JPH0451280B2 - - Google Patents

Info

Publication number
JPH0451280B2
JPH0451280B2 JP29185285A JP29185285A JPH0451280B2 JP H0451280 B2 JPH0451280 B2 JP H0451280B2 JP 29185285 A JP29185285 A JP 29185285A JP 29185285 A JP29185285 A JP 29185285A JP H0451280 B2 JPH0451280 B2 JP H0451280B2
Authority
JP
Japan
Prior art keywords
slag
welding
bead
flux
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP29185285A
Other languages
Japanese (ja)
Other versions
JPS62151292A (en
Inventor
Shuichi Sakaguchi
Masaaki Tokuhisa
Masao Hirai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP29185285A priority Critical patent/JPS62151292A/en
Publication of JPS62151292A publication Critical patent/JPS62151292A/en
Publication of JPH0451280B2 publication Critical patent/JPH0451280B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3602Carbonates, basic oxides or hydroxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) サブマージアーク溶接用フラツクスに関し、と
くに多電極サブマージアーク溶接において、良好
な溶接作業性の下に低温じん性の優れた溶接金属
を得ることのできるフラツクス構成成分系の改良
を提案しようとするものである。 サブマージアーク溶接用フラツクスは、アーク
の安定、アーク周辺のシールド、化学治金反応な
どの役割をもつているが、その製造方法により溶
融型と焼成型に大別される。すなわち 前者は、原料を所定の組成に配合し、アーク炉
などで溶解し、凝固後粉砕して適当な粒度に調整
したガラス状フラツクスであり、後者は、原料粉
と合金元素を所定の配合に混合したものを、例え
ば、けい酸ソーダを粘結剤として造粒、焼成した
ものである。 ところで、近年溶接は、溶接能率を高めるため
に、高速化の傾向にあり、−20〜−60℃といつた
低温じん性の要求される海洋構造物の如き使用環
境の厳しい構造物の厚鋼板の溶接施工に際して適
用される多層盛溶接においても溶接速度の増大傾
向にある。このような高じん性を有する溶接金属
を得るためには、比較的塩基度の高い焼成型のフ
ラツクスが使用されることが多いけれども、製法
上単体酸化物あるいは、炭酸塩の混合結合体であ
るため一般に高融点であり、溶接速度が大きくな
るとフラツクスの溶融が不均一となり、ビード外
観を損ね、高速溶接には適さないと考えられてい
た。 (従来の技術) 例えば、特開昭58−41694号公報は、高速溶接
用焼成型フラツクスに関し、フラツクス組成の調
整により高速性を確保したものであるけれども、
塩基度が低いため十分な溶接金属の低温じん性を
得ることが難しい。 一方、特開昭59−150693号公報では、塩基度を
高めて、溶接金属中の酸素量を低減し、低温じん
性の確保を図る試みがあるが、溶接速度や、開先
内でのスラグ剥離性が十分に考慮されていないの
で、スラグ剥離性が十分でなかつたり、溶接速度
の増大に伴い、ポツクマークの発生などによるビ
ードの外観不良を起こしやすい。 (発明が解決しようとする問題点) 高じん性を持つ溶接金属を得るために溶接金属
中の酸素量を十分低減でき、多層盛溶接において
とくに問題となるスラグ剥離性が良好で、かつ溶
接速度の増大に伴うポツクマークなどのビード外
観不良のない溶接作業性の極めて優れたサブマー
ジアーク溶接用フラツクスを提供することがこの
発明の目的である。 (問題点を解決するための手段) この発明は、Al2O3:5〜20wt%(以下単に%
で記す)、MgO:25〜45%、並びにSiO2:15〜25
%、CaF2:10〜25%、BaO:0.5〜3%及び、
CaO:3〜15%を、Al2O3とMgOの合計量の、
SiO2量、CaF2量及び2BaO量の和に対する比Rに
つき、0.8〜1.6の範囲内で含有し、かつ、Na2O
及びK2Oのうちから選んだ少なくとも1種を0.5
%以上、2種の合計でも10%以内と、ボロン酸化
物をB2O3に換算して0.1〜1.5%と、を含むほか、
金属マンガン:1〜5%、金属シリコン:1〜5
%を、残余の不可避的不純物とともに含有して成
るサブマージアーク溶接用フラツクスである。 さて発明者らは、高速溶接条件の下でのビード
外観に及ぼすフラツクス組成の影響を、種々の組
成から成る焼成型フラツクスについて、スラグの
剥離性、酸素量などにあわせ、全面的に見直した
結果、まずフラツクスの融点を示す指標としてス
ラグの軟化点が有利に適合することを見出した。 ここにスラグの軟化点は、溶接後に溶融スラグ
の凝固殻を粉砕し、直径10mm、高さ10mmの円筒状
に圧粉成形し、これを電気炉で昇温加熱する間
に、この円筒状成形体が溶融して、原形の高さの
90%となる温度で定義することとして、この温度
が1250℃以上となる場合には、溶接速度60cm/
minを越えるような溶接を施して安定したビード
外観が得られ、一方で軟化点が1400℃を越える場
合に、ビードの形状が凸形となりやすいことの傾
向を認めた。 次にフラツクスに脱酸剤として添加する金属マ
ンガンおよび金属シリコンが、ポツクマークの発
生と深いかかわりを持つことも併せて見出され
た。 ところで、フラツクスの融点を調整する手段と
しては、MgOの適量が有効であるが、そのほか
フラツクスの成分組成において、とくにAlO3
MgOの合計量と、SiO2量、CaF2量及び2BaOの
和との比Rの値が、上記スラグの軟化点に対して
第1図のようによい相関を呈する。 第1図は、スラグの軟化点と、R値の関係を示
すグラフであり、R値の増加に従つてスラグの軟
化点が上昇することがわかる。 以上の知見がこの発明の端緒である。 (作用) この発明の目的に適合するサブマージアーク溶
接用フラツクスの成分組成の限定理由は次のとお
りである。 Al2O3は、スラグの軟化点および粘性の調整に
必要な成分であるが、5%未満では、その効果が
十分でなくビードの波目が荒くなり、一方20%を
越えて含有すると、スラグの剥離性が劣化するた
