JPH0451561A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0451561A
JPH0451561A JP2161001A JP16100190A JPH0451561A JP H0451561 A JPH0451561 A JP H0451561A JP 2161001 A JP2161001 A JP 2161001A JP 16100190 A JP16100190 A JP 16100190A JP H0451561 A JPH0451561 A JP H0451561A
Authority
JP
Japan
Prior art keywords
fuse
polysilicon
resistance
poly
stepped part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2161001A
Other languages
Japanese (ja)
Inventor
Masanori Kobayashi
正典 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2161001A priority Critical patent/JPH0451561A/en
Publication of JPH0451561A publication Critical patent/JPH0451561A/en
Pending legal-status Critical Current

Links

Landscapes

  • Design And Manufacture Of Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To display a function as a fuse at a low cost and surely without a need for a specific process among standard processes by a method wherein a resistance which connects a first interconnection metal to a second interconnection metal via contacts is provided and a stepped part is formed under the resistance. CONSTITUTION:Contacts 12, 12 are formed in opposite Al interconnections 10, 10; they are connected by using a high resistance 11 of polysilicon. The high resistance 11 is attached in a state that it is levitated by lower polysilicon by a two-layer polysilicon process. That is to say, in such a cross-sectional structure of a fuse, a stepped part is formed at high-resistance polysilicon 20 (11) by lower polysilicon 18 (13) by the two-layer process via a lower-layer interlayer film 19. Consequently, the polysilicon 20 for fuse use at the stepped part is made thin, and a blowing characteristic as a fuse can be enhanced remarkably.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体集積回路のヒユーズ回路に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a fuse circuit for a semiconductor integrated circuit.

〔従来の技術〕[Conventional technology]

半導体集積回路(以下ICと称す。)において工Cの外
部より何らかの操作を行うことによって工Cの特性や機
能を変更することがあった。たとえばプログラマブル・
ロジック・デバイスやFROMは書き込み操作によりユ
ーザー自身の思いのままの機能を達成することができた
。また、アナログエCの特性を合わせ込む場合にもその
工O特有の操作により特性を合わせ込むことができるも
のがある。このように工Cができあがった後に調整、あ
るいは機能の変更を行う場合、従来主な技術としてはF
AMO3やヒユーズがあった。3ユーズとしては従来の
バイポーラFROMやプログラマブル・ロジック・デバ
イスでは昇華のしゃすい金属−N i、 Or 、’ 
T i W 、 P t S i等を用いている。第2
図に代表的なヒユーズ回路を示す。ここで40はAL配
線、41はPOLY  Siヒユーズで42はコンタク
トである。4oのAL配線の両端に高電圧を印加すると
410POLY  S1ヒユーズに大電流が流れヒユー
ズは溶断する。
In semiconductor integrated circuits (hereinafter referred to as ICs), the characteristics and functions of the IC may be changed by performing some kind of operation from outside the IC. For example, programmable
Logic devices and FROMs allow users to achieve desired functionality through write operations. Furthermore, when matching the characteristics of an analog device, there are some that allow the characteristics to be matched by operations specific to that device. In this way, when adjusting or changing the function after the construction C is completed, the conventional main technology is
There was AMO3 and Hughes. 3. Conventional bipolar FROM and programmable logic devices use metals that do not easily sublimate - Ni, Or, '
T i W, P t S i, etc. are used. Second
The figure shows a typical fuse circuit. Here, 40 is an AL wiring, 41 is a POLY Si fuse, and 42 is a contact. When a high voltage is applied to both ends of the 4o AL wiring, a large current flows through the 410POLY S1 fuse and the fuse blows.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この従来のヒユーズは最も一般的なものであるがヒユー
ズの材質としては前述した様に昇華しやすい金属として
工Cの標準プロセスには無い工程が必要となる場合、ま
たは標準プロセスないでの金属(POLY  Si)を
使う場合の二通りが考えられる。しかし、ここで特殊な
金属を用いる場合はプロセスの工程が増加しウェファコ
ストがアップしてほんの数ビットのヒユーズについては
非常に不向きである。またC!MO8の工C等における
ヒユーズでPOLY  Siを用いる場合CVDで覆わ
れている場合にはPOLY、Siは溶断しK<<通常は
ヒユーズ部分のPOLY  SILの上はOVDをオー
プンとしてお(。この場合ウェファ検査でヒユーズを切
る場合には問題ないが、モールド実装後はモールド材が
ヒユーズ部のOVDオープンをふさいでしまいPOLY
  Siが溶断しなくなってしまう。この様に従来の技
術では少数ビットでかつモールド実装後プログラムする
製品に対しては最適ではなかった。
This conventional fuse is the most common type, but as mentioned above, the material of the fuse is a metal that easily sublimates, so if a process that is not included in the standard process of Engineering C is required, or a metal that does not have a standard process ( There are two possible ways to use POLY Si). However, if a special metal is used here, the number of process steps increases and the wafer cost increases, making it extremely unsuitable for fuses of only a few bits. C again! When using POLY Si as a fuse in MO8 work C, etc., if it is covered with CVD, the POLY and Si will be blown. There is no problem when cutting the fuse during wafer inspection, but after mold mounting, the molding material blocks the OVD open of the fuse part and the POLY
Si will no longer melt. As described above, the conventional technology is not optimal for products that have a small number of bits and are programmed after being molded.

