JPH0451693B2 - - Google Patents

Info

Publication number
JPH0451693B2
JPH0451693B2 JP16024984A JP16024984A JPH0451693B2 JP H0451693 B2 JPH0451693 B2 JP H0451693B2 JP 16024984 A JP16024984 A JP 16024984A JP 16024984 A JP16024984 A JP 16024984A JP H0451693 B2 JPH0451693 B2 JP H0451693B2
Authority
JP
Japan
Prior art keywords
internal gear
curve
gear
tooth
external gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16024984A
Other languages
Japanese (ja)
Other versions
JPS6141035A (en
Inventor
Shigeyoshi Osada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP16024984A priority Critical patent/JPS6141035A/en
Publication of JPS6141035A publication Critical patent/JPS6141035A/en
Publication of JPH0451693B2 publication Critical patent/JPH0451693B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はオイルモータやオイルポンプに用いる
のに適した新規な多点接触内接歯車に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel multi-point contact internal gear suitable for use in oil motors and oil pumps.

〔従来の技術〕[Conventional technology]

オイルモータやオイルポンプの中には特殊な歯
形の歯車を利用して構成した歯車モータや歯車ポ
ンプがあるが、これらに用いられる歯車のうち、
内歯歯車と外歯歯車の歯数の差が1で、外歯歯車
が内歯歯車に多点で連続に接触しながら回転する
ものの代表的な例としてトロコイド歯車がある。
Among oil motors and oil pumps, there are gear motors and gear pumps that are constructed using gears with special tooth shapes, but among the gears used in these,
Trochoid gears are a typical example of gears in which the difference in the number of teeth between an internal gear and an external gear is 1, and the external gear rotates while continuously contacting the internal gear at multiple points.

これは、外歯歯車と内歯歯車との間に常時複数
の容積変動空間が形成されるものであり、この複
数の容積変動空間に歯車の回動に応じて流体を流
入、流出させてオイルモータやオイルポンプを構
成するものである。
In this system, a plurality of volume-variable spaces are always formed between an external gear and an internal gear, and fluid is caused to flow in and out of these multiple volume-variable spaces according to the rotation of the gear, thereby producing oil. It constitutes the motor and oil pump.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

然しながら、上記トロコイド歯車を利用してオ
イルモータやオイルポンプを構成する場合、通常
は内歯歯車をケーシング等に固定して外歯歯車の
回転出力を取り出すのであるが、この場合外歯歯
車は内歯歯車に対して自転しつゝ公転を行なうの
で、特殊な継手を介して回転を取り出すか又は回
転を与える必要があつた。
However, when constructing an oil motor or oil pump using the above-mentioned trochoid gear, the internal gear is usually fixed to a casing etc. to extract the rotational output of the external gear. Since it rotates and revolves around the gear, it was necessary to extract or apply rotation through a special joint.

オイルモータやオイルポンプとしては特殊な継
手を介さずに直接に歯車を軸に接続して回転を取
出したり与えたりする方が効率がよく、また故障
も少ないので、外歯歯車が自転運動のみを行なう
よう構成すれば有利であるが、上記トロコイド歯
車では内歯歯車と外歯歯車の間に回転トルクの授
受が生じるため、内歯歯車に公転のみを行なわせ
外歯歯車の回転を自転運動のみとして出力を取り
出すように構成することはできなかつた。
For oil motors and oil pumps, it is more efficient to connect the gear directly to the shaft without using a special joint to extract or apply rotation, and there are fewer failures, so the external gear only generates rotational motion. Although it would be advantageous if the trochoidal gear is configured so that rotational torque is transferred between the internal gear and the external gear, it is preferable to have the internal gear perform only revolutions and rotate the external gear only by rotation. It was not possible to configure it to retrieve the output as .

