
出器で構成したことを特徴とする特許請求の範囲
第1項記載の変圧器冷却装置。 3 検出部は変圧器の油温または巻線温度を検出
する温度検出器で構成したことを特徴とする特許
請求の範囲第1項記載の変圧器冷却装置。 4 変圧器内の冷却媒体を誘導電動機によるフア
ンまたはポンプで冷却してなる冷却機構、前記変
圧器の運転状態を検出する検出部、この検出部か
らの信号レベルが複数の区分のいずれの区分に属
するかを判別すると共に、上記信号レベルが上昇
する時と下降する時とで、その区分の範囲を変え
てなるレベル判別部、このレベル判別部で判別し
た区分に応じて前記誘導電動機へ供給する出力周
波数を決定し、周波数指令信号を発生する制御
部、およびこの制御部からの指令に基づいて電源
を所定の周波数の電力に変換し、前記誘導電動機
を変速駆動する可変電圧可変周波数逆変換器を備
え、前記検出部で検出した信号レベルと前記可変
電圧可変周波数逆変換器の出力周波数との対応を
ヒステリシスを有する階段状に設定したことを特
徴とする変圧器冷却装置。
[Scope of Claims] 1. A cooling mechanism in which a cooling medium in a transformer is cooled by a fan or a pump driven by an induction motor, a detection unit that detects the operating state of the transformer, and a signal level from the detection unit that is set to a plurality of levels. a level determining unit that determines which of the classifications it belongs to; a control unit that determines an output frequency to be supplied to the induction motor according to the classification determined by the level determining unit and generates a frequency designation signal; and a control unit that generates a frequency designation signal. A variable voltage variable frequency inverter converts power into power of a predetermined frequency based on a command from the detection section, and drives the induction motor at variable speeds, and the signal level detected by the detection section and the variable voltage variable frequency inversion A transformer cooling device characterized in that the correspondence with the output frequency of the converter is set in a stepped manner. 2. The transformer cooling device according to claim 1, wherein the detection section is constituted by a current detector that detects the load current of the transformer. 3. The transformer cooling device as set forth in claim 1, wherein the detection section includes a temperature detector that detects the oil temperature or winding temperature of the transformer. 4. A cooling mechanism in which the cooling medium in the transformer is cooled by a fan or pump driven by an induction motor, a detection unit that detects the operating state of the transformer, and a signal level from the detection unit that determines which of the plurality of categories the level of the signal from the detection unit falls into. a level discriminating unit that determines whether the signal belongs to the above-mentioned one and changes the range of the classification depending on when the signal level rises or falls, and supplies the signal to the induction motor according to the classification determined by this level discriminating unit. a control unit that determines an output frequency and generates a frequency command signal; and a variable voltage variable frequency inverter that converts power to power of a predetermined frequency based on commands from the control unit and drives the induction motor at variable speeds. A transformer cooling device, characterized in that the correspondence between the signal level detected by the detection section and the output frequency of the variable voltage variable frequency inverter is set in a stepwise manner with hysteresis.
JP12340882A 1982-07-13 1982-07-13 Transformer cooling device Granted JPS5913310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12340882A JPS5913310A (en) 1982-07-13 1982-07-13 Transformer cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12340882A JPS5913310A (en) 1982-07-13 1982-07-13 Transformer cooling device

Publications (2)

Publication Number Publication Date
JPS5913310A JPS5913310A (en) 1984-01-24
JPH0451961B2 true JPH0451961B2 (en) 1992-08-20

Family

ID=14859810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12340882A Granted JPS5913310A (en) 1982-07-13 1982-07-13 Transformer cooling device

Country Status (1)

Country Link
JP (1) JPS5913310A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6475188A (en) * 1987-09-16 1989-03-20 Ishikawajima Harima Heavy Ind Electron beam welding method
CN114089794B (en) * 2021-11-05 2022-07-29 国网天津市电力公司电力科学研究院 Control method for cooling system of oil-immersed air-cooled transformer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56132609U (en) * 1980-03-04 1981-10-07
JPS5790913A (en) * 1980-11-27 1982-06-05 Kansai Electric Power Co Inc:The Operating apparatus of cooler for transformer
JPS6029207B2 (en) * 1980-11-27 1985-07-09 株式会社日立製作所 Operating device for transformer cooler

Also Published As

Publication number Publication date
JPS5913310A (en) 1984-01-24

Similar Documents

Publication Publication Date Title
KR100344716B1 (en) Pump operation control device
EP0534447B1 (en) D.C. fan control circuit for linearly variable cooling
US5721479A (en) Induction motor breakdown slip prediction for propulsion traction applications
EP0139869B1 (en) Controlling system for a pole change electric motor
US20220407388A1 (en) Cooling control device, electric system, and cooling control method
JPS58225617A (en) Transformer cooling apparatus
JPH0451961B2 (en)
US5898296A (en) Isolation regulator
JPS5913311A (en) Transformer cooling device
JPH06327294A (en) Inverter for driving multirotor motor
JPS6259447B2 (en)
JPS5933808A (en) Transformer cooling apparatus
JPH0430167B2 (en)
JPS6150315A (en) Transformer cooling device
JPS62245609A (en) Cooling apparatus for transformer
RU2819035C1 (en) Alternating current electric locomotive fan rpm automated control system
JPH0312443B2 (en)
JPS5933809A (en) Transformer cooling apparatus
JPS6155904A (en) Cooling device for stationary induction apparatus
JP2010110075A (en) Motor driving inverter device
JPH11311196A (en) Pump device
JPH01218917A (en) Driving control device for vehicle air conditioning compressor
JPS59139892A (en) Operating device for cooler of electric apparatus
JPH0343693Y2 (en)
SU658366A1 (en) Method of automatic regulation of refrigerator compressor capacity