JPH0451568B2 - - Google Patents
Info
- Publication number
- JPH0451568B2 JPH0451568B2 JP23422086A JP23422086A JPH0451568B2 JP H0451568 B2 JPH0451568 B2 JP H0451568B2 JP 23422086 A JP23422086 A JP 23422086A JP 23422086 A JP23422086 A JP 23422086A JP H0451568 B2 JPH0451568 B2 JP H0451568B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- parts
- resistance
- crosslinking
- polyethylene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010894 electron beam technology Methods 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 10
- 229920001179 medium density polyethylene Polymers 0.000 claims description 9
- 239000004701 medium-density polyethylene Substances 0.000 claims description 9
- YHMYGUUIMTVXNW-UHFFFAOYSA-N 1,3-dihydrobenzimidazole-2-thione Chemical compound C1=CC=C2NC(S)=NC2=C1 YHMYGUUIMTVXNW-UHFFFAOYSA-N 0.000 claims description 6
- CJKWEXMFQPNNTL-UHFFFAOYSA-N bis(prop-2-enyl) 1,2,3,4,7,7-hexachlorobicyclo[2.2.1]hept-2-ene-5,6-dicarboxylate Chemical compound C=CCOC(=O)C1C(C(=O)OCC=C)C2(Cl)C(Cl)=C(Cl)C1(Cl)C2(Cl)Cl CJKWEXMFQPNNTL-UHFFFAOYSA-N 0.000 claims description 6
- 150000003751 zinc Chemical class 0.000 claims description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 6
- XGIDEUICZZXBFQ-UHFFFAOYSA-N 1h-benzimidazol-2-ylmethanethiol Chemical compound C1=CC=C2NC(CS)=NC2=C1 XGIDEUICZZXBFQ-UHFFFAOYSA-N 0.000 claims description 5
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 4
- 239000004719 irradiation crosslinked polyethylene Substances 0.000 claims description 4
- 229910000464 lead oxide Inorganic materials 0.000 claims description 4
- 239000011701 zinc Substances 0.000 claims description 4
- HTUMBQDCCIXGCV-UHFFFAOYSA-N lead oxide Chemical compound [O-2].[Pb+2] HTUMBQDCCIXGCV-UHFFFAOYSA-N 0.000 claims description 3
- 150000004986 phenylenediamines Chemical class 0.000 claims 1
- 238000004132 cross linking Methods 0.000 description 25
- 230000032683 aging Effects 0.000 description 22
- -1 Polyethylene Polymers 0.000 description 17
- 239000004698 Polyethylene Substances 0.000 description 17
- 229920000573 polyethylene Polymers 0.000 description 17
- 238000002156 mixing Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 8
- 239000003112 inhibitor Substances 0.000 description 7
- OKKRPWIIYQTPQF-UHFFFAOYSA-N Trimethylolpropane trimethacrylate Chemical compound CC(=C)C(=O)OCC(CC)(COC(=O)C(C)=C)COC(=O)C(C)=C OKKRPWIIYQTPQF-UHFFFAOYSA-N 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 4
