JPH0451260B2 - - Google Patents

Info

Publication number
JPH0451260B2
JPH0451260B2 JP58140538A JP14053883A JPH0451260B2 JP H0451260 B2 JPH0451260 B2 JP H0451260B2 JP 58140538 A JP58140538 A JP 58140538A JP 14053883 A JP14053883 A JP 14053883A JP H0451260 B2 JPH0451260 B2 JP H0451260B2
Authority
JP
Japan
Prior art keywords
control valve
speed
injection
piston
flow control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58140538A
Other languages
Japanese (ja)
Other versions
JPS6033863A (en
Inventor
Toyoaki Ueno
Takashi Mihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP14053883A priority Critical patent/JPS6033863A/en
Publication of JPS6033863A publication Critical patent/JPS6033863A/en
Publication of JPH0451260B2 publication Critical patent/JPH0451260B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/32Controlling equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はダイカストマシンや射出成形機等の射
出成形装置におけるシヨツトプランジヤのプラン
ジヤチツプを前進させる射出シリンダのピストン
速度を制御する装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a device for controlling the piston speed of an injection cylinder that advances a plunger tip of a shot plunger in an injection molding device such as a die casting machine or an injection molding machine. be.

[従来の技術] 一般にダイカストマシン等の射出成形において
は、金型におけるキヤビテイの形状、容積、金型
の温度等に応じ、溶湯の射出速度、射出圧力等が
不適当であるとキヤビテイ内への湯回りが悪く、
欠落が生じる場合や、射出成形品内に巣が発生す
る場合、又、寸法精度や製品強度が低下する場合
等、種々の弊害が生じる。
[Prior Art] In general, in injection molding using die casting machines, etc., depending on the shape and volume of the cavity in the mold, the temperature of the mold, etc., if the injection speed, injection pressure, etc. of the molten metal are inappropriate, the injection molding into the cavity may occur. The hot water supply is poor.
Various problems occur, such as chipping, cavities in the injection molded product, and reductions in dimensional accuracy and product strength.

これらの弊害を防止する為、従来より、射出シ
リンダのピストン後室への作動油流入回路へ流量
制御弁を設けるメータイン回路、又はピストン前
室からの作動油流出回路に流量制御弁を設けるメ
ータアウト回路等により射出シリンダのピストン
速度、即ち溶湯の射出速度制御が行なわれてい
る。
In order to prevent these adverse effects, conventionally, a meter-in circuit is used in which a flow control valve is installed in the hydraulic oil inflow circuit to the piston rear chamber of the injection cylinder, or a meter-out circuit is installed in which a flow control valve is installed in the hydraulic oil outflow circuit from the piston front chamber. The piston speed of the injection cylinder, that is, the injection speed of the molten metal is controlled by a circuit or the like.

そして、例えばメータイン回路における基本回
路は、第1図に示す如く、油圧ポンプやアキユム
レータ等の油圧源11から切換弁12を通り、流
量制御弁14を介して射出シリンダ20のピスト
ン後室22に至る流入回路16と、射出シリンダ
20のピストン前室23から切換弁12を通り油
槽15に戻る流出回路17とを有し、流量制御弁
14にて前記ピストン後室22への作動油の流入
量を制御することによりピストン21の前進速
度、即ち射出スリーブ28内のプランジヤチツプ
29の前進速度を制御し、以て溶湯の射出速度を
定めるものである。
For example, the basic circuit in the meter-in circuit is as shown in FIG. It has an inflow circuit 16 and an outflow circuit 17 that returns from the piston front chamber 23 of the injection cylinder 20 to the oil tank 15 through the switching valve 12, and the flow rate control valve 14 controls the amount of hydraulic oil flowing into the piston rear chamber 22. By controlling the piston 21, the forward speed of the piston 21, that is, the forward speed of the plunger tip 29 within the injection sleeve 28 is controlled, thereby determining the injection speed of the molten metal.

又、第2図に示す如く、射出シリンダ20のピ
ストン前室23からピストン後室22に通じるラ
ンアランド回路18を構成するメータイン回路も
ある。
Further, as shown in FIG. 2, there is also a meter-in circuit that constitutes a run-around circuit 18 that communicates from the piston front chamber 23 of the injection cylinder 20 to the piston rear chamber 22.

ところで、本発明の発明者らは、溶湯の射出速
度、即ち射出シリンダ20への作動油の流入量又
は射出シリンダからの作動油の流出量を制御する
従来の流量制御弁14に代るものとして、パルス
モータ駆動による高速応答性を具えた流量制御弁
30を最近開発(実開昭58−102.878号)した。
By the way, the inventors of the present invention have proposed a method to replace the conventional flow control valve 14 that controls the injection speed of molten metal, that is, the amount of hydraulic oil flowing into or out of the injection cylinder 20. Recently, we developed a flow control valve 30 with high-speed response driven by a pulse motor (Utility Model Application No. 102.878/1987).

