JPH0451764B2 - - Google Patents

Info

Publication number
JPH0451764B2
JPH0451764B2 JP60275098A JP27509885A JPH0451764B2 JP H0451764 B2 JPH0451764 B2 JP H0451764B2 JP 60275098 A JP60275098 A JP 60275098A JP 27509885 A JP27509885 A JP 27509885A JP H0451764 B2 JPH0451764 B2 JP H0451764B2
Authority
JP
Japan
Prior art keywords
steel plate
plate cell
liquid storage
pressure
cell body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60275098A
Other languages
Japanese (ja)
Other versions
JPS62134518A (en
Inventor
Isao Hojo
Hideto Taniguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toa Corp
Original Assignee
Toa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Corp filed Critical Toa Corp
Priority to JP27509885A priority Critical patent/JPS62134518A/en
Publication of JPS62134518A publication Critical patent/JPS62134518A/en
Publication of JPH0451764B2 publication Critical patent/JPH0451764B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Revetment (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は根入れ式鋼板セル体の傾斜測定方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for measuring the inclination of an embedded steel plate cell body.

〔従来技術〕[Prior art]

本邦海域の利用が多様化し、かつ高度化してき
ている近年、より精度の高い、大水深構造物を実
現することが急務とされてきており、その要求に
応えるために、あらかじめ一体化された鋼板セル
体を海底地盤中に直接打ち込む根入れ式鋼板セル
工法が採用されている。
In recent years, as the use of Japan's sea areas has become more diverse and sophisticated, there has been an urgent need to realize deep-water structures with higher precision.In order to meet this demand, pre-integrated steel plates have been developed. The steel plate cell construction method, in which the cell body is driven directly into the seabed, is used.

この工法は、鋼板セル体を複数のバイブロハン
マーを同調運転させて、強力な振動エネルギーを
均等に鋼板セル体に伝えながら打ち込みを行な
い、その後、直ちに中詰砂を入れて強固な壁体を
つくるもので、大水深構造物の海上作業を迅速
に、正確に、かつ経済的に行なう施工システムと
して注目されている。
In this construction method, multiple vibrohammers are operated in synchronization to drive the steel plate cell body while transmitting powerful vibration energy evenly to the steel plate cell body, and then filling sand is immediately poured in to create a strong wall. This system is attracting attention as a construction system that allows offshore construction of deep-water structures to be carried out quickly, accurately, and economically.

しかしながら、上記根入れ式鋼板セル工法にお
ける鋼板セル体の打ち込みに際しては、その鋼板
セル体の水平度を常に保持することが重要であ
り、そのためには、その水平度の情報をリアルタ
イムで把握しながら管理することが正確に垂直な
打ち込みを行なうために最も必要なことである。
However, when driving the steel plate cell body in the above-mentioned embedded steel plate cell construction method, it is important to always maintain the levelness of the steel plate cell body. Control is the most important thing in order to perform an accurate vertical drive.

〔発明の目的〕[Purpose of the invention]

本発明は前記のごとき根入れ式鋼板セル工法に
おける鋼板セル体の打ち込み時における鋼板セル
体の水平度の情報をリアルタイムで把握可能な鋼
板セル体の傾斜測定方法を提供することを目的と
してなされたものである。
The present invention has been made for the purpose of providing a method for measuring the inclination of a steel plate cell body that can obtain information on the levelness of the steel plate cell body in real time when driving the steel plate cell body in the above-mentioned embedded type steel plate cell construction method. It is something.

〔発明の構成〕[Structure of the invention]

以上の目的を達成するための本発明の根入れ式
鋼板セル体の傾斜測定方法は鋼板セル体上に位置
させたベースリングの相対向する二点上にそれぞ
れ上方に開放した液体収納体を立設し、それらを
連通管にて連通し、かつ該液体収納体の近傍に、
連通管と液体収納体とを液体で連通した受圧体を
設け、かつ受圧体の液体の上に気体層を設けて密
封し、これら液体で通じている液体収納体、連通
管および受圧体からなるセツトを少なくとももう
一対前記相対向する二点を結ぶと直角方向に設
け、それらの相対向する受圧体の上方をそれぞれ
圧力変換器と結び、それぞれ相対向する受圧体同
志の圧力差を検出して鋼板セル体の傾斜を測定す
ることを特徴としたものである。
In order to achieve the above object, the inclination measurement method of a steel plate cell body of the present invention is based on the method of measuring the inclination of a steel plate cell body by placing upwardly open liquid storage bodies on two opposing points of a base ring placed on a steel plate cell body. and communicate them with a communication pipe, and near the liquid storage body,
A pressure receiving body is provided that communicates the communication pipe and the liquid storage body with a liquid, and a gas layer is provided on top of the liquid in the pressure receiving body to seal it, and the liquid storage body, the communication pipe, and the pressure receiving body are communicated by these liquids. At least one more pair of sets are provided in a direction perpendicular to the two opposing points, and the upper portions of the opposing pressure receiving bodies are connected to respective pressure transducers to detect the pressure difference between the opposing pressure receiving bodies. This method is characterized by measuring the inclination of a steel plate cell body.