- 230000000740 bleeding effect Effects 0.000 description 4
- 230000001737 promoting effect Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000003712 anti-aging effect Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229920001903 high density polyethylene Polymers 0.000 description 2
- 239000004700 high-density polyethylene Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 229920001684 low density polyethylene Polymers 0.000 description 2
- 239000004702 low-density polyethylene Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- KLUIZSNKFNVQLU-UHFFFAOYSA-N 1h-benzimidazol-2-ylmethanethiol;1,3-dihydrobenzimidazole-2-thione Chemical compound C1=CC=C2NC(=S)NC2=C1.C1=CC=C2NC(CS)=NC2=C1 KLUIZSNKFNVQLU-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000012772 electrical insulation material Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- GVYLCNUFSHDAAW-UHFFFAOYSA-N mirex Chemical compound ClC12C(Cl)(Cl)C3(Cl)C4(Cl)C1(Cl)C1(Cl)C2(Cl)C3(Cl)C4(Cl)C1(Cl)Cl GVYLCNUFSHDAAW-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000003348 petrochemical agent Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Processes Of Treating Macromolecular Substances (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Graft Or Block Polymers (AREA)
Description
(産業上の利用分野)
本発明は、難燃性、耐熱変形性、耐熱老化性お
よび耐カツトスルー性にすぐれた機器内配線用絶
縁電線に使用する電子線照射架橋ポリエチレン組
成物に関する。
(従来技術)
ポリエチレンは、電気的特性、機械的特性、耐
油性、耐水性、耐候性などにすぐれているため
に、電気絶縁材、電線被覆材として広く使用され
ているが、反面、可燃性であり、軟化温度が低い
ことから使用用途に適合するように、難燃性、耐
熱変形性、耐熱老化性、耐カツトスルー性などの
特性を備えたポリエチレン組成物が種々公表され
ている。例えば、120℃以上の高温で連続使用さ
れる分野では、熱的雰囲気による加熱変形の影響
を防止するために、ポリエチレン中に架橋剤を添
加して架橋する手段が一般に行われている。例え
ばポリエチレンの絶縁被覆が厚い電線では、蒸気
架橋、又は乾式架橋方法によつて行われ、絶縁被
覆が薄い機器内配線用の細物絶縁電線では、電子
線照射架橋方法がとられている。特に機器内配線
用細物絶縁電線は、機器内の熱的雰囲気で使用さ
れる場合が多いので、難燃性、耐熱変形性、耐熱
老化性などが要求され、更にエツヂ亀裂に強い耐
カツトスルー性を具備したものが要求される場合
がある。
しかし、架橋によつて単に耐熱変形性を向上さ
せても、ポリエチレン自体の熱的酸化に対する低
抗性を改質しないかぎり、到底高温での連続使用
には耐えることができず、且つポリエチレンに老
化防止剤を入れても加熱によつて飛散し、その結
果が期待できない問題がある。
一方、ポリエチレンの素材についてみれば、高
密度ポリエチレン(ρ=0.942以上)では、耐熱
変形性や耐カツトスルー性を具備させることがで
きるが、押出成形性、架橋性がわるい。
架橋性がわるいのは、高密度ポリエチレンは分
子中に結晶質を有するためで、架橋に際し電子線
照射量が多くなつて、生産コストが高く経済的に
不利となる。そのため、低密度ポリエチレン(ρ
=0.910〜0.930未満)が多く使用されてきたが、
架橋によつて材質を改質しても耐熱変形性を期待
する程に向上できず、耐カツトスルー性に欠ける
問題がある。耐カツトスルー性を要求されない場
合は、低密度ポリエチレンを素材とし、架橋促進
剤と熱老化防止剤とを配して電子線照射架橋によ
つて細物絶縁電線を製造していた。
前記配合に使用する架橋促進剤には、例えば、