この流量制御弁30は、第3図に示す如く軸線
方向からの作動油流入口31と、軸線に対し直角
方向への作動油流出口32とを有するバルブボデ
イ33内に、軸線方向へ移動する弁スプール34
が設けられている。更に弁スプール34の後部に
は一体的にナツト軸35が連続され、該ナツト軸
35の内部軸心部にねじ軸36がボールねじ37
によつて螺合されている。このねじ軸36は回転
量を制御可能なパルスモータ41の回転軸にカツ
プリング38をもつて接続されることにより回転
する。
As shown in FIG. 3, this flow rate control valve 30 is a valve that moves in the axial direction and is housed in a valve body 33 having a hydraulic oil inlet 31 from the axial direction and a hydraulic oil outlet 32 perpendicular to the axis. Spool 34
is provided. Furthermore, a nut shaft 35 is integrally connected to the rear part of the valve spool 34, and a threaded shaft 36 is connected to a ball screw 37 at the inner shaft center of the nut shaft 35.
are screwed together. This screw shaft 36 rotates by being connected via a coupling 38 to the rotation shaft of a pulse motor 41 whose rotation amount can be controlled.

尚、45はナツト軸35の回転を防止するキー
であり、ナツト軸35の表面の一部には永久磁石
46を固定し、この永久磁石46と対向するケー
シング47の一部には例えばゼロクロスセンサと
呼ばれる磁気作用による位置検出器48を取り付
けている。該位置検出器48は永久磁石46の移
動に感応する近接スイツチで構成し、ナツト軸3
5や弁スプール34の軸線方向の移動距離を正確
に検知し、制御にフイードバツクできる様にして
いる。又、弁スプール34の零位置を永久磁石4
6と位置検出器48との作用によつて電気的に検
知し、制御装置を介してパルスモータ41をその
位置で正確に止めておくことができるものであ
り、この位置検出器48は精度が0.01mmのものが
用いられている。
Note that 45 is a key that prevents rotation of the nut shaft 35, and a permanent magnet 46 is fixed to a part of the surface of the nut shaft 35, and a zero cross sensor is attached to a part of the casing 47 facing the permanent magnet 46, for example. A position detector 48 based on magnetic action called . The position detector 48 is composed of a proximity switch that is sensitive to the movement of the permanent magnet 46, and is connected to the nut shaft 3.
5 and the valve spool 34 in the axial direction can be accurately detected and feedback can be provided to the control. Also, the zero position of the valve spool 34 is set to the permanent magnet 4.
6 and the position detector 48, the pulse motor 41 can be stopped accurately at that position via the control device, and the position detector 48 has a high accuracy. 0.01mm is used.

この流量制御弁30はパルスモータ41の回転
に応じてボールねじ36、ナツト軸35を介して
弁スプール34が軸線方向へ前後進して弁の開閉
と開度とを瞬時に調整し作動油の流量制御を行な
う。
In this flow rate control valve 30, a valve spool 34 moves back and forth in the axial direction via a ball screw 36 and a nut shaft 35 in accordance with the rotation of a pulse motor 41, and instantaneously adjusts the opening/closing and opening degree of the valve. Perform flow control.

そしてこの流量制御弁30は、前述の様に軸線
方向の端面部に作動油流入口31を、側面に作動
油流出口32を備えたシリンダ状のバルブボデイ
33内で、弁スプール34をパルスモータ41の
作動により軸線方向に駆動して流量制御を行なう
ものであつて、作動油による弁スプール34の軸
線方向推力を弁スプール34に開き量及び移動速
度の増加に応じて急激に低下させることにより流
量の高速切換に必要な駆動力を軽減させ、流量制
御弁30による作動油の流量高速切換性能を一層
向上させ、又、駆動力の軽減が行なわれている。
As described above, this flow control valve 30 has a valve spool 34 connected to a pulse motor 41 within a cylindrical valve body 33 that has a hydraulic oil inlet 31 on the end surface in the axial direction and a hydraulic oil outlet 32 on the side surface. The valve spool 34 is driven in the axial direction by the operation of the valve spool 34 to control the flow rate, and the flow rate is controlled by rapidly reducing the axial thrust of the valve spool 34 caused by the hydraulic oil in accordance with the increase in the opening amount and movement speed of the valve spool 34. The driving force required for high-speed switching of the hydraulic oil is further improved, and the driving force is also reduced.