〔発明の実施例〕[Embodiments of the invention]

以下図面を参照して本発明の根入れ式鋼板セル
体の傾斜測定方法を適用した鋼板セル工法施工時
の鋼板セル体の傾斜測定方法の実施例について説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for measuring the inclination of a steel plate cell body during construction using the steel plate cell construction method will be described below with reference to the drawings.

まず、この根入れ式鋼板セル工法は、第4−A
図に示すように、あらかじめ一体化された鋼板セ
ル体1を水面W.L.下の海底地盤2中に直接打ち
込むため、位置決めの後、第4−B図に示すごと
く、鋼板セル体1の上端を油圧チヤツク3により
ベースリング4と一体的にし、ベースリング4上
に、図示されていないクレーン船等のフツク15
で吊り下げられた吊り金物5との間に、複数のバ
イブロハンマー6を介設し、これら各バイブロハ
ンマー6をシヤフト7で連結しながら、同調運転
させ、強力な振動エネルギーをベースリング4を
介して均等に鋼板セル体1に伝えながら、一気に
海底地盤2中に鋼板セル体1を打設し、打設後に
第4−C図のごとく中詰砂8を充填して打設を完
了するものである。
First of all, this embedded steel plate cell construction method is
As shown in the figure, in order to directly drive the pre-integrated steel plate cell body 1 into the seabed ground 2 below the water surface WL, after positioning, the upper end of the steel plate cell body 1 is hydraulically driven as shown in Figure 4-B. The chuck 3 is integrated with the base ring 4, and a hook 15 of a crane ship or the like (not shown) is mounted on the base ring 4.
A plurality of vibrohammers 6 are interposed between the hanging hardware 5 suspended by the base ring 4, and these vibrohammers 6 are connected by a shaft 7 and operated in synchronization to transmit strong vibrational energy through the base ring 4. The steel plate cell bodies 1 are poured into the seabed ground 2 all at once while the steel plate cell bodies 1 are evenly distributed, and after casting, filling sand 8 is filled as shown in Fig. 4-C to complete the casting. It is.

次に、以上のごとく鋼板セル体1の上部に位置
させたベースリング4の相対向する二点上に、第
1図に示すごとくそれぞれ水等の液体Lを収納し
た上方に開放した液体収納体9を立設し、それら
の底部を連通管10で連通し、更に各液体収納体
9の近傍に、連通管10と液体収納体9とを液体
Lで連通した受圧体11を設け、その受圧体11
の上方の液体Lの上に気体層Aを設けて密封し、
この各気体層Aの圧力を信号に変換する圧力変換
器12にそれぞれ連結している。この気体層Aは
バイブロハンマーで鋼板セル体1を打設するた
め、その振動の影響を少なくする意味で設けてあ
る。
Next, as shown in FIG. 1, upwardly open liquid storage bodies each containing a liquid L such as water are placed on two opposing points of the base ring 4 positioned above the steel plate cell body 1 as described above. 9 are erected, and their bottoms are communicated with a communication pipe 10, and a pressure receiving body 11 is provided near each liquid storage body 9, in which the communication pipe 10 and the liquid storage body 9 are communicated with each other by liquid L, and the pressure receiving body 11 is provided in the vicinity of each liquid storage body 9. body 11
A gas layer A is provided above the liquid L and sealed,
Each of the gas layers A is connected to a pressure transducer 12 that converts the pressure of each gas layer A into a signal. This gas layer A is provided in order to reduce the influence of vibration since the steel plate cell body 1 is hammered with a vibrohammer.

なお、第1図において、1点鎖線で示すのは、
鋼板セル体1の傾斜時の状態を示しており、この
場合でも1対の液体収納体9の液体Lのレベル連
通管10の作用により同一レベルに保持されてお
り、受圧体11の各気体層Aの圧力のみに圧力差
Dがでてくるので、これを検出して、それを傾斜
角度に換算すれば鋼板セル体1の傾斜を測定でき
る。
In addition, in Fig. 1, the dashed line indicates:
This shows the state when the steel plate cell body 1 is tilted. Even in this case, the liquid L of the pair of liquid storage bodies 9 is maintained at the same level by the action of the level communication pipe 10, and each gas layer of the pressure receiving body 11 is kept at the same level. Since a pressure difference D appears only in the pressure A, the inclination of the steel plate cell body 1 can be measured by detecting this and converting it into an inclination angle.