トリメチロールプロパントリメタクリレート(以
下、TMPTと省略する)が、又、熱老化防止剤
には、4.4′−チオ・ビス(6−t−ブチル−m−
クレゾール)(以下、フエノール系老化防止剤と
略称する)が使用されていた。
前記の架橋促進剤と熱老化防止剤とをポリエチ
レンに対して併用すると、(1)TMPTの架橋促進
効果があまり期待できないこと、(2)フエノール系
老化防止剤がTMPTの架橋促進効果をより低下
させること、(3)TMPTはポリエチレンとの親和
性がわるく、ブリード現象を生じやすいなどの問
題があることを把握している。
(発明が解決しようとする問題点)
本発明の目的は、上記の技術的課題を解決し、
押出成形性が良好であつて電子線照射量を低減
し、且つ耐熱変形性、耐熱老化性および耐カツト
スルー性にすぐれた機器内配線用細物絶縁電線に
使用する電子線照射架橋ポリエチレン組成物を提
供することにある。
(問題点を解決するための手段)
本発明者らは、上記の問題を解決するために鋭
意検討を行なつた結果、中密度ポリエチレンに、
架橋促進剤のジアリルクロレンデートと、熱老化
防止剤として2−メチルカプトベンゾイミダゾー
ル又は2−メルカプトメチルベンゾイミダゾール
若しくはそれらの亜鉛塩とN・N′−ジ−β−ナ
フチル−P−フエニレンジアミンおよび亜鉛又は
鉛の酸化物の三種類成分を特定量配合することに
よつて、耐熱変形性、耐熱老化性および耐カツト
スルー性を有することを見出して本発明を完成さ
せたものである。
すなわち、本発明の構成は、
中密度ポリエチレン100重量部に対して、
(1) ジアリルクロレンデート 0.5〜5.0重量部
(2) 2−メルカプトベンゾイミダゾール又は2−
メルカプトメチルベンゾイミダゾール若しくは
それらの亜鉛塩 1〜20重量部
(3) N・N′−ジ−β−ナフチル−P−フエニレ
ンジアミン 0.5〜5.0重量部
(4) 亜鉛又は鉛の酸化物 1.5〜10重量部
とを配合して成ることを特徴とするものである。
ここに、本発明で使用する中密度ポリエチレン
とは、比重が0.930〜0.942未満の範囲である。
本発明で使用するジアリルクロレンデートと
は、電子線照射時にポリエチレンのポリマー鎖か
らの脱水素反応を促進し、架橋反応を促す作用を
有するもので、次の化学構造式で表される。
なお、n=1〜4程度のものが使用されるが、
好ましくは1または2のものである。ジアリルク
ロレンデートは液体で、ポリエチレンには極めで
親和性があつてよく分散する。その配合量は中密
度ポリエチレン100重量部に対して0.5〜5.0重量
部の範囲であり、好ましくは、0.5〜3重量部で
ある。その配合量が0.5重量部未満では、架橋促
進効果が認められず、逆に5重量部を超えるとき
は、架橋促進効果が飽和に達し、ブリード現象が
生じて外観を著しく阻害するので好ましくない。
本発明で使用する2−メルカプトベンゾイミダ
ゾール(A)又は2−メルカプトメチルベンゾイミダ
ゾール(B)若しくはそれらの亜鉛塩とは、電子線照
射時に空気中の酸素によるポリエチレンの酸化劣
化を防止し、架橋反応を阻害することもなく、ブ
リード現象も生じない。しかも耐熱老化性には極
めて顕著な効果を示し、粉体であるがポリエチレ
ンとは親和性があつてよく分散するもので、次の
化学構造式で表わされる。
(A):2−メルカプトベンゾイミダゾール
(B):2−メルカプトメチルベンゾイミダゾール
その配合量は、中密度ポリエチレン100重量部
に対して1〜20重量部の範囲であり、好ましくは
3〜10重量部である。その配合量が1重量部未満
では、耐熱老化性が期待できない。逆に、20重量
部を超えるときは、増量効果がなく、機械的特性
が著しく低下するので好ましくない。
本発明に使用するN・N′−ジ−β−ナフチル
−P−フエニレンジアミン(以下、ノクラツクホ
ワイト、大内新興化学工業社の商品名と略称す
る)は、次の化学構造式で表わされる。
その配合量は、中密度ポリエチレン100重量部
に対して、0.5〜5.0重量部の範囲であり、好まし
くは0.5〜3重量部である。その配合量が0.5重量
部未満では、耐熱老化性が期待できない。
逆に、5.0重量部を超えるときは、耐熱老化性
が飽和に達するので経済的にも好ましくなく、ブ
リード現象が生じて外観を著しく損ねることにな
る。
本発明で使用する酸化亜鉛又は酸化鉛とは、通
常の製法で製造されたものであればよく、粒度、
形状の如何に関係しない。
その配合量は、中密度ポリエチレン100重量部
に対して1.5〜10重量部の範囲であり、好ましく
は3〜7重量部である。その配合量が1.5重量部
未満では、耐熱老化性が減失するので好ましくな
い。
逆に、10重量部を超えるときは、増量効果がな
く、機械特性が著しく低下するので好ましくな
い。
本発明に使用する熱老化防止剤、すなわち、2
−メルカプトベンゾイミダゾールおよびその誘導
体若しくはそれらの亜鉛塩、ノクラツクホワイ
ト、および亜鉛又は鉛の酸化物の3成分を前記特
定の割合で配合したことを特徴とするもので、こ
れらの組合せにおいて顕著な相剰効果が発揮され
て、高温での耐熱老化性にすぐれた電子線照射架
橋ポリエチレン組成物が得られるのであつて、各
成分単独では耐熱老化性を示すものではない。
本発明に係るポリエチレン組成物には、難燃性
を具備させるために、塩素系難燃剤および三酸化
アンチモンが配合されるが、適宜、滑剤などを配
合してもよい。
(実施例)
以下、実施例および比較例にもとづいて本発明