また、内歯歯車と外歯歯車の間に回転トルクの
授受が生じるため、歯車間の摩擦が大きく、歯面
の摩耗が激しいという問題点があつた。
Furthermore, since rotational torque is transferred between the internal gear and the external gear, there is a problem in that the friction between the gears is large and the tooth surfaces are heavily worn.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に於ては、上記の問題点を解決するた
め、内歯歯車の歯形を、外歯歯車と干渉しない限
度でその形状が任意に定められる歯底曲線と、歯
形中心線に対して対称で且つ大きな曲率半径を有
し中心方向に脹らむ円弧から成る歯先曲線と、外
歯歯車と干渉しない限度でその形状が任意に定め
られ上記歯先円弧の両端点から上記歯底曲線に至
る側面曲線とにより構成し、 外歯歯車の歯形を、外歯歯車が上記内歯歯車に
対して公転、自転運動を行なう際、外歯歯車に固
定した座標系に於て上記内歯歯車の歯先円弧の包
絡線として形成される歯底曲線と、上記内歯歯車
の歯先円弧の両端点の移動軌跡として形成され上
記歯底曲線に接続する一対の側面歯形曲線と、上
記一対の側面歯形曲線の歯先端点を連結し上記内
歯歯車の歯先円弧と第二噛み合いをする歯先曲線
とにより構成し、又、更に必要に応じ内歯歯車を
公転自在に、外歯歯車をそれ自身の中心軸の廻り
に自転自在に支承するものである。
In the present invention, in order to solve the above-mentioned problems, the tooth profile of the internal gear is symmetrical with respect to the root curve whose shape is arbitrarily determined as long as it does not interfere with the external gear and the tooth profile center line. and a tip curve consisting of a circular arc that has a large radius of curvature and expands toward the center, and a side surface whose shape is arbitrarily determined as long as it does not interfere with the external gear, and which extends from both end points of the tip arc to the bottom curve. When the external gear revolves or rotates relative to the internal gear, the tooth profile of the external gear is defined by the tooth tip of the internal gear in a coordinate system fixed to the external gear. A tooth root curve formed as an envelope of a circular arc, a pair of side tooth profile curves formed as movement loci of both end points of the tooth tip arc of the internal gear and connected to the tooth root curve, and the above pair of side tooth profile curves. The tooth tip point of the internal gear is connected to the tooth tip arc of the internal gear and the tooth tip curve that engages with the tooth tip arc of the internal gear as a second mesh. It is supported so that it can rotate freely around a central axis.

〔作用〕[Effect]

上記のようにして多点接触内接歯車を構成する
と、歯車間のトルク授受が理論上ゼロとなるか
ら、歯車間の摩擦が小さく、また、歯面の摩耗が
少なくなり、更に、内歯歯車を公転のみ成し得る
ように拘束して、外歯歯車に自転のみを行なわせ
るように構成することが可能となるので、回転を
外部に取り出す機構が極めて単純なものとなる。
When a multi-point contact internal gear is configured as described above, the torque exchange between the gears is theoretically zero, so the friction between the gears is small, and the wear on the tooth surfaces is reduced. Since it is possible to restrict the external gear so that it can only revolve, and to make the external gear only rotate, the mechanism for extracting the rotation to the outside becomes extremely simple.

〔実施例〕〔Example〕

以下図面を参照しつゝ本発明の実施例について
詳細に説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明に係る多点接触内接歯車の一実
施例を示す説明図、第2図は第1図に示した実施
例に於ける内歯歯車の歯形曲線を示す説明図、第
3図は外歯歯車の歯底曲線を示す説明図、第4図
乃至第7図は外歯歯車の歯先曲線を示す説明図、
第8図乃至第11図は外歯歯車の側面曲線を示す
説明図、第12図乃至第19図は本発明多点接触
内接歯車をオイルモータとして用いた場合の一実
施例を示す説明図である。
FIG. 1 is an explanatory diagram showing an embodiment of the multi-point contact internal gear according to the present invention, FIG. 2 is an explanatory diagram showing the tooth profile curve of the internal gear in the embodiment shown in FIG. FIG. 3 is an explanatory diagram showing the root curve of an external gear, FIGS. 4 to 7 are explanatory diagrams showing the tip curve of the external gear,
FIGS. 8 to 11 are explanatory views showing side curves of external gears, and FIGS. 12 to 19 are explanatory views showing one embodiment of the multi-point contact internal gear of the present invention used as an oil motor. It is.

第1図乃至第11図は軸直角断面上での内歯歯
車及び外歯歯車の輪郭線を示すものであり、第1
図乃至第11図中、1は内歯歯車、2は外歯歯車
であり、内歯歯車1の中心をO、外歯歯車2の中
心点をO′、外歯歯車2の歯形中心線をl,m,
nとする。
Figures 1 to 11 show the contour lines of the internal gear and external gear on a cross section perpendicular to the axis.
In the figures to FIG. 11, 1 is an internal gear, 2 is an external gear, the center of the internal gear 1 is O, the center point of the external gear 2 is O', and the tooth profile center line of the external gear 2 is l, m,
Let it be n.