従つて、この流量制御弁30では制御装置から
の指令信号により、パルスモータ41の回転量、
即ち回転角度により弁スプール34の開き量が決
まり、射出シリンダ20への作動油の流量が制御
され、又パルスモータ41の回転速度の緩急によ
り流量制御弁30の開度変化の加減速特性が決ま
り、作動油流量の変化率、即ち、射出シリンダ2
0における射出速度の立上り状態が決まる。そし
てこの様な構造と作用を有する流量制御弁30は
射出速度変更の指令を受けて弁スプール34ガ開
き始めるまでの時間遅れを1ミリ秒以下に押える
ことができ、通常の流量制御弁に比較し、応答性
が極めて良好であり、又、弁開閉等の作動性や操
作精度が極めて高くなつた。
Therefore, in this flow rate control valve 30, the amount of rotation of the pulse motor 41 is controlled by the command signal from the control device.
That is, the rotation angle determines the opening amount of the valve spool 34, which controls the flow rate of hydraulic oil to the injection cylinder 20, and the speed of rotation of the pulse motor 41 determines the acceleration/deceleration characteristics of the change in opening of the flow control valve 30. , the rate of change of the hydraulic oil flow rate, i.e., injection cylinder 2
The rising state of the injection speed at 0 is determined. The flow control valve 30 having such a structure and operation can suppress the time delay until the valve spool 34 starts opening upon receiving a command to change the injection speed to less than 1 millisecond, which is faster than a normal flow control valve. However, the responsiveness was extremely good, and the operability and operational accuracy of valve opening and closing were extremely high.

この様に極めて高速且つ正確に作動油の制御が
可能であり、又、作動油の流量制御に際し、その
変化率をも制御し得る流量制御弁30を用いるこ
とにより溶湯の射出速度を一層正確に制御し得る
こととなり、第4図に実線で示す様に溶湯の射出
速度の変化を細かく制御し得ることとなつた。
In this way, it is possible to control the hydraulic oil extremely quickly and accurately, and by using the flow control valve 30 that can also control the rate of change when controlling the flow rate of the hydraulic oil, the injection speed of the molten metal can be controlled even more accurately. As shown by the solid line in FIG. 4, it became possible to finely control changes in the injection speed of the molten metal.

この様な高速応答性を有する流量制御弁30に
て制御される溶湯の射出速度は、前半を低速射出
速度区間T1とし、射出スリーブ内に充填した溶
湯を低速射出速度V1でキヤビテイへ押出す区間
であり、該低速射出区間T1の初期T5は徐々に低
速射出速度V1へ増速することにより射出スリー
ブ内に充填した溶湯が射出スリーブの溶湯注入口
から射出スリーブ外へ逆流噴出することを防止す
る。そして、低速射出区間T1の終期T6において
は射出速度V1を一度減速し、キヤビテイ入口に
溶湯が到達したとき、狭い間隙である湯道から比
較的広い空間であるキヤビテイ内へ溶湯が噴出
し、キヤビテイ内のガス(空気)と溶湯とが混合
することを防止し、製品中に巣を発生させる虞れ
を無くす。
The injection speed of the molten metal controlled by the flow rate control valve 30 having such high-speed response has a low injection speed section T1 in the first half, and the molten metal filled in the injection sleeve is pushed into the cavity at a low injection speed V1 . At the initial stage T5 of the low-speed injection section T1 , the speed is gradually increased to the low injection speed V1 , so that the molten metal filled in the injection sleeve is jetted out of the injection sleeve from the molten metal inlet of the injection sleeve. prevent Then, at the final stage T6 of the low-speed injection section T1 , the injection speed V1 is once decelerated, and when the molten metal reaches the cavity entrance, the molten metal is ejected from the narrow gap into the cavity, which is a relatively wide space. This prevents the gas (air) in the cavity from mixing with the molten metal, eliminating the risk of forming cavities in the product.

そして、溶湯がキヤビテイ入口に到達し、溶湯
がキヤビテイに僅かに流入した後はキヤビテイ充
填区間T2として高速射出速度V2で一気に又は段
階的に増速し、溶湯をキヤビテイ内に充填させ、
製品の欠落及び寸法精度の低下を防止する。尚、
充填区間T2の射出完了時t0において、キヤビテイ
は溶湯で充満され、射出速度が一気に零となり、
この時のシリンダ圧により溶湯はキヤビテイの
隅々まで完全に充填される。そしてキヤビテイの
大きさ又は形状に応じて最終射出速度V3を高速
射出速度V2よりも低く押え、以て射出完了時t0
衝撃圧を小さくして、射出成形品が薄物である場
合等には前記シリンダ圧により金型の合せ面に溶
湯が流れ込むことによる製品のバリ吹きを防止す
ることがある。
After the molten metal reaches the cavity inlet and slightly flows into the cavity, the injection speed is increased all at once or in stages at a high-speed injection speed V 2 as a cavity filling section T 2 to fill the molten metal into the cavity.
Prevents missing products and loss of dimensional accuracy. still,
At the time t 0 when the injection of the filling section T 2 is completed, the cavity is filled with molten metal, and the injection speed suddenly drops to zero.
The cylinder pressure at this time completely fills every corner of the cavity with the molten metal. Then, depending on the size or shape of the cavity, the final injection speed V 3 is kept lower than the high-speed injection speed V 2 , thereby reducing the impact pressure at t 0 at the completion of injection, such as when the injection molded product is thin. Another method is to prevent burrs from blowing on the product due to the molten metal flowing into the mating surface of the mold due to the cylinder pressure.