を更に詳細に説明するが、本発明はかかる実施例
にのみ限定されるものでない。
中密度ポリエチレン(ネオゼツクス2015M、三
井石油化学社製)100重量部に対して、塩素系難
燃剤(デクロランプラス25、フツカーケミカル社
製)50重量部、三酸化アンチモン20重量部および
ステアリン酸カルシウム1.5重量部を添加したも
のをベースに、第1表および第2表に示す割合
(重量部)で架橋促進剤、熱老化防止剤を配合し、
直径150mmのミキシングロールを用いて150〜180
℃の温度範囲で均一に20〜30分間混練りした後、
ゲージ圧150Kg/cm2、180℃×10分間の加熱条件で
プレス成形し、厚さ0.5mmの絶縁シートを作製し
た後、加速電圧750Kev、44mAの条件で、該絶
縁シートに対して大気中で電子線照射を行ない架
橋した。このとき電子線照射量はいずれも
20Mradとした。かくして得られた架橋絶縁シー
トの引張強さと伸びおよび
カツトスルー性を(注)
測定
した。
(注) カツトスルー性の試験とは、架橋絶縁シ
ート片(0.5mm厚×15mm巾×30mm長)を直
径5mmφの金属マンドレル上にのせ、該絶
縁シート上に90°の角度をもつ逆▽刃をあ
てて、350gの荷物をかけて120℃×10分間
の加熱雰囲気中に放置し、前記金属マンド
レルと逆▽刃との間に直流25Vの電圧を印
加して短絡電流の有無を調べる。判定基準
は、○印を良好、×印を不良として評価し
た。
電子線照射後の架橋絶縁シートが120℃以上の
温度での連続使用に保障できるか否かを判断する
ために、UL規格の125℃定格評価法に準じで158
℃の温度で熱老化試験機中に、該架橋絶縁シート
を7日間保持して熱老化後の引張強さと伸びを測
定し、熱老化試験前の値に対す残率(%)で求
め、前者での残率が70%以上、後者での残率が65
%以上をそれぞれ良好なものと判定し、ブリード
現象の有無などをしらべた結果を第1表および第
2表の下段に併記した。
ここに、耐カツトスルー性の良好なものは、架
橋度が大きく、又、加熱変形性が小さい関係にあ
ることを意味する。
結果からわかるように、実施例1〜10は、UL
規格の125℃定格評価法において良好な値を示し
ている。
しかし、比較例4、8、10、は、電子線照射後
の架橋絶縁シートの引張強さが1Kg/mm2未満であ
つて好ましくない。
比較例2、6、11、12、は耐カツトスルー性が
わるく、好ましくない。
比較例3、5、9、10、11、13は、158℃×7
日の熱老化試験後の伸びの残率(%)の値が低
く、好ましくない。比較例1、6は、ポリエチレ
ン組成物にブリード現象を生じ、外観を著しく損
ねるので好ましくない。
(発明の効果)
以上述べたように、本発明は中密度ポリエチレ
ンに、架橋促進剤のジアリルクロレンデートと、
熱老化防止剤として2−メルカプトベンゾイミダ
ゾール又は2−メルカプトメチルベンゾイミダゾ
ール若しくはそれらの亜鉛塩とノクラツクホワイ
トおよび酸化亜鉛などの三種類成分を特定量配合
することにより、すぐれた耐熱変形性と耐熱老化
性および耐カツトスルー性を有するポリエチレン
組成物が得られ、且つ架橋に際し、経済的な電子
線照射量で架橋することができるのでモータ機器
などの又、機器内配線用の絶縁電線を安価に供給
し得る利点がある。
(Field of Industrial Application) The present invention relates to an electron beam irradiation crosslinked polyethylene composition used for insulated wires for internal wiring, which has excellent flame retardancy, heat deformation resistance, heat aging resistance, and cut-through resistance. (Prior art) Polyethylene is widely used as an electrical insulation material and wire coating material because it has excellent electrical properties, mechanical properties, oil resistance, water resistance, weather resistance, etc. However, on the other hand, it is flammable. Various polyethylene compositions have been published that have properties such as flame retardancy, heat deformation resistance, heat aging resistance, and cut-through resistance so as to be suitable for various uses due to their low softening temperatures. For example, in fields where polyethylene is used continuously at high temperatures of 120° C. or