本発明多点接触内接歯車は、歯数Nの内歯歯車
と歯数(N−1)の外歯歯車とから成るものであ
るが、第1図に示す如く、本実施例ではN=4の
場合を示す。従つて、内歯歯車の歯数は4とな
り、外歯歯車の歯数は3となる。
The multi-point contact internal gear of the present invention consists of an internal gear with N teeth and an external gear with (N-1) teeth, but as shown in FIG. 1, in this embodiment, N= Case 4 is shown. Therefore, the number of teeth of the internal gear is 4, and the number of teeth of the external gear is 3.

外歯歯車2は、内歯歯車1と常時4箇所で内接
しつゝ、内歯歯車1に対して相対的に、その中心
O′が図中鎖線で示す円に沿つて回転するように
内歯歯車1の中心Oの廻りの公転運動を行なうと
同時に、これと反対方向にそれ自身の中心O′の
廻りの自転運動とを行ない、内歯歯車1の内面と
の間に常時4区画の容積変動空間を画成するもの
である。
The external gear 2 is always in contact with the internal gear 1 at four locations, and the center of the external gear 2 is in contact with the internal gear 1 at all times.
The internal gear 1 performs a revolution movement around the center O so that O′ rotates along the circle indicated by the chain line in the figure, and at the same time, it rotates around its own center O′ in the opposite direction. By doing so, four sections of volume varying space are always defined between the inner surface of the internal gear 1 and the inner surface of the internal gear 1.

第1図に示す状態では、外歯歯車2はA,B,
C,Dの4点で内歯歯車1に内接し、内歯歯車1
の内面との間に4区間の容積変動空間P,Q,
R,Sを画成しており、接点A,B,C,Dは外
歯歯車2の内歯歯車1に対する公転及び自転運動
に応じて内歯歯車1の歯先曲線上を移動し、空間
P,Q,R,Sはそれぞれ外歯歯車2の上記回転
運動により交互に膨張、収縮を繰り返すこととな
る。
In the state shown in FIG. 1, the external gears 2 are A, B,
Inscribed in internal gear 1 at four points C and D, internal gear 1
There are four sections of volumetric variation spaces P, Q,
The contact points A, B, C, and D move on the tip curve of the internal gear 1 according to the revolution and rotation of the external gear 2 with respect to the internal gear 1, and P, Q, R, and S repeat expansion and contraction alternately due to the rotational movement of the external gear 2, respectively.

次に、第2図を参照して第1図に示した実施例
に於ける内歯歯車1の歯形曲線について説明す
る。
Next, referring to FIG. 2, the tooth profile curve of the internal gear 1 in the embodiment shown in FIG. 1 will be explained.

内歯歯車1の歯先曲線は、歯形中心線OLに対
して対称で、曲率半径rを有する中心方向に脹ら
む円弧より成る。この円弧の半径rは内歯歯車1
の歯先曲線が外歯歯車2の歯底曲線と第一噛み合
いをする限度内で最大に設定する。
The tip curve of the internal gear 1 is symmetrical with respect to the tooth profile center line OL, and consists of an arc that swells toward the center and has a radius of curvature r. The radius r of this arc is the internal gear 1
The tooth tip curve is set to the maximum value within the limit where the tooth bottom curve of the external gear 2 has first meshing.

内歯歯車1の歯先曲線以外の歯形曲線、即ち、
歯底曲線及び側面曲線は外歯歯車との噛み合いに
関係しないので、回転時に外歯歯車と干渉しない
限度で任意に定められるものである。本実施例で
は、歯底曲線は内歯歯車1の中心Oを中心とする
円弧とし、側面曲線は歯先円弧の両端点から上記
歯底曲線に至る歯形中心線OLに対して対称な一
対の直線とする。これらの円弧の径及び一対の直
線の中心線OLに対する角度は、後述するように
して外歯歯車2の歯形曲線を決定した後にこれと
干渉しないように設定すればよい。
A tooth profile curve other than the tooth tip curve of the internal gear 1, i.e.
Since the tooth bottom curve and the side curve are not related to meshing with the external gear, they can be arbitrarily determined to the extent that they do not interfere with the external gear during rotation. In this embodiment, the tooth root curve is an arc centered on the center O of the internal gear 1, and the side curve is a pair of symmetrical arcs with respect to the tooth profile center line OL extending from both end points of the tooth tip arc to the tooth root curve. Make it a straight line. The diameters of these circular arcs and the angles of the pair of straight lines with respect to the center line OL may be set so as not to interfere with the tooth profile curve of the external gear 2 after determining it as described later.