[発明が解決しようとする課題] ところで、上記溶湯の全射出時間は一般に数秒
と短く、特に射出速度を変化させる立上り時間及
び立下り時間は百分の数秒乃至百分の数十秒と極
めて短いものである。
[Problems to be Solved by the Invention] Incidentally, the total injection time of the molten metal is generally as short as several seconds, and in particular, the rise time and fall time that change the injection speed are extremely short, ranging from several hundredths of a second to several tens of hundredths of a second. It is something.

従つて、射出速度の増速又は減速は極めて応答
が早く、且つ、正確な速度制御が要求されること
になる。
Therefore, increasing or decreasing the injection speed requires extremely quick response and accurate speed control.

しかるに、前述のメータイン回路を用いて溶湯
の射出速度を制御すると、第4図に破線で示す様
に立下りS1,S2において時間遅れが生ずる特性が
現われることになる。
However, when the above-mentioned meter-in circuit is used to control the injection speed of the molten metal, a characteristic occurs in which a time delay occurs at the falling edges S 1 and S 2 as shown by the broken line in FIG.

これは、ピストン21、シリンダロツド26等
の機械的可動部分及び作動油の運動エネルギーに
よる慣性が大きく、又、前述の如く立下り時間
S1,S2が極めて短い為に減速が所定通り行なわれ
ない欠点であり、射出成形品の品質を低下させる
ものである。
This is due to the large inertia due to the kinetic energy of the mechanically moving parts such as the piston 21 and cylinder rod 26 and the hydraulic oil, and also because of the falling time as described above.
This is a drawback in that S 1 and S 2 are extremely short, so deceleration is not performed as specified, which deteriorates the quality of the injection molded product.

[課題を解決するための手段] 本発明においては、射出成形装置の射出シリン
ダ等のピストン速度制御装置において、ピストン
後室への作動油流入回路に低速射出速度及び高速
射出速度を調整決定する高速応答性の第1流量制
御弁を設けるとともに、ピストン前室からの作動
油流出回路中にも高速応答性を有する第2流量制
御弁を設け、かつ、前記第1流量制御弁の開度を
小さくした時は第2流量制御弁の開度を小さく
し、第1流量制御弁の開度を大きくした時は第2
流量制御弁の開度を大きくするように、第1流量
制御弁の開度に比例させて第2流量制御弁の開度
を変化させる制御弁制御装置を設けた。
[Means for Solving the Problems] In the present invention, in a piston speed control device for an injection cylinder or the like of an injection molding device, a high-speed injection speed control device for adjusting and determining a low-speed injection speed and a high-speed injection speed is provided in a hydraulic oil inflow circuit to a piston rear chamber. In addition to providing a responsive first flow control valve, a second flow control valve having high-speed responsiveness is also provided in the hydraulic oil outflow circuit from the piston front chamber, and the opening degree of the first flow control valve is reduced. When the opening degree of the second flow control valve is decreased, and when the opening degree of the first flow control valve is increased, the opening degree of the second flow control valve is decreased.
A control valve control device is provided that changes the opening degree of the second flow control valve in proportion to the opening degree of the first flow control valve so as to increase the opening degree of the flow control valve.

[作 用] 本発明はピストン後室への作動油流入回路に高
速応答性を有する第1流量制御弁を設ける故、第
1流量制御弁により低速射出速度や高速射出速
度、及び射出速度の加速や減速を制御することが
できる。
[Function] Since the present invention provides the first flow control valve with high-speed response in the hydraulic oil inflow circuit to the piston rear chamber, the first flow control valve can control the low injection speed, the high injection speed, and the acceleration of the injection speed. and deceleration can be controlled.

又、ピストン後室からの作動油流出回路にも高
速応答性を有する第2流量制御弁を設けている
故、ピストン前室からの作動油の排出量を制御す
ることができ、又、第2流量制御弁の開度を第1
流量制御弁の開度に比例させる制御弁制御装置を
設けている故、第1流量制御弁の開度を大きくし
てピストンの前進速度を増加させるときは第2流
量制御弁の開度も大きくしてピストン前室からの
作動油の流出抵抗を小さくし、以て増速を容易と
し、第1流量制御弁の開度を小さくしてピストン
の前進速度を低下させるときは第2流量制御弁の
開度も小さくしてピストン前室からの作動油の流
出抵抗を大きくし、以て減速を確実且つ迅速に行
なわせることができる。
Furthermore, since the hydraulic oil outflow circuit from the piston rear chamber is also provided with a second flow control valve having high-speed response, it is possible to control the amount of hydraulic oil discharged from the piston front chamber. The opening degree of the flow control valve is
Since a control valve control device is provided that is proportional to the opening of the flow control valve, when the opening of the first flow control valve is increased to increase the forward speed of the piston, the opening of the second flow control valve is also increased. When reducing the opening of the first flow control valve to reduce the forward speed of the piston, the second flow control valve is used. The degree of opening of the piston is also reduced to increase resistance to the flow of hydraulic oil from the front chamber of the piston, thereby making it possible to perform deceleration reliably and quickly.