本発明はかかる問題点を解決するためのもので標準プロ
セスの工程内で特殊な工程を設ける必要がな(、安価に
かつ、確実にヒーーズとしての機能を果たすヒユーズを
提供するものである。
The present invention is intended to solve these problems, and provides a fuse that can function as a fuse reliably and at low cost without requiring any special steps within the standard process.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置は第一の配線金属と第二の配線金属
を有し、前記第一の配線金属と前記第二の配線金属とコ
ンタクトを介して第一の配線金属と第二の配線金属を接
続する抵抗を有し、前記抵抗の下に断差をつけることを
特徴とする。
The semiconductor device of the present invention has a first wiring metal and a second wiring metal, and the first wiring metal and the second wiring metal are connected to each other through contacts with the first wiring metal and the second wiring metal. It is characterized in that it has a resistor that connects the resistor, and a difference is provided below the resistor.

また本発明の半導体装置は前記抵抗の直下を含む周囲に
電位の浮いた拡散の独立した領域を形成することを特徴
とする。
Further, the semiconductor device of the present invention is characterized in that an independent diffusion region with a floating potential is formed around the resistor including directly below it.

〔実施例〕〔Example〕

本発明の一実施例を第1図に示す。第1図のαはヒユー
ズの構成で10は配線用のAL、11はPOLY  S
iの高抵抗、12はPOLY  SiとALのコンタク
トを表している。13は2層POLYプロセスのUND
ERPOLYで電位的には浮いている状態である。また
14はN基盤の場合P−のウェルでありP基盤の場合N
ウェル丙のP中波散である。第1図のbにこのヒユーズ
の断面構造を示す。この場合N基盤を一例とすると15
はN基盤で16はP−ウェルを示す。17はLOOO3
でSiO□である。また18は2層POLYプロセスに
おけるUNI)ERPOLYでこの実施例においてはこ
れで断差なつけている。
An embodiment of the present invention is shown in FIG. In Figure 1, α is the fuse configuration, 10 is AL for wiring, and 11 is POLY S.
i represents the high resistance, and 12 represents the contact between POLY Si and AL. 13 is UND of two layer POLY process
It is in a floating state in terms of potential due to ERPOLY. In addition, 14 is a well of P- in the case of N-based, and is the well of N in case of P-based.
This is the P medium wave scattering of Well C. Figure 1b shows the cross-sectional structure of this fuse. In this case, taking the N base as an example, it is 15
indicates N-base and 16 indicates P-well. 17 is LOOO3
and is SiO□. Further, 18 is UNI) ERPOLY in a two-layer POLY process, and in this embodiment, there is no difference.