次に、第3図乃至第10図を参照して外歯歯車
の歯形曲線について説明する。
Next, the tooth profile curve of the external gear will be explained with reference to FIGS. 3 to 10.

外歯歯車2の歯底曲線は、外歯歯車2が内歯歯
車1に対して上記の公転及び自転運動を行なう
際、外歯歯車2に固定した座標系に於て内歯歯車
1の歯先円弧の包絡線として形成される。
The tooth bottom curve of the external gear 2 is defined by the tooth bottom curve of the internal gear 1 in the coordinate system fixed to the external gear 2 when the external gear 2 performs the above-mentioned revolution and rotation movement relative to the internal gear 1. It is formed as an envelope of a circular arc.

第3図は前記の如く内歯歯車1の歯形曲線を定
め、外歯歯車2が内歯歯車1に対して順次15度宛
反時計方向に公転し、同時に5度宛時計方向に自
転したときに外歯歯車2に固定した座標系に於て
表れる内歯歯車1の輪郭線をそれぞれ一点鎖線、
破線、二点鎖線で示し、内歯歯車1の歯先曲線の
包絡線を実線で示したものであり、これから外歯
歯車2の歯底曲線が理解できよう。このように外
歯歯車2の歯底曲線を設定すると、外歯歯車2と
内歯歯車1は第一噛み合いを行なうこととなる。
Figure 3 shows the case where the tooth profile curve of the internal gear 1 is determined as described above, and the external gear 2 sequentially revolves counterclockwise by 15 degrees with respect to the internal gear 1 and simultaneously rotates clockwise by 5 degrees. The outline of the internal gear 1 appearing in the coordinate system fixed to the external gear 2 is indicated by a dashed-dotted line,
The broken line and the two-dot chain line are shown, and the envelope of the tooth tip curve of the internal gear 1 is shown as a solid line, from which the tooth bottom curve of the external gear 2 can be understood. When the tooth bottom curve of the external gear 2 is set in this manner, the external gear 2 and the internal gear 1 are brought into first meshing.

外歯歯車2の側面歯形曲線は、外歯歯車2が内
歯歯車1に対して上記の公転及び自転運動を行な
う際、内歯歯車1の歯先円弧の両端点の移動軌跡
として形成される。
The side tooth profile curve of the external gear 2 is formed as a locus of movement of both end points of the tip arc of the internal gear 1 when the external gear 2 performs the above-mentioned revolution and rotation movement with respect to the internal gear 1. .

第4図乃至第7図は、外歯歯車2が内歯歯車1
に対して90度宛公転し、同時に30度宛自転したと
きに、外歯歯車2に固定した座標平面上に表れる
歯先円弧の両端点の軌跡を実線で描いたものであ
り、図から分かるようにこの軌跡は歯形中心線
l、m,nに対してそれぞれ対称に一対宛描き出
される。
4 to 7, the external gear 2 is the internal gear 1.
The locus of both end points of the tooth tip arc that appears on the coordinate plane fixed to external gear 2 when the gear revolves 90 degrees and simultaneously rotates 30 degrees is drawn as a solid line, which can be seen from the figure. These trajectories are drawn in pairs symmetrically with respect to the tooth profile center lines l, m, and n, respectively.

この場合、上記一対の側面歯形曲線は内歯歯車
の歯先円弧の一端の点によつて描かれる軌跡と他
端の点によつて描かれる軌跡は歯先に於て滑らか
に接続しないので、この部分の輪郭線は、一対の
側面歯形曲線の歯先端点を連結し、且つ内歯歯車
1の歯先円弧と第二噛み合いをするように設定す
る。
In this case, in the above-mentioned pair of side tooth profile curves, the trajectory drawn by the point at one end of the tooth tip arc of the internal gear and the trajectory drawn by the point at the other end do not connect smoothly at the tooth tip, so The contour line of this portion is set to connect the tooth tip points of the pair of side tooth profile curves and to have second meshing with the tooth tip arc of the internal gear 1.