めに5〜20%とした。 MgOはスラグの軟化点および塩基度の調整、
スラグの剥離性の確保の上から必要な成分であ
る。MgOが25%未満では、開先内でのスラグ剥
離性が著しく劣化しビードの波目が荒くなりポツ
クマークが発生しやすくなる。一方45%を越えて
含有すると、ビード形状が凸形となつてビード幅
が狭くなり、融合不良、スラグ巻込みなどの欠陥
が生じやすくなるため、25〜45%とした。MgO
源としては、マグネシア・クリンカー(MgO)
の他、マグネサイト(MgCO3)、ドロマイト
(CaCO3・MgCO3)などがあり、後2者について
はMgOに検算した量で用いる。 SiO2はスラグ生成剤であつて塩基度および粘
性の調整に必要な成分であるが、15%未満では、
スラグの粘性が低下してビード形状が劣化する。
また25%を越えて含有すると、ビード端部でのス
ラグ剥離性が劣化するため、15〜25%とした。 CaF2は、スラグの塩基度および粘性を調整す
るのに必要な成分であるが、10%未満では塩基度
が低くなると共にスラグの流動性が不足しビード
幅が狭くなる。また、25%を越えて含有するとア
ークが不安定となり、溶接欠陥が生じやすくなる
ため、10〜25%とした。 BaOはスラグの軟化点を調整するとともにス
ラグ剥離性を改善するため必要な成分であるが、
0.5%未満では、その効果に乏しく、一方3%を
越えて含有するとスラグ融点が低くなりすぎてビ
ードの波目が荒くなりやすいため、0.5〜3%と
した。 CaOは、スラグの軟化点および塩基度の調整に
必要な成分であるが、3%未満では、凝固スラグ
に横割れがほとんど発生せず、スラグの剥離性を
悪くする。また15%を越える場合もスラグ剥離性
が劣化する。この場合のCaO源としては、硅灰
石、炭酸カルシウム、ドロマイトなどがあり、炭
酸カルシウムについてはCaOに換算した量を加え
る。 NaOおよびK2Oは、アークの安定性を高める
ために必要な成分であるが、0.5%未満ではその
効果に乏しく、一方10%を越えて含有するとスラ
グの流動性が高くなり過ぎビード外観が劣化し、
ポツクマークが発生しやすくなるため、1種又は
2種の合計量で0.5〜10%とした。 ボロン酸化物はビード形状を整え、スラグ剥離
性を確保するのに必要な成分であり、B2O3換算
で0.1%未満のときは、開先側壁とビードのなじ
みが悪く、スラグの剥離が劣化する。また、同じ
く1.5%を越えると、アンダーカツトが発生しや
すくなり、このためにスラグの剥離性が悪くなる
ため、0.1〜1.5%とした。 金属マンガンおよび金属シリコンは、脱酸剤と
して必要な成分であるとともに、ポツクマークの
発生を抑制するのに効果がある成分であり、各々
が1%未満では、その効果に乏しく、一方何れも
5%を越えると溶接金属のじん性を害するために
各々1〜5%とした。 以上の成分組成範囲において、とくにAl2O3
MgOの合計量と、SiO2量、CaF2量、2・BaO量
の和との比R値を0.8〜1.6の範囲とするのは、0.8
未満では溶融スラグの揺動が大きく、ビードの波
目が荒れるとともにポツクマークが発生し、また
R値が1.6を越える場合には、ビード形状が凸形
となり、スラグの剥離性が劣化する。第1図に示
した如く、R値を0.8〜1.6とすれば、スラグの軟
化点をほぼ、1250〜1400℃程度にすることが可能
であり、溶接速度の大きな場合にも良好なビード
を得ることができる。 この他、不可避的不純物として、炭酸ガス、
TiO2、FeO2などの金属酸化物、P、Sなどがあ
るが、溶接スラグの揺動が大きくなりビード外観
を悪くしたり、あるいは溶接金属のじん性を劣化
させるといつた不利があるため炭酸ガスについて
は15%以下、金属酸化物については3%以下、
P、Sについては0.1%以下とすることが望まし
い。 (実施例) 表−1に示す10種類の焼成型フラツクスを用い
て、板厚32mmのAPI 5LB鋼板(0.13%C、0.21%
Si、1.2%Mn、0.018%P、0.010%S、0.015%
Nb)を、第2図に示すレ形開先(開先角度a=
45゜、開先深さb=25mm)に仕上げて溶接を行つ
た。 溶接ワイヤとしては、4.0mm径のKW30T(0.07
%C、0.65%Si、1.30%Mn、0.08%Ti)を用い
た。
(Industrial application field) Regarding fluxes for submerged arc welding, we aim to improve the flux constituent system to obtain weld metals with excellent low-temperature toughness and good welding workability, especially in multi-electrode submerged arc welding. This is what I am trying to propose. Flux for submerged arc welding has roles such as stabilizing the arc, shielding around the arc, and supporting chemical metallurgy reactions, but it can be broadly divided into molten type and fired type depending on the manufacturing method. In other words, the former is a glassy flux made by mixing raw materials into a predetermined composition, melting it in an arc furnace, etc., solidifying and pulverizing it to an appropriate particle size, and the latter by mixing raw material powder and alloying elements into a predetermined composition. The mixture is granulated and fired using, for example, sodium silicate as a binder. By the way, in recent years, there has been a trend toward faster welding in order to increase welding efficiency, and welding has become more and more rapid in order to increase welding efficiency. There is also a tendency for welding