higher, it is common practice to add a crosslinking agent to polyethylene for crosslinking in order to prevent the effects of thermal deformation caused by a thermal atmosphere. For example, for electrical wires with thick polyethylene insulation coatings, steam crosslinking or dry crosslinking is used, and for thin insulated wires for internal wiring in equipment with thin insulation coatings, electron beam irradiation crosslinking is used. In particular, thin insulated wires for wiring inside equipment are often used in a thermal atmosphere inside equipment, so they are required to have flame retardancy, heat deformation resistance, heat aging resistance, etc., and cut-through resistance that is resistant to edge cracking. In some cases, a device equipped with the following may be required. However, even if the heat deformation resistance is simply improved by crosslinking, unless the low resistance to thermal oxidation of the polyethylene itself is modified, it will not be able to withstand continuous use at high temperatures, and the polyethylene will not age. Even if an inhibitor is added, it scatters due to heating, resulting in unpredictable results. On the other hand, regarding polyethylene materials, high-density polyethylene (ρ = 0.942 or more) can provide heat deformation resistance and cut-through resistance, but has poor extrusion moldability and crosslinking properties. The reason why high-density polyethylene has poor crosslinking properties is that it has crystalline substances in its molecules, and the amount of electron beam irradiation increases during crosslinking, resulting in high production costs and an economic disadvantage. Therefore, low density polyethylene (ρ
= 0.910 to less than 0.930) has been often used, but
Even if the material is modified by crosslinking, the heat deformation resistance cannot be improved to the extent expected, and there is a problem that the cut-through resistance is lacking. When cut-through resistance is not required, thin insulated wires are manufactured by using low-density polyethylene as a material, disposing crosslinking accelerators and heat aging inhibitors, and crosslinking with electron beam irradiation. The crosslinking accelerator used in the formulation includes, for example,
Trimethylolpropane trimethacrylate (hereinafter abbreviated as TMPT) is used as a heat aging inhibitor.