第8図乃至第11図は、外歯歯車2が内歯歯車
1に対して反時計方向に微小角度宛公転し、同時
に時計方向に公転角度の3分の1宛自転したとき
の状態を示すものである。
Figures 8 to 11 show the state when the external gear 2 revolves counterclockwise to a minute angle with respect to the internal gear 1, and simultaneously rotates clockwise to one-third of the revolution angle. It is something.

第8図乃至第11図に示す如く、外歯歯車2の
歯先曲線は、内歯歯車1の外歯歯車2への接触点
が内歯歯車1の歯先円弧の端点Mから端点Nに切
り替る間、内歯歯車1の歯先円弧と第二噛み合い
をするものとし、且つ、両側面歯形曲線が滑らか
に接続されるように設定する。
As shown in FIGS. 8 to 11, the tip curve of the external gear 2 is such that the contact point of the internal gear 1 with the external gear 2 is from the end point M of the tip arc of the internal gear 1 to the end point N. During the switching, it is assumed that there is second meshing with the tip arc of the internal gear 1, and the tooth profile curves on both side surfaces are set so as to be connected smoothly.

而して、本発明多点接触内接歯車を用いてオイ
ルモータを構成した場合の一実施例について第1
2図乃至第19図を参照しつゝ以下に説明する。
The first embodiment of an oil motor using the multi-point contact internal gear of the present invention will now be described.
This will be explained below with reference to FIGS. 2 to 19.

本実施例に示すオイルモータは、前記実施例で
示した内歯歯車及び外歯歯車を円筒形のケーシン
グ内に収め、内歯歯車をアウタロータとして用
い、外歯歯車をインナロータとして用いたもので
ある。
The oil motor shown in this example contains the internal gear and external gear shown in the previous example in a cylindrical casing, and uses the internal gear as an outer rotor and the external gear as an inner rotor. .

第12図乃至第19図中、3はアウタロータ、
4はインナロータ、5はケーシングであり、アウ
タロータ3の中心をO、インナロータ4の中心を
O′とし、O′を原点とするケーシング5に固定し
た座標軸をX軸及びY軸とする。第12図乃至第
19図は、ケーシング5内でアウタロータ3が45
度宛公転し、インナロータ4が15度宛自転したと
きの状態を示すものである。
In Figures 12 to 19, 3 is an outer rotor;
4 is an inner rotor, 5 is a casing, the center of the outer rotor 3 is O, and the center of the inner rotor 4 is
Let O' be the origin, and the coordinate axes fixed to the casing 5 with O' as the origin are the X and Y axes. 12 to 19 show that the outer rotor 3 is 45mm inside the casing 5.
This figure shows the state when the inner rotor 4 rotates by 15 degrees and the inner rotor 4 rotates by 15 degrees.

而して、ケーシング5は、内部にアウタロータ
3及びインナロータ4を収納し、その両端開口部
は流入及び流出用ポートを有する一端の端面部材
(図示せず)により閉鎖されている。
The casing 5 houses the outer rotor 3 and the inner rotor 4 therein, and its openings at both ends are closed by an end face member (not shown) at one end having inflow and outflow ports.

インナロータ4はその中心軸がケーシング5の
中心軸と一致するように図示しない出力軸によつ
て回転自在に支承されており、アウタロータ3は
複数のピン6,6によつてケーシング5に対して
公転のみを行ない得るように、換言すれば、ピン
6,6が図中点線で示す円運動をするよう構成さ
れている。
The inner rotor 4 is rotatably supported by an output shaft (not shown) so that its center axis coincides with the center axis of the casing 5, and the outer rotor 3 revolves around the casing 5 by means of a plurality of pins 6, 6. In other words, the pins 6, 6 are configured to move in a circular motion as shown by dotted lines in the figure.

ケーシング5内には、アウタロータ3とインナ
ロータ4間に4箇所の容積変動をする室P,Q,
R,Sが形成され、ケーシング5とアウタロータ
3間に1箇所の容積変動のない室Tが形成され
る。
Inside the casing 5, between the outer rotor 3 and the inner rotor 4, there are four chambers P, Q,
R and S are formed, and a chamber T with no volume fluctuation is formed between the casing 5 and the outer rotor 3.