なお、上記連通管10はビニール管などのパイ
プ状のものを使用することができ、また液体収納
体9もビニール管などをステイ部材で支持したも
のでもよい。
Note that the communication pipe 10 may be a pipe-shaped pipe such as a vinyl pipe, and the liquid storage body 9 may also be a vinyl pipe or the like supported by a stay member.

以上の相対向する各一対の液体収納体9、連通
管10、受圧体11等のセツトを、第2図に示す
ごとく少なくとももう1セツト、上記一対の相対
向する液体収納体9を結ぶ線と直角方向に設け、
これら相対向する受圧体11の上方をそれぞれ圧
力変換器12と連結し、それぞれ対向する受圧体
11同志の圧力差Dを検出して第3図に示す、例
えばブラウン管13上にデイジタル表示でデイス
プレイすることにより、運転者はその打設状態を
リアルタイムに把握できることになる。
As shown in FIG. 2, each pair of opposing liquid storage bodies 9, communication pipe 10, pressure receiving body 11, etc. is connected to at least one other set, and a line connecting the pair of opposing liquid storage bodies 9 is connected to the set. installed at right angles,
The upper parts of these opposing pressure receiving bodies 11 are connected to pressure transducers 12, and the pressure difference D between the opposing pressure receiving bodies 11 is detected and displayed in digital form on, for example, a cathode ray tube 13 as shown in FIG. This allows the driver to grasp the pouring status in real time.

以上によつて測定された鋼板セル体1の傾斜を
もとにして、クレーン船等のフツク15から吊ら
れた吊り金物5の傾斜角度を調整やクレーン船の
櫓の角度の調整、クレーン船の移動などの手段に
より鋼板セル体1を垂直に打ち込むための調整を
行ないながら、バイブロハンマー6の振動により
打ち込めば、鋼板セル体1の垂直な打設が行なわ
れる。
Based on the inclination of the steel plate cell body 1 measured as described above, the inclination angle of the hanging hardware 5 suspended from the hook 15 of a crane ship etc. can be adjusted, the angle of the oar of the crane ship etc. can be adjusted, and the angle of the oar of the crane ship can be adjusted. The steel plate cell body 1 is driven vertically by driving by vibration of the vibrohammer 6 while making adjustments to drive the steel plate cell body 1 vertically by means such as movement.

なお、上記の実施例では、相対向する各一対の
上方に開放した液体収納体9、連通管10、受圧
体11等のセツトを2セツト設けているが、更に
多数セツト設ければ、より正確な傾斜測定を行な
うことができる。
In the above embodiment, two sets of liquid storage bodies 9, communication pipes 10, pressure receiving bodies 11, etc., which are open above each pair facing each other, are provided, but if a larger number of sets are provided, it will be more accurate. It is possible to perform accurate slope measurements.

〔発明の効果〕〔Effect of the invention〕

以上に説明したごとく、本発明の傾斜測定方法
を採用すれば、鋼板セル体の打ち込み時における
鋼板セル体の水平度の情報をリアルタイムで把握
でき、その情報に対応して直ちに鋼板セル体の向
きを調整できるので、正確な根入れ式鋼板セル施
工が可能になり、その打設作業を迅速に、かつ正
確に行なうことができる。
As explained above, by adopting the inclination measurement method of the present invention, information on the levelness of the steel plate cell body when driving the steel plate cell body can be grasped in real time, and the orientation of the steel plate cell body can be immediately determined based on that information. can be adjusted, it becomes possible to carry out accurate embedding type steel plate cell construction, and the casting work can be carried out quickly and accurately.