speeds to increase in multi-layer welding, which is applied during welding operations. In order to obtain a weld metal with such high toughness, a calcined flux with relatively high basicity is often used, but due to the manufacturing process, it is difficult to obtain a weld metal with a single oxide or a mixed combination of carbonates. Therefore, it generally has a high melting point, and as the welding speed increases, the flux becomes unevenly melted, impairing the appearance of the bead, and was considered unsuitable for high-speed welding. (Prior Art) For example, Japanese Patent Application Laid-Open No. 58-41694 relates to a fired flux for high-speed welding, which ensures high-speed performance by adjusting the flux composition.
Due to the low basicity, it is difficult to obtain sufficient low-temperature toughness of the weld metal. On the other hand, in JP-A No. 59-150693, there is an attempt to increase the basicity and reduce the amount of oxygen in the weld metal to ensure low-temperature toughness, but the welding speed and slag in the groove Since the releasability is not sufficiently considered, the slag releasability is not sufficient, and as the welding speed increases, the appearance of the bead tends to be poor due to the occurrence of pockmarks. (Problems to be solved by the invention) The amount of oxygen in the weld metal can be sufficiently reduced to obtain a weld metal with high toughness, and the slag removal property, which is a particular problem in multi-layer welding, is good, and the welding speed is It is an object of the present invention to provide a flux for submerged arc welding that has excellent welding workability and is free from bead appearance defects such as pockmarks caused by an increase in welding flux. (Means for Solving the Problems) This invention provides Al 2 O 3 : 5 to 20 wt% (hereinafter simply %).
), MgO: 25-45%, and SiO 2 : 15-25
%, CaF2 : 10-25%, BaO: 0.5-3%, and
CaO: 3-15% of the total amount of Al 2 O 3 and MgO,
The ratio R to the sum of SiO 2 amount, CaF 2 amount and 2BaO amount is within the range of 0.8 to 1.6, and Na 2 O
and 0.5 of at least one selected from K 2 O
% or more, the total of the two types is within 10%, and boron oxide is 0.1 to 1.5% in terms of B 2 O 3 .
Metallic manganese: 1-5%, Metallic silicon: 1-5
%, along with remaining unavoidable impurities. The inventors have comprehensively reviewed the influence of flux composition on bead appearance under high-speed welding conditions for fired fluxes of various compositions, taking into account slag releasability, oxygen content, etc. First, they found that the softening point of slag was advantageously used as an index of the melting point of flux. Here, the softening point of slag is determined by crushing the solidified shell of molten slag after welding, compacting it into a cylindrical shape with a diameter of 10 mm and height, and heating it in an electric furnace. The body melts and returns to its original height.
Defining the temperature at 90%, if this temperature is 1250℃ or higher, the welding speed is 60cm/