[実施例] 本発明の実施例は、第5図及び第6図に示す如
く、ピストン後室22への作動油流入回路16へ
高速応答性を有する第1流量制御弁30を設ける
と共に、ピストン前室からの作動油流出回路17
にも同様の第2流量制御弁50を設け、該第2流
量制御弁50の開度を第1流量制御弁30の開度
に対応させて変化させることにより溶湯の射出速
度を制御することとした射出成形装置のピストン
速度制御装置である。
[Embodiment] As shown in FIGS. 5 and 6, in an embodiment of the present invention, a first flow control valve 30 having high-speed response is provided in the hydraulic oil inflow circuit 16 to the piston rear chamber 22, and the piston Hydraulic oil outflow circuit 17 from the front chamber
A similar second flow control valve 50 is provided in the second flow control valve 50, and the opening degree of the second flow control valve 50 is changed in accordance with the opening degree of the first flow control valve 30, thereby controlling the injection speed of the molten metal. This is a piston speed control device for an injection molding machine.

この様に流出回路17に第2流量制御弁50を
設けることは、本発明者が射出速度と製品の品質
との関係を詳しく測定調査した結果、減速時の時
間遅れが高品質の維持を困難とすることを発見
し、この時間遅れは前述の如く機械的可動部分及
び作動油の慣性が大きく、シリンダロツド16の
負荷等の外力、摺動部の摩擦力、作動油の流出抵
抗によるピストン21のシリンダ前面25に加わ
る流体圧力等により前記慣性が打ち消される為の
所要時間に基く時間遅れであることを解析し、減
速を極めて短時間で可能とする為である。
Providing the second flow control valve 50 in the outflow circuit 17 in this way has been found by the present inventor to be difficult to maintain high quality due to the time delay during deceleration, as a result of detailed measurement and investigation of the relationship between injection speed and product quality. As mentioned above, this time delay is due to the large inertia of the mechanically moving parts and the hydraulic oil, and the piston 21 is caused by external forces such as the load on the cylinder rod 16, frictional force of the sliding part, and resistance to outflow of the hydraulic oil. This is to analyze the fact that the time delay is based on the time required for the inertia to be canceled out by the fluid pressure applied to the cylinder front surface 25, etc., and to enable deceleration in an extremely short time.

即ち、第1図に示したメータイン回路の要部の
みを第7図の如く示すと、流量制御弁14にて単
位時間における作動油の流入量が制限され、この
作動油のピストン後室22への流入量に応じてピ
ストン21及びシリンダロツド26、ひいてはプ
ランジヤチツプ29が前進する。
That is, if only the essential parts of the meter-in circuit shown in FIG. 1 are shown in FIG. 7, the flow rate control valve 14 limits the amount of hydraulic oil flowing into the piston rear chamber 22 per unit time. The piston 21, the cylinder rod 26, and eventually the plunger tip 29 move forward in accordance with the amount of inflow.

このとき、プランジヤ29によりキヤビテイに
射出される溶湯等の抵抗によりシリンダロツド2
6に負荷F1が加わり、又ピストン21等の摺動
部の摩擦力F2及びピストン21が前進すること
に伴いピストン前室23の作動油を排出する為に
作動油からピストン21が受ける反力F3が生じ、
これらの力F1,F2,F3がピストン21の前進を
阻害する。
At this time, due to the resistance of the molten metal etc. injected into the cavity by the plunger 29, the cylinder rod 2
6 is applied with a load F1 , and the frictional force F2 of the sliding parts such as the piston 21 and the reaction that the piston 21 receives from the hydraulic oil to discharge the hydraulic oil in the piston front chamber 23 as the piston 21 moves forward. A force F 3 arises,
These forces F 1 , F 2 , and F 3 inhibit the piston 21 from moving forward.

しかし、溶湯等の抵抗による負荷F1は、射出
速度の増速時には大きな負荷となつても射出速度
を減速する場合には大きな負荷となり得ず、摺動
部の摩擦力F2も極めて小さく、又、ピストン2
1が作動油から受ける反力F3も通常は小さな値
である。この為、可動部分及び作動油の慣性が打
ち消されるのに時間を要し、第4図破線の如く立
下りS1,S2即ち、射出速度の減速時に時間遅れが
生じ、射出成形品の品質低下を生じさせる。
However, although the load F 1 due to the resistance of the molten metal is large when the injection speed is increased, it cannot be a large load when the injection speed is decelerated, and the frictional force F 2 on the sliding part is also extremely small. Also, piston 2
The reaction force F 3 that 1 receives from the hydraulic oil is also usually a small value. For this reason, it takes time for the inertia of the moving parts and hydraulic oil to be canceled out, and as shown by the broken line in Figure 4 , there is a time delay when the injection speed slows down, resulting in a time lag when the injection speed decreases , and the quality of the injection molded product is affected. cause a decline.