また、本発明は、単に鋼板セル体上に位置させ
たベースリングの相対向する二点上にそれぞれ受
圧体を設け、相対向する受圧体間を連通管で液体
連通しただけでは、鋼板セル体の傾斜は相対向す
る二つの受圧体内の液面の上下の変化の差だけで
あらわれるので、その場合両者の差が小さい時に
は正確な傾斜角度を把握できない場合がある。そ
こで、本発明では更に両受圧体の近傍に夫々液体
収納体を別に設け、それらの中の液体を受圧体内
の液体と連通し、かつ液体収納体の上方を開放状
態にしたために、鋼板セル体が傾斜すると、液体
収納体も傾斜し、対をなす液体収納体内の液面は
一定なので、受圧体の上方の圧力変換器の位置と
液体収納体の液面位置との距離に差が生じ、その
差が対をなす受圧体に加わつて受圧体の圧力差が
増巾し、より正確な傾斜角度を測定することがで
きる。
In addition, the present invention does not allow the steel plate cell body to simply provide pressure receiving bodies on two opposing points of the base ring positioned on the steel plate cell body and provide fluid communication between the opposing pressure receiving bodies through a communication pipe. Since the inclination is expressed only by the difference in the vertical change in the liquid level in the two opposing pressure receiving bodies, in that case, if the difference between the two is small, it may not be possible to accurately determine the inclination angle. Therefore, in the present invention, separate liquid storage bodies are provided in the vicinity of both pressure receiving bodies, and the liquid therein is communicated with the liquid in the pressure receiving body, and the upper part of the liquid storage body is open. When is tilted, the liquid storage body is also tilted, and since the liquid level in the pair of liquid storage bodies is constant, a difference occurs in the distance between the position of the pressure transducer above the pressure receiving body and the liquid level position of the liquid storage body. This difference is added to the paired pressure receiving bodies, thereby increasing the pressure difference between the pressure receiving bodies, making it possible to measure the inclination angle more accurately.

もし液体収納体の上方が閉鎖され、密封されて
いると、傾斜した場合には低い方に液体が流れよ
うとしてもすぐ密閉室が加圧状態になつて低い方
への液体の流動が邪魔され、正確な角度の測定は
できないのである。
If the upper part of the liquid container is closed and sealed, if the liquid container is tilted, even if the liquid tries to flow to the lower side, the sealed chamber will immediately become pressurized and the flow of liquid to the lower side will be impeded. , accurate angle measurements cannot be made.

また本発明ではかゝる傾斜測定をいづれの方向
の傾斜にも対応して測定できるように対向する二
点の対を方向を変えてふやすことにより色々な方
向の傾斜角度を測定できるのである。
Furthermore, in the present invention, inclination angles in various directions can be measured by increasing the number of pairs of two opposing points in different directions so that the inclination can be measured in any direction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の根入れ式鋼板セル体の傾斜測
定方法を適用した鋼板セル施工時の鋼板セル体の
傾斜測定装置の一実施例における概略側断面図、
第2図は第1図の概略平面図、第3図は第1図の
傾斜測定装置の測定結果を表示するブラウン管装
置のデイスプレイ部を示す図面、第4−A図、第
4−B図及び第4−C図は根入れ式鋼板セル工法
を示す一連の側面図である。 1……鋼板セル体、4……ベースリング、9…
…液体収納体、10……連通管、11……受圧
体、12……圧力変換器、A……気体層、D……
圧力差、L……液体。
FIG. 1 is a schematic side sectional view of an embodiment of a device for measuring the inclination of a steel plate cell body during construction of a steel plate cell to which the inclination measurement method for a steel plate cell body of the embedded type according to the present invention is applied;
FIG. 2 is a schematic plan view of FIG. 1, FIG. 3 is a drawing showing the display section of the cathode ray tube device that displays the measurement results of the inclination measuring device of FIG. 1, FIG. 4-A, FIG. 4-B, and Figure 4-C is a series of side views showing the embedded steel plate cell construction method. 1... Steel plate cell body, 4... Base ring, 9...
...Liquid storage body, 10...Communication pipe, 11...Pressure receiving body, 12...Pressure transducer, A...Gas layer, D...
Pressure difference, L...Liquid.

Claims (1)

【特許請求の範囲】[Claims] 1 鋼板セル体上に位置させたベースリングの相
対する二点上にそれぞれ上方に開放した液体収納
体を立設し、それらを連通管にて連通し、かつ該
液体収納体の近傍に、連通管と液体収納体とを液
体で連通した受圧体を設け、かつ受圧体の液体の
上に気体層を設けて密封し、これら液体で通じて
いる液体収納体、連通管および受圧体からなるセ
ツトを少なくとももう一対前記相対向する二点を
結ぶ線と直角方向に設け、それらの相対向する受
圧体の上方をそれぞれ圧力変換器と結び、それぞ
れ相対向する受圧体同志の圧力差を検出して鋼板
セル体の傾斜を測定する根入れ式鋼板セル体の傾
斜測定方法。
1. Liquid storage bodies each opened upward are erected on two opposing points of a base ring located on a steel plate cell body, and these are communicated by a communication pipe, and a communication pipe is provided near the liquid storage body. A set consisting of a liquid storage body, a communication pipe, and a pressure receiving body, which are provided with a pressure receiving body that communicates the pipe and the liquid storage body with a liquid, and are sealed by providing a gas layer on top of the liquid in the pressure receiving body. At least one other pair of pressure receptors are provided in a direction perpendicular to the line connecting the two opposing points, and the upper portions of the pressure receptors facing each other are connected to pressure transducers to detect the pressure difference between the pressure receptors facing each other. A method for measuring the inclination of an embedded steel plate cell body.
JP27509885A 1985-12-09 1985-12-09 Method for measuring inclination of penetration type steel plate cell body Granted JPS62134518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27509885A JPS62134518A (en) 1985-12-09 1985-12-09 Method for measuring inclination of penetration type steel plate cell body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27509885A JPS62134518A (en) 1985-12-09 1985-12-09 Method for measuring inclination of penetration type steel plate cell body