It was found that a stable bead appearance was obtained by welding at a temperature exceeding 1,400°C, but on the other hand, when the softening point exceeded 1400°C, the bead shape tended to become convex. Next, it was also discovered that metallic manganese and metallic silicon, which are added to flux as deoxidizers, have a deep relationship with the occurrence of pockmarks. By the way, as a means to adjust the melting point of flux, an appropriate amount of MgO is effective, but in addition, in the component composition of flux, especially AlO 3 and
The value of the ratio R between the total amount of MgO and the sum of the amount of SiO 2 , CaF 2 and 2BaO exhibits a good correlation with the softening point of the slag as shown in FIG. 1. FIG. 1 is a graph showing the relationship between the softening point of slag and the R value, and it can be seen that the softening point of the slag increases as the R value increases. The above findings are the beginning of this invention. (Function) The reason for limiting the composition of the flux for submerged arc welding that meets the purpose of the present invention is as follows. Al 2 O 3 is a necessary component for adjusting the softening point and viscosity of slag, but if it is less than 5%, its effect will not be sufficient and the undulations of the bead will become rough, while if it is contained in excess of 20%, It was set at 5 to 20% because the peelability of the slag deteriorates. MgO adjusts the softening point and basicity of slag,
This is a necessary component to ensure the removability of the slag. If the MgO content is less than 25%, the slag releasability within the groove deteriorates significantly, and the bead becomes rough and pockmarks are likely to occur. On the other hand, if the content exceeds 45%, the bead shape becomes convex, the bead width becomes narrow, and defects such as poor fusion and slag inclusion are likely to occur, so the content was set at 25 to 45%. MgO
As a source, magnesia clinker (MgO)
In addition, there are magnesite (MgCO 3 ), dolomite (CaCO 3・MgCO 3 ), etc., and the latter two are used in amounts calculated based on MgO. SiO 2 is a slag forming agent and a necessary component for adjusting basicity and viscosity, but if it is less than 15%,
The slag viscosity decreases and the bead shape deteriorates.
Moreover, if the content exceeds 25%, the slag removability at the bead end deteriorates, so the content was set at 15 to 25%. CaF 2 is a necessary component for adjusting the basicity and viscosity of the slag, but if it is less than 10%, the basicity becomes low and the fluidity of the slag becomes insufficient, resulting in a narrow bead width. Further, if the content exceeds 25%, the arc becomes unstable and welding defects are likely to occur, so the content was set at 10 to 25%. BaO is a necessary component to adjust the softening point of slag and improve slag removability.