又、ランアランド回路18を有するメータイン
回路である第2図の要部のみを示す第8図におい
ても、シリンダロツド26に加わる負荷F1摺動
部の摩擦力F2及び作動油がピストン前室23か
らピストン後室22へ移動する際にピストン21
が作動油から受ける反力F3は、前記第7図に示
した基本的メータイン回路の場合と同様に小さ
く、射出速度の減速時に時間遅れが生じる。
Also, in FIG. 8, which shows only the main part of FIG. 2, which is a meter-in circuit having a run-around circuit 18, the load F1 applied to the cylinder rod 26, the frictional force F2 of the sliding part, and the hydraulic oil are transferred to the piston front chamber 23. When moving from the piston to the rear chamber 22, the piston 21
The reaction force F 3 received from the hydraulic oil is small as in the case of the basic meter-in circuit shown in FIG. 7, and a time delay occurs when the injection speed is decelerated.

尚、ランアランド回路18を有するシリンダ2
0では、ピストン後面24の面積がピストン前面
25の面積にピストンロツド26の断面積を加え
た面積に等しい故、ピストン後面24にはピスト
ンロツド26の断面積に作動油の圧力P2を乗じ
た力が加わつてピストンロツド26を前進させ、
この前進距離にピストンロツドの断面積を乗じた
容積に等しい量の作動油が流量制御弁14を通じ
ピストン後室22に供給されている。
Incidentally, the cylinder 2 having the run-a-land circuit 18
0, the area of the piston rear surface 24 is equal to the area of the piston front surface 25 plus the cross-sectional area of the piston rod 26, so a force equal to the cross-sectional area of the piston rod 26 multiplied by the hydraulic oil pressure P2 is applied to the piston rear surface 24. and move the piston rod 26 forward,
An amount of hydraulic fluid equal to the volume obtained by multiplying this advance distance by the cross-sectional area of the piston rod is supplied to the piston rear chamber 22 through the flow control valve 14.

この様に、従来のメータイン回路では急激な減
速に対し時間遅れが生じる故、本発明においては
ピストン前室23からの流出回路に第2流量制御
弁50を設け、ピストン21の前進に伴いピスト
ン前室23から排出される作動油の流出に抵抗を
与え、ピストン21が作動油から受ける反力F3
を適宜大きくし、減速時の制動として利用するこ
とにより急減速を可能とした。
In this way, in the conventional meter-in circuit, there is a time delay in response to rapid deceleration, so in the present invention, the second flow control valve 50 is provided in the outflow circuit from the piston front chamber 23, and as the piston 21 moves forward, The reaction force F 3 that the piston 21 receives from the hydraulic oil provides resistance to the outflow of the hydraulic oil discharged from the chamber 23.
By increasing the value appropriately and using it as a brake during deceleration, rapid deceleration was made possible.

本実施例は、上記の如くピストン後室22への
流入回路16へ第1流量制御弁30を設けると共
に、第1流量制御弁30の開閉に連動する第2流
量制御弁50をピストン前室23からの流出回路
17に設ける射出速度の制御装置であり、流入回
路16に第1流量制御弁30を設ける故、該流量
制御弁30にてピストン後室22への作動油の流
入量が制御されると共に、高速射出速度V2で射
出する充填区間T2のピストン後室における油圧
P2も第11図に示す如く油圧源11における油
圧P1よりも低くなる。
In this embodiment, as described above, the first flow control valve 30 is provided in the inflow circuit 16 to the piston rear chamber 22, and the second flow control valve 50, which is linked to the opening and closing of the first flow control valve 30, is provided in the piston front chamber 22. This is an injection speed control device provided in the outflow circuit 17 from the piston, and since the first flow control valve 30 is provided in the inflow circuit 16, the amount of hydraulic oil flowing into the piston rear chamber 22 is controlled by the flow control valve 30. At the same time, the hydraulic pressure in the rear chamber of the piston in the filling section T 2 injected at a high injection speed V 2
P 2 also becomes lower than the oil pressure P 1 in the oil pressure source 11, as shown in FIG.