Publications (2)

Publication Number Publication Date
JPS62134518A JPS62134518A (en) 1987-06-17
JPH0451764B2 true JPH0451764B2 (en) 1992-08-20

Family

ID=17550743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27509885A Granted JPS62134518A (en) 1985-12-09 1985-12-09 Method for measuring inclination of penetration type steel plate cell body

Country Status (1)

Country Link
JP (1) JPS62134518A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165912A (en) * 1987-12-22 1989-06-29 Toa Harbor Works Co Ltd Apparatus for detecting inclination of steel plate cell
ITBG20050028A1 (en) * 2005-05-13 2006-11-14 Abb Service Srl DEVICE FOR DETECTION OF THE POSITION OF A MOBILE ELEMENT WHICH IS PAIRED TO IT AND ITS MOBILE ELEMENT.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5029228U (en) * 1973-07-11 1975-04-03
JPS5322356U (en) * 1976-08-05 1978-02-24
JPS5726006B2 (en) * 1977-10-26 1982-06-02
JPS58118902A (en) * 1982-01-07 1983-07-15 Touyoko Erumesu:Kk Method for measuring vertical displacement quantity and deflection quantity of structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51115955U (en) * 1975-03-17 1976-09-20
JPS5726006U (en) * 1980-07-19 1982-02-10

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5029228U (en) * 1973-07-11 1975-04-03
JPS5322356U (en) * 1976-08-05 1978-02-24
JPS5726006B2 (en) * 1977-10-26 1982-06-02
JPS58118902A (en) * 1982-01-07 1983-07-15 Touyoko Erumesu:Kk Method for measuring vertical displacement quantity and deflection quantity of structure

Also Published As

Publication number Publication date
JPS62134518A (en) 1987-06-17

Similar Documents

Publication Publication Date Title
CN107675734B (en) A kind of underwater directional vehicle construction dynamic monitoring method
CN111560973A (en) Underwater pile-based multi-pile construction system
CN107100213A (en) Soil disturbance monitoring system and monitoring method of the bridge construction of pile groups to adjacent piles
JPH0451764B2 (en)
CN202494491U (en) Float type inclined shaft water level observation platform
Richards et al. In-place measurement of deep sea soil shear strength
JPH0835836A (en) Method and apparatus for measuring displacement of subsoil of sea bottom
CN106193139B (en) A kind of test device of the foundation pit construction to Influence of Pile Foundation that border on the river
CN204439038U (en) A kind of ultrasound wave pile bottom sediment thickness measurement equipment
KR101660024B1 (en) Mesuring devices for horizontal bearing capacity of underwater structure
JPS6036909A (en) Apparatus for measuring angle of inclination of steel plate cell
CN102426044B (en) Liquid level measurement system for float bowl of hydraulic power floating type ship elevator
JPH01165912A (en) Apparatus for detecting inclination of steel plate cell
El-Gharbawy The pullout capacity of suction caisson foundations
CN204854895U (en) Concrete dipperstick under water
CN111994237B (en) Carrying device for underwater sediment layer surface detecting instrument and manufacturing method thereof
CN210946917U (en) Mud dado bored concrete pile sediment thickness short-term test device
CN212026301U (en) Large-scale caisson of accurate positioning
CN209779716U (en) Spliced measuring plate structure for measuring filling height
CN215630220U (en) Open caisson sinking multifunctional simulation device for converting complex geological conditions
GB2148364A (en) Foundation level and orientation tool for use in construction of a subsea production platform and a method of using said tool
JP2002081086A (en) Position and attitude measuring method and device for submerged caisson in submerging caisson
CN201876260U (en) Caliber measuring inclinometer for submerged water open caisson
Shank et al. Forces due to waves on submerged structures
JPS63201532A (en) Measuring instrument for top end position of liquid body different in specific gravity