ケーシング5の内側輪郭線を成す円の半径は、
アウタロータ3の外側輪郭線を成す円の半径より
もアウタロータ3の公転半径だけ大きく設定され
ているので、アウタロータ3はその外側輪郭線と
ケーシング5の内側輪郭線とが常時一点で接触し
つゝ、且つ、ピン6,6の円運動に案内され、流
体の圧力によりケーシング5内で公転運動のみを
行なう。
The radius of the circle forming the inner contour of the casing 5 is
Since the radius of the circle forming the outer contour of the outer rotor 3 is set to be larger than the radius of revolution of the outer rotor 3, the outer contour of the outer rotor 3 and the inner contour of the casing 5 are always in contact at one point. Further, it is guided by the circular motion of the pins 6, 6, and performs only a revolution movement within the casing 5 due to the pressure of the fluid.

室P,Q,O,Sの何れに流体が導入されても
アウタロータ3には回転トルクが生じない。即
ち、例えば、第12図に示す状態で、室R及びS
に流体が導入され室P及びQよりも圧力が高くな
るとインナロータ4は図中時計方向に自転を始
め、アウタロータ3は図中反時計方向に公転を始
めるが、このとき、室R及びSに於てアウタロー
タ3が流体から受ける圧力の中心点Oに対するモ
ーメントは各室毎にバランスから、アウタロータ
3には回転トルクが生じることがなく、従つて点
Oの廻りの自転運動を強制されることはない。然
しながら、アウタロータ3の各室内の圧力は異な
るから、その圧力差により公転運動が行なわれ
る。このことは第13図乃至第19図に示す状態
に於ても同様であり、アウタロータ3はインナロ
ータ4との相対位置関係にかかわらず流体から自
転せしめられるような力は受けない。
No rotational torque is generated in the outer rotor 3 even if fluid is introduced into any of the chambers P, Q, O, and S. That is, for example, in the state shown in FIG.
When fluid is introduced into the chambers P and Q and the pressure becomes higher than that in the chambers P and Q, the inner rotor 4 begins to rotate clockwise in the figure, and the outer rotor 3 begins to revolve in the counterclockwise direction in the figure. The moment with respect to the center point O of the pressure that the outer rotor 3 receives from the fluid is balanced for each chamber, so no rotational torque is generated in the outer rotor 3, and therefore it is not forced to rotate around the point O. . However, since the pressure in each chamber of the outer rotor 3 is different, the revolution movement is performed due to the pressure difference. This is the same in the states shown in FIGS. 13 to 19, and the outer rotor 3 does not receive any force from the fluid that causes it to rotate, regardless of the relative positional relationship with the inner rotor 4.

アウタロータ3の内側輪郭線とインナロータ4
の外側輪郭線とは常時4点で接触しており、この
ため、アウタロータ3の内面とインナロータ4の
外面との間の空間は常時4つの室P,Q,R,S
に区分され、且つこれらの各室はそれぞれインナ
ロータ4のアウタロータ3に対する噛合運動によ
り交互に膨張、収縮を繰り返し、その膨張過程か
ら収縮過程に移行する際には各室の容量は最大と
なり、逆に収縮過程から膨張過程に移行する際に
室の容量は最小となる。
Inner contour line of outer rotor 3 and inner rotor 4
is always in contact with the outer contour line of
Each of these chambers is alternately expanded and contracted by the meshing movement of the inner rotor 4 with the outer rotor 3, and when the expansion process shifts to the contraction process, the capacity of each chamber reaches its maximum, and conversely, During the transition from the contraction process to the expansion process, the volume of the chamber is at its minimum.

上記各室は、アウタロータ3又はインナロータ
4と連動する公知の切替弁と同様な弁(図示せ
ず)によつてそれが膨張過程にあるときは流入用
ポートに、又、収縮過程にあるときは流出用ポー
トに通じるように構成され、このため両歯車は円
滑に回動することができ、流体が流入用ポートか
ら流出用ポートに輸送され、インナロータ4はケ
ーシング5内を貫流する流体の容積流量に比例す
る角速度で自転するものである。
Each of the above chambers is connected to an inflow port when it is in the expansion process and to an inflow port when it is in the contraction process by a valve (not shown) similar to a known switching valve that is linked to the outer rotor 3 or the inner rotor 4. The inner rotor 4 is configured to communicate with the outflow port, so that both gears can rotate smoothly, and the fluid is transported from the inflow port to the outflow port, and the inner rotor 4 controls the volumetric flow rate of the fluid flowing through the casing 5. It rotates with an angular velocity proportional to .