他方、シリンダ20の速度制御において、前述
のメータイン回路と並び従来から多用されている
メータアウト回路では、第第9図、第10図に示
す如くピストン後室22には油圧源11の圧力
P1を直接に加え、ピストン前室23から排出さ
れる油量を制御することによりピストン21の前
進速度を制御する故、第12図に示す如く低速射
出速度区間T1及び高速射出速度で射出する充填
区間T2においてもピストン後室22における油
圧は油圧源11の油圧P1に等しくなる。この為、
射出完了時t0における衝撃圧力P3が加わると、短
時間ではあつても大きな異常高圧P5が生じるこ
とになる。
On the other hand, in the speed control of the cylinder 20, in the meter-out circuit, which has been widely used in the past along with the above-mentioned meter-in circuit, the pressure of the hydraulic source 11 is applied to the piston rear chamber 22 as shown in FIGS. 9 and 10.
Since the forward speed of the piston 21 is controlled by directly applying P 1 and controlling the amount of oil discharged from the piston front chamber 23, injection is performed at a low injection speed section T 1 and a high injection speed as shown in FIG. The oil pressure in the piston rear chamber 22 also becomes equal to the oil pressure P 1 of the oil pressure source 11 in the filling period T 2 . For this reason,
When the impact pressure P 3 at the time of completion of injection t 0 is applied, a large abnormally high pressure P 5 is generated even for a short period of time.

この様なメータアウト回路に対し、本実施例に
係る回路を有する装置では、前述の如く充填区間
T2におけるピストン後室22の油圧P2は油圧源
P1よりも低い故、衝撃圧力P3が加わつた場合で
あつても異常高圧のピーク値は低く油圧回路系に
悪影響を与える虞れが無い利点を有する。
In contrast to such a meter-out circuit, in the device having the circuit according to this embodiment, the filling interval is
The oil pressure P 2 in the piston rear chamber 22 at T 2 is the oil pressure source
Since it is lower than P 1 , even when impact pressure P 3 is applied, the peak value of abnormally high pressure is low and has the advantage that there is no risk of adversely affecting the hydraulic circuit system.

尚、本実施例に用いる第1流量制御弁30の開
度変化と第2流量制御弁50の開度変化とを等し
くする場合には、第2流量制御弁50は第1流量
制御弁30と同一サイズにして同一構造の高速応
答性を備えた流量制御弁を用いれば極めて正確に
射出速度を制御し得る。
Note that when the opening degree change of the first flow control valve 30 and the opening degree change of the second flow rate control valve 50 used in this embodiment are made equal, the second flow rate control valve 50 is equal to the first flow rate control valve 30. By using flow control valves of the same size and structure with high-speed response, the injection speed can be controlled extremely accurately.

要するに、本実施例は射出成形装置の射出シリ
ンダ20等のピストン速度制御装置において、ピ
ストン後室22への流入回路16に高速応答性を
有する第1流量制御弁30を設けると共に、ピス
トン前室23からの流出回路17中にも高速応答
性を有する第2流量制御弁50を設け、且つ、前
記第1流量制御弁30の開度に比例させて第2流
量制御弁50の開度を変化させる制御弁制御装置
を設けた射出成形装置のピストン速度制御御装置
である故、ピストン21、シリンダロツド26ひ
いてはプランジヤチツプ29の高速移動中の急減
速が可能であり、応答性の高い流量制御弁30の
使用と相俟つて瞬時に加速及び減速を行ない、高
品質の射出成形品を製造することができるピスト
ン速度制御装置である。
In short, in this embodiment, in a piston speed control device for an injection cylinder 20 or the like of an injection molding apparatus, a first flow control valve 30 having high-speed response is provided in an inflow circuit 16 to a piston rear chamber 22, and a A second flow rate control valve 50 having high-speed response is also provided in the outflow circuit 17, and the opening degree of the second flow rate control valve 50 is changed in proportion to the opening degree of the first flow rate control valve 30. Since this is a piston speed control device for an injection molding machine equipped with a control valve control device, it is possible to rapidly decelerate the piston 21, the cylinder rod 26, and even the plunger tip 29 during high-speed movement. This is a piston speed control device that instantly accelerates and decelerates as it is used, making it possible to manufacture high-quality injection molded products.

なお、シリンダ20のピストン後室22への作
動油流入回路16に第1流量制御弁30を設け、
ピストン前室23からの作動油流出回路17に第
2流量制御弁50を設けた場合、従来は、流出側
の第2流量制御弁50の開度を大きな開度で一定
にしていたので、流入側の第1流量制御弁30の
開度を小さくし、低速射出を行つた場合、圧力が
あまり立たず、何かでピストンロツド26に抵抗
がかかれば、速度が小さくなり、また、抵抗が無
くなれば、速度が大きくなり、このように、速度
が変動し、低速速度がふらつく。
Note that a first flow control valve 30 is provided in the hydraulic oil inflow circuit 16 to the piston rear chamber 22 of the cylinder 20,
Conventionally, when the second flow rate control valve 50 is provided in the hydraulic oil outflow circuit 17 from the piston front chamber 23, the opening degree of the second flow rate control valve 50 on the outflow side is kept constant at a large opening degree. When the opening degree of the first flow control valve 30 on the side is decreased and low-speed injection is performed, the pressure does not build up much and if something puts resistance on the piston rod 26, the speed will decrease, and if the resistance disappears. , the speed increases, thus the speed fluctuates and the low speed wanders.