Cresol) (hereinafter abbreviated as phenolic anti-aging agent) was used. When the above-mentioned crosslinking accelerator and heat anti-aging agent are used together for polyethylene, (1) the crosslinking accelerating effect of TMPT cannot be expected much, and (2) the phenolic anti-aging agent further reduces the crosslinking accelerating effect of TMPT. (3) TMPT is known to have problems such as poor affinity with polyethylene and the tendency to bleed. (Problems to be solved by the invention) The purpose of the present invention is to solve the above technical problems,
An electron beam irradiation crosslinked polyethylene composition that has good extrusion moldability, reduces the amount of electron beam irradiation, and has excellent heat deformation resistance, heat aging resistance, and cut-through resistance, and is used for thin insulated wires for wiring inside equipment. It is about providing. (Means for Solving the Problems) As a result of intensive studies to solve the above problems, the present inventors found that medium-density polyethylene
Diallylchlorendate as a crosslinking accelerator, 2-methylcaptobenzimidazole or 2-mercaptomethylbenzimidazole or a zinc salt thereof as a heat aging inhibitor, and N.N'-di-β-naphthyl-P-phenylenediamine. The present invention was completed by discovering that heat deformation resistance, heat aging resistance, and cut-through resistance can be achieved by blending specific amounts of three types of components: zinc and lead oxides. That is, the composition of the present invention is as follows: (1) diallylchlorendate 0.5 to 5.0 parts by weight (2) 2-mercaptobenzimidazole or 2-mercaptobenzimidazole
Mercaptomethylbenzimidazole or zinc salt thereof 1 to 20 parts by weight (3) N.N'-di-β-naphthyl-P-phenylenediamine 0.5 to 5.0 parts by weight (4) Zinc or lead oxide 1.5 to 10 It is characterized in that it is made by blending parts by weight. Here, the medium density polyethylene used in the present invention has a specific gravity in the range of 0.930 to less than 0.942. The diallyl chlorendate used in the present invention has the effect of promoting dehydrogenation reaction from the polymer chain of polyethylene upon electron beam irradiation and promoting crosslinking reaction, and is represented by the following chemical structural formula. In addition, those with n=1 to 4 are used,
Preferably it is 1 or 2. Diallyl chlorendate is a liquid and has an extremely high affinity for polyethylene, dispersing it well. The blending amount is in the range of 0.5 to 5.0 parts by weight, preferably 0.5 to 3 parts by weight, based on 100 parts by weight of medium density polyethylene. If the amount is less than 0.5 parts by weight, no crosslinking promoting effect will be observed, and if it exceeds 5 parts by weight, the crosslinking promoting effect will reach saturation and a bleed phenomenon will occur, which will significantly impair the appearance, which is not preferable. 2-Mercaptobenzimidazole (A) or 2-mercaptomethylbenzimidazole (B) or their zinc salts used in the present invention prevent oxidative deterioration of polyethylene due to oxygen in the air during electron beam irradiation, and cause crosslinking reaction. and no bleeding phenomenon occurs. Moreover, it has a very remarkable effect on heat aging resistance, and although it is a powder, it has an affinity with polyethylene and is well dispersed, and is represented by the following chemical structural formula. (A): 2-mercaptobenzimidazole (B): 2-mercaptomethylbenzimidazole The blending amount thereof is in the range of 1 to 20 parts by weight, preferably 3 to 10 parts by weight, based on 100 parts by weight of medium density polyethylene. If the amount is less than 1 part by weight, heat aging resistance cannot be expected. On the other hand, when it exceeds 20 parts by weight, there is no effect of increasing the amount and the mechanical properties are significantly deteriorated, which is not preferable. N・N′-di-β-naphthyl-P-phenylenediamine (hereinafter abbreviated as Nokrac White, a trade name of Ouchi Shinko Kagaku Kogyo Co., Ltd.) used in the present invention is represented by the following chemical structural formula. It will be done. The blending amount thereof is in the range of 0.5 to 5.0 parts by weight, preferably 0.5 to 3 parts by weight, based on 100 parts by weight of medium density polyethylene. If the blending amount is less than 0.5 part by weight, heat aging resistance cannot be expected. On the other hand, if it exceeds 5.0 parts by weight, the heat aging resistance will reach saturation, which is economically undesirable, and a bleeding phenomenon will occur, significantly impairing the appearance. The zinc oxide or lead oxide used in the present invention may be one manufactured by a normal manufacturing method, and the particle size,