If the content is less than 0.5%, the effect will be poor, while if the content exceeds 3%, the slag melting point will become too low and the wavy texture of the bead will tend to become rough. CaO is a necessary component for adjusting the softening point and basicity of slag, but if it is less than 3%, almost no transverse cracks will occur in the solidified slag, which will worsen the peelability of the slag. Moreover, when it exceeds 15%, the slag removability deteriorates. CaO sources in this case include wollastonite, calcium carbonate, dolomite, etc., and the amount of calcium carbonate converted to CaO is added. NaO and K 2 O are necessary components to improve the stability of the arc, but if they are less than 0.5%, their effect will be poor, while if they exceed 10%, the fluidity of the slag will become too high and the appearance of the bead will deteriorate. deteriorate,
Since spot marks are likely to occur, the total amount of one or both types was set at 0.5 to 10%. Boron oxide is a necessary component to adjust the bead shape and ensure slag removability, and when it is less than 0.1% in terms of B 2 O 3 , the bead does not fit well with the groove sidewall, resulting in slag removal. to degrade. Similarly, if the content exceeds 1.5%, undercuts tend to occur, which impairs the slag releasability, so the content was set at 0.1 to 1.5%. Metallic manganese and metallic silicon are necessary components as deoxidizing agents, and are also effective in suppressing the occurrence of pockmarks.If each of them is less than 1%, the effect will be poor; on the other hand, if both are 5% If the content exceeds this amount, the toughness of the weld metal will be impaired, so each content was set at 1 to 5%. In the above component composition range, especially Al 2 O 3 and
Setting the ratio R value of the total amount of MgO to the sum of the amount of SiO 2 , CaF 2 , and 2・BaO in the range of 0.8 to 1.6 is 0.8
If the R value is less than 1.6, the molten slag will fluctuate greatly, and the undulations of the bead will become rough and pockmarks will occur.If the R value exceeds 1.6, the bead shape will become convex and the slag releasability will deteriorate. As shown in Figure 1, if the R value is set to 0.8 to 1.6, the softening point of the slag can be approximately 1250 to 1400℃, and a good bead can be obtained even at high welding speeds. be able to. In addition, unavoidable impurities include carbon dioxide gas,
There are metal oxides such as TiO 2 and FeO 2 , P, and S, but they have the disadvantage of causing large vibrations of the welding slag, worsening the appearance of the bead, or deteriorating the toughness of the weld metal. 15% or less for carbon dioxide gas, 3% or less for metal oxides,
It is desirable that P and S be 0.1% or less. (Example) Using the 10 types of sintered flux shown in Table 1, API 5LB steel plate (0.13% C, 0.21%
Si, 1.2%Mn, 0.018%P, 0.010%S, 0.015%
Nb) with the V-shaped groove shown in Figure 2 (groove angle a=
45°, groove depth b = 25 mm) and welding was performed. The welding wire is KW30T (0.07 mm diameter).
%C, 0.65%Si, 1.30%Mn, 0.08%Ti).