19は層間膜で、20はヒーーズとして用いる高抵抗P
OLY  Siである。1’OLY  Siの溶断特性
は次の要素が太き(影響する。1つは発熱量当りの表面
積、1つは電流が流れる部分の断面積、1つは電界の集
中である。すなわちもつとも効率よ(溶断させるには、
発熱量が太き(表面積が小さ(かつ断面積を少な(する
ことが必要である。発熱量を大きくするためには抵抗を
高(する必要があり、通常のプロセスにおいてはIJ)
LYSlのシート抵抗はプロセスで固有でありまたPO
LY  310幅はそのプロセスのデザインルールで制
限される。抵抗を高(するとPOLY  Slの長さを
のばす必要があるが表面積が増えてしまう。この様に通
常の構造では最適な溶断特性を得るのが難しい。本発明
では第1図に示す様にUNDERPOLYで断差を設け
ているためその断差部分のヒユーズ用POLY  S’
iが薄(なり断面積が小さ(なる。このためヒユーズの
その部分が集中的に発熱する。しかもPOLY  Si
が平担であれば均一にかかる電界も断差があるためにそ
の部分に集中する。このことによりヒユーズの溶断特性
は著しく向上する。さらに、最適化されたPOLY  
Siのヒユーズを用いることにより溶断エネルギーは最
小限にできる。しかし、POLY  Siヒユーズの溶
断はあくまで現象としては爆発であるため層間膜の破壊
、あるいは劣゛化に結び付く可能性がある。例えば17
のLOCO8にクラックが入り下の基盤とヒユーズ間で
のリークが生じる可能性が高いわけであるが、16に示
すP−ウェルが電位的には浮いた状態にあるためリーク
の電流経路はPN接合の逆方向となり、その経路がたた
れる。従って本発明においては、リークは起こらない。
19 is an interlayer film, and 20 is a high resistance P used as a heater.
OLY Si. The fusing characteristics of 1'OLY Si are influenced by the following factors: one is the surface area per calorific value, one is the cross-sectional area of the part where the current flows, and one is the concentration of the electric field. (To melt it,
The heat generation is large (it is necessary to have a small surface area (and a small cross-sectional area). In order to increase the heat generation, it is necessary to have a high resistance, and in normal processes
The sheet resistance of LYSl is process specific and PO
LY 310 width is limited by the design rules of the process. If the resistance is high (then it is necessary to increase the length of POLY Sl, but the surface area increases. In this way, it is difficult to obtain optimal fusing characteristics with a normal structure. In the present invention, as shown in Figure 1, UNDERPOLY Since there is a difference between the fuse and POLY S' in the difference part.
i is thin (and the cross-sectional area is small). Therefore, that part of the fuse generates heat intensively.
If it is flat, the electric field that is uniformly applied will be concentrated in that part because there is a difference. This significantly improves the fuse blowing characteristics. Furthermore, the optimized POLY
By using a Si fuse, the fusing energy can be minimized. However, the melting of a POLY Si fuse is only an explosion, and may lead to destruction or deterioration of the interlayer film. For example 17
There is a high possibility that a crack will occur in LOCO8, causing leakage between the underlying board and the fuse, but since the P-well shown in 16 is in a floating state in terms of potential, the current path for leakage will be through the PN junction. It is in the opposite direction, and the route is traced. Therefore, in the present invention, no leakage occurs.

第1図に示した例ではPOLY  Siヒユーズの断差
を形成するために2層POLYのUNDERPOLYを
もちいたが、その他にも拡散等プロセスにおいて断差を
形成することができるものをPOLY  Siヒー−ズ
の直下に例えば第1図の15の様な形に形成することに
より適応出来る書き込み特性が非常に低エネルギーの溶
断によるために周囲のCVDやAL、拡散等への破壊的
影響を与えず、また少々の破壊等に対してもリークを防
ぐことができるため工Cの信頼性にとっても非常に有益
である。
In the example shown in Figure 1, a two-layer POLY UNDERPOLY was used to form the difference in the POLY Si fuse, but other materials that can form the difference in processes such as diffusion can also be used as POLY Si fuses. The writing characteristics, which can be applied by forming the write directly under the disk in a shape like 15 in Fig. 1, are caused by very low energy fusing, so it does not have a destructive effect on the surrounding CVD, AL, diffusion, etc. Furthermore, since leakage can be prevented even in the event of slight destruction, it is very beneficial for the reliability of the construction C.

以上の様に、本発明を用いれば簡単にできるヒユーズと
して価格的にも、特性的にも非常によいものを提供でき
る。
As described above, by using the present invention, it is possible to provide a fuse that can be easily manufactured and has very good characteristics in terms of cost and characteristics.

〔発明の効果〕〔Effect of the invention〕

この様に本発明のヒユーズを用いれば新たに特殊なプロ
セス工程を付は加える必要がないので、はんの少数bi
tのヒユーズでも十分にコストパフォーマンスが良く非
常に安価にできる。またこれは特殊なヒユーズ用金属を
用いた場合と比べ面積的にもその小ささは遜色のないも
ので大容量のヒユーズアレイにも容易に適用できる。ま
たプログラム特性としても通常のPoLY  Siヒユ
ーズに比べ確実な書き込み特性が実現できる。また
In this way, if the fuse of the present invention is used, there is no need to add any new special process steps, so it is possible to
Even a t fuse has sufficient cost performance and can be made at a very low cost. Furthermore, the area is comparable to that of special fuse metals, and it can be easily applied to large-capacity fuse arrays. Furthermore, as for programming characteristics, more reliable writing characteristics can be realized compared to ordinary PoLY Si fuses. Also

【図面の簡単な説明】[Brief explanation of drawings]