It doesn't matter what shape it is. The blending amount thereof is in the range of 1.5 to 10 parts by weight, preferably 3 to 7 parts by weight, based on 100 parts by weight of medium density polyethylene. If the blending amount is less than 1.5 parts by weight, heat aging resistance will decrease, which is not preferable. On the other hand, when it exceeds 10 parts by weight, there is no effect of increasing the amount and the mechanical properties are significantly deteriorated, which is not preferable. The heat aging inhibitor used in the present invention, namely 2
- It is characterized by blending the three components of mercaptobenzimidazole and its derivatives or their zinc salts, Nokrac White, and oxides of zinc or lead in the above-mentioned specific proportions, and the combination of these three components has a remarkable phase difference. As a result, an electron beam irradiation crosslinked polyethylene composition with excellent heat aging resistance at high temperatures can be obtained, and each component alone does not exhibit heat aging resistance. The polyethylene composition according to the present invention contains a chlorine-based flame retardant and antimony trioxide in order to have flame retardancy, but may also contain a lubricant or the like as appropriate. (Examples) Hereinafter, the present invention will be explained in more detail based on Examples and Comparative Examples, but the present invention is not limited only to these Examples. 100 parts by weight of medium-density polyethylene (Neozex 2015M, manufactured by Mitsui Petrochemicals), 50 parts by weight of chlorine flame retardant (Dechloran Plus 25, manufactured by Futsuka Chemical Co., Ltd.), 20 parts by weight of antimony trioxide, and 1.5 parts by weight of calcium stearate. Based on the added parts by weight, a crosslinking accelerator and a heat aging inhibitor are blended in the proportions (parts by weight) shown in Tables 1 and 2,
150-180 using a mixing roll with a diameter of 150 mm
After kneading uniformly for 20-30 minutes in the temperature range of ℃,
After producing an insulating sheet with a thickness of 0.5 mm by press forming at a gauge pressure of 150 Kg/cm 2 and heating at 180°C for 10 minutes, the insulating sheet was heated in the atmosphere at an accelerating voltage of 750 Kev and 44 mA. Crosslinking was performed by electron beam irradiation. At this time, the electron beam irradiation amount is
It was set at 20 Mrad. The tensile strength, elongation, and cut-through property (Note) of the crosslinked insulating sheet thus obtained were measured. (Note) Cut-through property test refers to placing a piece of cross-linked insulating sheet (0.5 mm thick x 15 mm wide x 30 mm long) on a metal mandrel with a diameter of 5 mm, and inserting an inverted ▽ blade at a 90° angle onto the insulating sheet. Place a 350g load on the metal mandrel, leave it in a heated atmosphere at 120°C for 10 minutes, apply a DC voltage of 25V between the metal mandrel and the inverted ▽ blade, and check for short-circuit current. The evaluation criteria were as follows: ◯ marks as good and x marks as poor. In order to determine whether the cross-linked insulating sheet after electron beam irradiation can be guaranteed for continuous use at temperatures of 120℃ or higher, 158
The cross-linked insulating sheet was held in a heat aging tester at a temperature of 7 days, and the tensile strength and elongation after heat aging were measured. The remaining rate in the latter is 70% or more, and the remaining rate in the latter is 65
% or more was judged to be good, and the results of examining the presence or absence of bleeding phenomenon are also listed in the lower rows of Tables 1 and 2. Here, a material with good cut-through resistance means a high degree of crosslinking and a low heat deformability. As can be seen from the results, Examples 1 to 10 are UL
It shows good values in the standard 125℃ rating evaluation method. However, in Comparative Examples 4, 8, and 10, the tensile strength of the crosslinked insulating sheet after electron beam irradiation was less than 1 Kg/mm 2 , which is not preferable. Comparative Examples 2, 6, 11, and 12 have poor cut-through resistance and are not preferred. Comparative Examples 3, 5, 9, 10, 11, and 13 were heated at 158°C x 7
The residual elongation percentage (%) after the 1-day heat aging test is low, which is not preferable. Comparative Examples 1 and 6 are not preferred because they cause a bleeding phenomenon in the polyethylene composition and significantly impair the appearance. (Effects of the Invention) As described above, the present invention adds diallyl chlorendate as a crosslinking accelerator to medium density polyethylene, and
Excellent heat deformation resistance and heat aging resistance are achieved by blending specific amounts of three types of ingredients such as 2-mercaptobenzimidazole, 2-mercaptomethylbenzimidazole, or their zinc salts, Nokrac White, and zinc oxide as heat aging inhibitors. A polyethylene composition having high strength and cut-through resistance can be obtained, and crosslinking can be performed with an economical amount of electron beam irradiation, making it possible to supply insulated wires for motor equipment and internal wiring at low cost. There are benefits to be gained.