尚、本発明の構成は、叙上の実施例に限定され
るものでなく、実施例に於ては整数Nを4とした
場合を示したが、これは4に限定されるものでな
く、4以上の任意の整数を採用し得るものであ
り、また、これらを基にして上記実施例と同様に
オイルポンプを構成することができ、そのときは
ポート及び切替弁等は適宜に変更されるものであ
る。
It should be noted that the configuration of the present invention is not limited to the above-mentioned embodiment, and in the embodiment, the case where the integer N is 4 is shown, but this is not limited to 4, Any integer greater than or equal to 4 can be adopted, and based on these, an oil pump can be constructed in the same way as in the above embodiment, in which case ports, switching valves, etc. can be changed as appropriate. It is something.

又、本発明多点接触内接歯車は特にポンプ、モ
ータに適してはいるが、それ以外にも、例えば流
量計やロータリ弁その他の機械に利用できるもの
であつて、本発明はそれらの総てを包摂するもの
である。
Further, although the multi-point contact internal gear of the present invention is particularly suitable for pumps and motors, it can also be used for other machines such as flowmeters, rotary valves, etc., and the present invention applies to all of them. It encompasses everything.

〔発明の効果〕〔Effect of the invention〕

本発明多点接触内接歯車は、歯車間の摩擦が小
さいから歯面の摩耗が少なく、また、歯形が単純
であるので加工が容易であり、従つて、研削加工
等で充分に高精度なものが安価に製造でき、これ
を用いてオイルモータやオイルポンプを構成した
場合には、出力を取り出したり、回転を与えるた
めに特殊な継手やカム等を必要としない多点接触
内接歯車を提供することができる。
The multi-point contact internal gear of the present invention has low friction between the gears, so there is little wear on the tooth surfaces, and the tooth profile is simple, so machining is easy. If this product can be manufactured at a low cost and is used to construct an oil motor or oil pump, a multi-point contact internal gear that does not require special joints or cams to extract output or provide rotation can be used. can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る多点接触内接歯車の一実
施例を示す説明図、第2図は第1図に示した実施
例に於ける内歯歯車の歯形曲線を示す説明図、第
3図は外歯歯車の歯底曲線を示す説明図、第4図
乃至第7図は外歯歯車の歯先曲線を示す説明図、
第8図乃至第11図は外歯歯車の側面曲線を示す
説明図、第12図乃至第19図は本発明多点接触
内接歯車をオイルモータとして用いた場合の一実
施例を示す説明図である。 1…内歯歯車、2…外歯歯車、3…アウタロー
タ、4…インナロータ、5…ケーシング、6,6
…ピン。
FIG. 1 is an explanatory diagram showing an embodiment of the multi-point contact internal gear according to the present invention, FIG. 2 is an explanatory diagram showing the tooth profile curve of the internal gear in the embodiment shown in FIG. FIG. 3 is an explanatory diagram showing the tooth bottom curve of an external gear, and FIGS. 4 to 7 are explanatory diagrams showing the tooth tip curve of the external gear.
FIGS. 8 to 11 are explanatory views showing side curves of external gears, and FIGS. 12 to 19 are explanatory views showing one embodiment of the multi-point contact internal gear of the present invention used as an oil motor. It is. 1... Internal gear, 2... External gear, 3... Outer rotor, 4... Inner rotor, 5... Casing, 6, 6
…pin.

Claims (1)