第1図(α)は、本発明の実施例でヒユーズ構造をボす
図。 第1図(b)は、本発明の断面図。 第2図は、従来例を示す図。 10−・−・・・・・・配線用AL j1−=−−・−・POLY  Siの高抵抗12−−
・−ωコンタクト 13−・−・−・・・・UNDERPOLYl a −
−−・−・−・p−ウェル j 5−−− ・・・−・N基盤 −・・−・・・・・−・p−ウェル ・・・・・・・−・・−Locos酸化膜・・・ −・
 ・−・ −UNDERPOLY、21・−層間膜 ・・・・・・・−・−・POLY  Siヒユーズ・・
・・・・・・・−AL配線 ・・・−・・・・・・・AL配線 ・・・−・−・・−POLY  Siヒユーズ・・・・
・・−・−・フンタクト 以上
FIG. 1 (α) is a diagram showing a fuse structure in an embodiment of the present invention. FIG. 1(b) is a sectional view of the present invention. FIG. 2 is a diagram showing a conventional example. 10--...AL for wiring j1-=----POLY Si high resistance 12--
・-ω Contact 13-・-・-・・UNDERPOLYl a −
−−・−・−・P-well j 5−−− ・・・−・N base−・・−・・・・・−・P−well・・・・・・・・・−・・−Locos oxide film・・・ −・
・−・ −UNDERPOLY, 21・−Interlayer film・・・・・・・−・−・POLY Si fuse・・
......-AL wiring...--AL wiring--POLY Si fuse...
・・・-・-・More than Funtact

Claims (2)

【特許請求の範囲】[Claims] (1)第一の配線金属と第二の配線金属を有し、前記第
一の配線金属と前記第二の配線金属とコンタクトを介し
て第一の配線金属と第二の配線金属を接続する抵抗を有
し、前記抵抗の下に断差をつけることを特徴とする半導
体装置。
(1) It has a first wiring metal and a second wiring metal, and connects the first wiring metal and the second wiring metal through contacts with the first wiring metal and the second wiring metal. 1. A semiconductor device comprising a resistor and having a difference below the resistor.
(2)前記抵抗の直下を含む周囲に電位の浮いた拡散の
独立した領域を形成することを特徴とする請求項1記載
の半導体装置。
(2) The semiconductor device according to claim 1, characterized in that an independent diffusion region with a floating potential is formed around the resistor including directly below it.
JP2161001A 1990-06-19 1990-06-19 Semiconductor device Pending JPH0451561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2161001A JPH0451561A (en) 1990-06-19 1990-06-19 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2161001A JPH0451561A (en) 1990-06-19 1990-06-19 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH0451561A true JPH0451561A (en) 1992-02-20

Family

ID=15726690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2161001A Pending JPH0451561A (en) 1990-06-19 1990-06-19 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0451561A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5661323A (en) * 1995-06-30 1997-08-26 Samsung Electrics Co., Ltd. Integrated circuit fuse programming and reading circuits

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5661323A (en) * 1995-06-30 1997-08-26 Samsung Electrics Co., Ltd. Integrated circuit fuse programming and reading circuits

Similar Documents

Publication Publication Date Title
KR0157348B1 (en) Programmable fuse
US5420456A (en) ZAG fuse for reduced blow-current application
JP2817894B2 (en) Writable MOS memory using metal fuse link and method of manufacturing the same
US6337507B1 (en) Silicide agglomeration fuse device with notches to enhance programmability
JPH04315468A (en) Manufacture of anti-fuse semiconductor device and gate array device
US20060220174A1 (en) E-Fuse and anti-E-Fuse device structures and methods
JP3470960B2 (en) Mixed fuse technology
US20080105948A1 (en) Fuse structures and integrated circuit devices
JPH0428145B2 (en)
US5789794A (en) Fuse structure for an integrated circuit element
CN101533828B (en) Semiconductor device and method for fabricating the same
US5572050A (en) Fuse-triggered antifuse
JPH05160265A (en) Interruptible connection
JPH0451561A (en) Semiconductor device
US20070222027A1 (en) Electronic fuse elements with constricted neck regions that support reliable fuse blowing
JP2913768B2 (en) Semiconductor device
JPH0451563A (en) Semiconductor device
JP2982497B2 (en) Semiconductor device
JPH0969570A (en) Semiconductor device and its manufacture
GB2260219A (en) Customising integrated circuits
JPS61110447A (en) Semiconductor device
JPH04162471A (en) Semiconductor integrated circuit
JPH04147647A (en) Semiconductor integrated circuit
JPH0728010B2 (en) Fuse blown PROM
JPH04311065A (en) Electrostatic protective resistor