【表】【table】
【表】【table】
【表】【table】
Claims (1)
アリルクロレンデート0.5〜5重量部、2−メル
カプトベンゾイミダゾール又は2−メルカプトメ
チルベンゾイミダゾール若しくはこれらの亜鉛塩
1〜20重量部、N・N′−ジ−β−ナフチル−P
−フエニレンジアミン0.5〜5.0重量部、亜鉛又は
鉛の酸化物1.5〜10重量部を配合して成ることを
特徴とする電子線照射架橋ポリエチレン組成物。1 Based on 100 parts by weight of medium density polyethylene, 0.5 to 5 parts by weight of diallylchlorendate, 1 to 20 parts by weight of 2-mercaptobenzimidazole or 2-mercaptomethylbenzimidazole or a zinc salt thereof, N.N'-di -β-naphthyl-P
- An electron beam irradiation crosslinked polyethylene composition comprising 0.5 to 5.0 parts by weight of phenylene diamine and 1.5 to 10 parts by weight of zinc or lead oxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23422086A JPS6389517A (en) | 1986-09-30 | 1986-09-30 | Electron beam-crosslinked polyethylene composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23422086A JPS6389517A (en) | 1986-09-30 | 1986-09-30 | Electron beam-crosslinked polyethylene composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6389517A JPS6389517A (en) | 1988-04-20 |
JPH0451568B2 true JPH0451568B2 (en) | 1992-08-19 |
Family
ID=16967581
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23422086A Granted JPS6389517A (en) | 1986-09-30 | 1986-09-30 | Electron beam-crosslinked polyethylene composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6389517A (en) |
-
1986
- 1986-09-30 JP JP23422086A patent/JPS6389517A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6389517A (en) | 1988-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5652452B2 (en) | Non-halogen flame retardant insulated wire | |
JPH0554723A (en) | Flame retardant electric insulating composition and flame retardant wire & cable | |
WO2019009294A1 (en) | Resin composition, resin coating material, wire harness for automobile, and production method for wire harness for automobile | |
US3845166A (en) | Curable composition comprising polyvinyl chloride,chlorinated polyolfin and an ethylene polymer,and the cured product thereof | |
EP0568839B1 (en) | Flame-retardant resin composition, electric wire using same, and tube made of same | |
US5539052A (en) | Crosslinked thermoplastic elastomers | |
JP4998844B2 (en) | Non-halogen insulated wire | |
JPH0451568B2 (en) | ||
JPH0451564B2 (en) | ||
JPH0451566B2 (en) | ||
JPH0451565B2 (en) | ||
JPS624067B2 (en) | ||
JPH0451567B2 (en) | ||
JP2008266371A (en) | Electrically insulating composition and electric wire | |
JPH10279736A (en) | Abrasion-resistant and flame retardant resin composition, its production and insulated wire | |
JP2007246619A (en) | Electric insulation composition and electric wire | |
JP4776208B2 (en) | Resin composition and insulated wire coated therewith | |
JPS5812684B2 (en) | Nannen Seijiko Yuuchiyaku Zetsu Enso Saibutsu | |
JPS6326906A (en) | Flame resisting electrically insulating composition | |
JPH04334811A (en) | Flame retardant electric insulating composite | |
JPH11140246A (en) | Abrasion resistant flame retarding resin composition, its production and insulated wire | |
JPH10340627A (en) | Manufacture of abrasion resistant-flame resistant resin composition and insulated wire | |
JPS588738A (en) | Heat-resistant crosslinked polyolefin composition | |
KR100291669B1 (en) | A semiconductive power cable shield | |
JPS61171006A (en) | Insulated wire |