【表】【table】

【表】 この時の溶接条件を表−2に、溶接作業性およ
び溶接金属のじん性は表−3に示すとおりであ
る。
[Table] The welding conditions at this time are shown in Table 2, and the welding workability and the toughness of the weld metal are shown in Table 3.

【表】【table】

【表】 ○;良好 ×;不良
この発明によるフラツクス(A)〜(E)を用いた実施
例では、いずれにおいてもスラグ剥離性に優れた
溶接作業性の下に、ビード外観の良好な高じん性
溶接金属が得られた。 これに対し、成分組成範囲のはずれたフラツク
ス(F)〜(J)では、溶接作業性、ビード外観、溶接金
属のじん性の全てにわたつて良好な結果を同時に
満足することができなかつた。 すなわちフラツクス(F)では、溶接作業性、溶接
金属のじん性は、比較的良好ではあるが、R値が
適正範囲をはずれているためにポツクマークが発
生し、ビード外観が不良であつた。 フラツクス(G),(H)では、各々MgO、Al2O3
CaOなどが適正範囲にないため、スラグの剥離性
が悪い。 フラツクス(I)では、BaO、金属マンガンが適
正範囲にないため、ビードの波目が荒く、またポ
ツクマークが発生し、ビード外観が悪い。 フラツクス(J)では、SiO2、B2O3が適正範囲に
ないため、とくにスラグ剥離性が悪く溶接欠陥も
出やすかつた。 (発明の効果) この発明によれば、従来サブマージアーク溶接
用フラツクスにおいて、同時に満足することの困
難であつた良好な溶接作業性と溶接金属のじん性
確保を、高い溶接能率の下に容易に実現すること
ができる。
[Table] ○: Good ×: Bad In the examples using fluxes (A) to (E) according to the present invention, in addition to welding workability with excellent slag removability, high dust particles with good bead appearance were achieved. A weld metal was obtained. On the other hand, fluxes (F) to (J) outside the composition range were unable to simultaneously satisfy good results in all aspects of welding workability, bead appearance, and weld metal toughness. That is, with flux (F), the welding workability and the toughness of the weld metal were relatively good, but the R value was out of the appropriate range, so pockmarks were generated and the bead appearance was poor. For fluxes (G) and (H), MgO, Al 2 O 3 and
Slag peelability is poor because CaO and other substances are not within the appropriate range. With Flux (I), BaO and metallic manganese are not within the appropriate range, resulting in rough bead undulations and pockmarks, resulting in poor bead appearance. In Flux (J), since SiO 2 and B 2 O 3 were not within the appropriate range, slag removal was particularly poor and welding defects were likely to occur. (Effects of the Invention) According to the present invention, it is possible to easily achieve good welding workability and ensure weld metal toughness, which were difficult to simultaneously satisfy with conventional submerged arc welding fluxes, while maintaining high welding efficiency. It can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、スラグの軟化点とR値の関係を示す
グラフ、第2図は、実施例における鋼板の開先形
状を示す断面図である。
FIG. 1 is a graph showing the relationship between the softening point of slag and the R value, and FIG. 2 is a cross-sectional view showing the groove shape of a steel plate in an example.