【特許請求の範囲】 1 歯数Nの内歯歯車と、上記内歯歯車とその軸
直角断面上で常時N箇所で内接しつゝ、上記内歯
歯車に対して相対的に、上記内歯歯車の中心軸の
廻りの公転運動と、それ自身の中心軸の廻りの自
転運動とを行い、上記内歯歯車の内面との間にN
区画の容積変動空間を画成する歯数(N−1)の
外歯歯車とから成る多点接触内接歯車に於て、 上記内歯歯車の歯形曲線が、外歯歯車と干渉し
ない限度でその形状が任意に定められる歯底曲線
と、歯形中心線に対して対称で且つ大きな曲率半
径を有し中心方向に脹らむ円弧から成る歯先曲線
と、外歯歯車と干渉しない限度でその形状が任意
に定められ上記歯先円弧の両端点から上記歯底曲
線に至る側面曲線とから成り、 上記外歯歯車の歯形曲線が、上記公転、自転運
動を行なう際、外歯歯車に固定した座標系に於て
上記内歯歯車の歯先円弧の包絡線として形成され
る歯底曲線と、上記内歯歯車の歯先円弧の両端点
の移動軌跡として形成され上記歯底曲線に接続す
る一対の側面歯形曲線と、上記一対の側面歯形曲
線の歯先端点を連結し上記内歯歯車の歯先円弧と
第二噛み合いをする歯先曲線とから成ることを特
徴とする上記の多点接触内接歯車。 2 上記内歯歯車が公転自在に支承され、外歯歯
車がその中心軸の廻りに自転自在に支承された特
許請求の範囲第1項記載の多点接触内接歯車。
[Scope of Claims] 1. An internal gear having N teeth; and an internal gear that is always inscribed at N locations on a cross section perpendicular to the axis of the internal gear, and that The gear revolves around its central axis and rotates around its own central axis, and there is an N between the inner surface of the internal gear and
In a multi-point contact internal gear consisting of an external gear with the number of teeth (N-1) that defines the volume variation space of the compartment, as long as the tooth profile curve of the internal gear does not interfere with the external gear. A tooth root curve whose shape is arbitrarily determined; a tooth tip curve consisting of an arc that is symmetrical with respect to the tooth profile centerline and has a large radius of curvature and expands toward the center; and a tooth tip curve whose shape is defined as long as it does not interfere with the external gear. A coordinate system fixed to the external gear when the tooth profile curve of the external gear performs the revolution and rotation movement, which is arbitrarily determined and consists of a side curve from both end points of the tip arc to the root curve. A root curve formed as an envelope of the tip arc of the internal gear, and a pair of side surfaces connected to the root curve formed as movement loci of both end points of the tip arc of the internal gear. The multi-point contact internal gear is characterized by comprising a tooth profile curve and a tooth tip curve that connects the tooth tip points of the pair of side tooth profile curves and has second meshing with the tooth tip arc of the internal gear. . 2. The multi-point contact internal gear according to claim 1, wherein the internal gear is rotatably supported, and the external gear is rotatably supported around its central axis.
JP16024984A 1984-08-01 1984-08-01 Multipoint contact type internal gear Granted JPS6141035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16024984A JPS6141035A (en) 1984-08-01 1984-08-01 Multipoint contact type internal gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16024984A JPS6141035A (en) 1984-08-01 1984-08-01 Multipoint contact type internal gear

Publications (2)

Publication Number Publication Date
JPS6141035A JPS6141035A (en) 1986-02-27
JPH0451693B2 true JPH0451693B2 (en) 1992-08-19

Family

ID=15710920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16024984A Granted JPS6141035A (en) 1984-08-01 1984-08-01 Multipoint contact type internal gear

Country Status (1)

Country Link
JP (1) JPS6141035A (en)

Also Published As

Publication number Publication date
JPS6141035A (en) 1986-02-27

Similar Documents

Publication Publication Date Title
US3560119A (en) Fluid pump or motor
US4715798A (en) Two-speed valve-in star motor
US5171142A (en) Rotary displacement machine with cylindrical pretension on disc-shaped partition
JP2010159765A (en) Volume rotary screw machine and motion transformation method for the same
US4145168A (en) Fluid flow rotating machinery of lobe type
JPS60153486A (en) Helical rotor type rotating positive-displacement type machine and rotor thereof
EP0746670B1 (en) Meshing type rotors
US3966371A (en) Rotary, positive displacement progressing cavity device
US7520738B2 (en) Closed system rotary machine
US4877379A (en) Rotary mechanism for three-dimensional volumetric change
US4932850A (en) Rotary drive having inner and outer interengaging rotors
JPH057524B2 (en)
JPH0451693B2 (en)
US4193748A (en) Yoke coupler for two eccentrically rotating members
US5066207A (en) Rotary device
JP2000027772A (en) Hermetic compressor
US4756676A (en) Gerotor motor with valving in gerotor star
US3552892A (en) Rotational drive means for rotary valve in fluid pressure device
EP0276680B1 (en) Two-speed valve in-star motor
US3591321A (en) Valving in combination with fluid pressure operating means
US5056993A (en) Liquid intake mechanism for rotary vane hydraulic motors
WO2005005836A1 (en) Volume screw machine of rotary type
US3658449A (en) Orbital fluid pressure device for exerting a force
US3280755A (en) Ring gear type pump
RU2681608C1 (en) Shaft engagement assembly and spherical machine based thereon