Claims (1)

【特許請求の範囲】 1 Al2O3:5〜20wt%、 MgO:25〜45wt%並びに、 SiO2:15〜25wt%、 CaF2:10〜25wt%、 BaO:0.5〜3wt%及び、 CaO:3〜15wt% を、Al2O3とMgOの合計量の、SiO2量、CaF2量、
及び2BaO量の和に対する比Rにつき、0.8〜1.6
の範囲内で含有し、かつ Na2O及びK2Oのうちから選んだ少なくとも1
種を0.5wt%以上、2種の合計でも10wt%以内
と、 ボロン酸化物をB2O3に検算して0.1〜1.5wt%
と、 を含むほか、 金属マンガン:1〜5wt%、 金属シリコン:1.5wt% を、残余の不可避的不純物とともに含有して成る
サブマージアーク溶接用フラツクス。
[Claims] 1 Al 2 O 3 : 5 to 20 wt%, MgO: 25 to 45 wt%, SiO 2 : 15 to 25 wt%, CaF 2 : 10 to 25 wt%, BaO: 0.5 to 3 wt%, and CaO :3~15wt% of the total amount of Al 2 O 3 and MgO, amount of SiO 2 , amount of CaF 2 ,
and the ratio R to the sum of the amount of 2BaO, 0.8 to 1.6
and at least one selected from Na 2 O and K 2 O.
0.5wt% or more of seeds, 10wt% or less for the total of two species, and 0.1 to 1.5wt% of boron oxide calculated as B 2 O 3
A flux for submerged arc welding, which contains 1 to 5 wt% of metallic manganese and 1.5 wt% of metallic silicon, together with remaining unavoidable impurities.
JP29185285A 1985-12-26 1985-12-26 Flux for submerged arc welding Granted JPS62151292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29185285A JPS62151292A (en) 1985-12-26 1985-12-26 Flux for submerged arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29185285A JPS62151292A (en) 1985-12-26 1985-12-26 Flux for submerged arc welding

Publications (2)

Publication Number Publication Date
JPS62151292A JPS62151292A (en) 1987-07-06
JPH0451280B2 true JPH0451280B2 (en) 1992-08-18

Family

ID=17774253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29185285A Granted JPS62151292A (en) 1985-12-26 1985-12-26 Flux for submerged arc welding

Country Status (1)

Country Link
JP (1) JPS62151292A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3484143B2 (en) 1999-12-02 2004-01-06 株式会社タイムドメイン Speaker device
CN100374238C (en) * 2004-12-17 2008-03-12 中国船舶重工集团公司第七二五研究所 High alkalinity, low activity, superlow hydrogen sintering type solder

Also Published As

Publication number Publication date
JPS62151292A (en) 1987-07-06

Similar Documents

Publication Publication Date Title
KR100774156B1 (en) Sintered flux for submerged arc welding
JP3392347B2 (en) Sintered flux for submerged arc welding and method for producing the same
KR100706026B1 (en) High speed submerged arc welding flux
JP4297880B2 (en) Bond flux for submerged arc welding
JPH0130597B2 (en)
JP3433681B2 (en) Sintered flux for submerged arc welding and method for producing the same
JPH0451280B2 (en)
KR960000412B1 (en) A welding flux for submerged arc welding
KR100400412B1 (en) Server-Merged Arc Welding Flux Composition and Manufacturing Method
KR100356371B1 (en) Flux for electoslag welding
TWI760843B (en) Submerged arc welding flux, submerged arc welding method, and manufacturing method of submerged arc welding flux
JP3577995B2 (en) Manufacturing method of fired flux for submerged arc welding
JP2001334393A (en) Flux for cladding by submerged arc welding
JPS61180694A (en) Fused flux for submerged arc welding
KR100340640B1 (en) Compound of flux for submerged arc welding
JPH0513040B2 (en)
CN114340838B (en) Submerged arc welding flux, submerged arc welding method, and method for producing submerged arc welding flux
JPS605396B2 (en) Melting type flux for submerged mark welding
JP3551082B2 (en) Fired flux for submerged arc welding
JPH0985488A (en) Fused flux for submerged arc welding
KR100462037B1 (en) Flux for using butt submerged arc welding
JP2001170795A (en) Sintered flux for submerged arc welding and method for manufacturing the same and submerged arc fillet welding method
JPS6250235B2 (en)
JP2667636B2 (en) Molten flux for submerged arc welding
KR100340641B1 (en) Submerged arc welding flux containing TiO2 for Heat resistant steel