ところが、本発明では、このように、低速射出
を行う場合、流入側の第1流量制御弁30の開度
を小さくするとともに、流出側の第2の流量制御
弁50の開度を第1の流量制御弁30の開度に比
例させて小さくするようにしたので、抵抗が常に
かかつているから、ピストンロツド26の抵抗が
変わつても、全体の抵抗の変動が小さくなり、射
出速度は変動しないで、安定する。
However, in the present invention, when performing low-speed injection, the opening degree of the first flow rate control valve 30 on the inflow side is reduced, and the opening degree of the second flow rate control valve 50 on the outflow side is decreased to the first degree. Since the flow rate control valve 30 is made smaller in proportion to its opening degree, resistance is always applied, so even if the resistance of the piston rod 26 changes, the overall resistance changes less and the injection speed does not change. ,Stabilize.

勿論、高速射出する場合は、流入側の第1流量
制御弁30の開度を大きくするとともに、流出側
の第2流量制御弁50の開度も、第1流量制御弁
30の開度の大きさに比例して大きくするので、
流出側の抵抗はなく、所要の高速射出速度を得る
ことができる。
Of course, in the case of high-speed injection, the opening degree of the first flow rate control valve 30 on the inflow side is increased, and the opening degree of the second flow rate control valve 50 on the outflow side is also increased depending on the opening degree of the first flow rate control valve 30. Because it increases in proportion to the
There is no resistance on the outflow side and the required high injection speed can be obtained.

[発明の効果] 本発明は、射出成形装置の射出シリンダ等のピ
ストン速度制御装置において、ピストン後室への
作動油流入回路に高速応答性を有する第1流量制
御弁を設けると共に、ピストン前室からの作動油
流出回路中にも高速応答性を有する第2流量制御
弁を設け、且つ、前記第1流量制御弁の開度に比
例させて第2流量制御弁の開度を変化させる制御
弁制御装置を設けた射出成形装置のピストン速度
制御御装置である故、高速応答性を有する流量制
御弁を2個用い、第1流量制御弁により制御する
ピストンの速度に応じて流出回路における作動油
の通過抵抗をも変化させるものであり、ピストン
の速度を減速させるときには第2流量制御弁にて
流出抵抗を適宜増大させて射出シリンダのピスト
ンが作動油から受ける反力F3を大きくすること
ができる故、射出速度の急激な減速が可能とな
り、又、ピストンの前進速度を増加させるときに
は流出抵抗を小さくすることができる故、射出速
度の急激な加速も可能であつて、短い射出時間内
における射出速度の急加速及び急減速等の変化を
正確に制御し、品質の高い射出成形品を製造する
ことができ、又、射出完了時における衝撃圧力の
ピーク圧を低く押えることにより油圧回路への悪
影響をも防止し得る等、種々の利点を有するピス
トン速度制御装置である。
[Effects of the Invention] The present invention provides a piston speed control device for an injection cylinder or the like of an injection molding device, in which a first flow control valve having high-speed response is provided in a hydraulic oil inflow circuit to a piston rear chamber, and A second flow control valve having high-speed response is provided also in the hydraulic oil outflow circuit from the hydraulic oil outflow circuit, and the control valve changes the opening degree of the second flow control valve in proportion to the opening degree of the first flow control valve. Since this is a piston speed control device for an injection molding machine equipped with a control device, two flow control valves with high-speed response are used, and the hydraulic oil in the outflow circuit is controlled according to the speed of the piston controlled by the first flow control valve. When decelerating the speed of the piston, the outflow resistance can be increased appropriately using the second flow control valve to increase the reaction force F 3 that the piston of the injection cylinder receives from the hydraulic oil. Therefore, the injection speed can be rapidly decelerated, and when the forward speed of the piston is increased, the outflow resistance can be reduced, so the injection speed can be rapidly accelerated, and the injection speed can be rapidly accelerated within a short injection time. It is possible to accurately control changes such as sudden acceleration and deceleration of the injection speed, and manufacture high-quality injection molded products.In addition, by keeping the peak pressure of impact pressure low at the time of completion of injection, it is possible to reduce the impact on the hydraulic circuit. This piston speed control device has various advantages such as being able to prevent adverse effects.

また、本発明では、低速射出を行う場合でも、
流入側の第1流量制御弁の開度を小さくするとと
もに、流出側の第2の流量制御弁の開度を第1の
流量制御弁の開度に比例させて小さくするように
したので、抵抗が常にかかつているから、ピスト
ンロツドの抵抗が変わつても、全体の抵抗の変動
が小さくなり、射出速度は変動しないので、安定
する。
Furthermore, in the present invention, even when performing low-speed injection,
The opening degree of the first flow control valve on the inflow side is made small, and the opening degree of the second flow control valve on the outflow side is made small in proportion to the opening degree of the first flow control valve, so that the resistance is reduced. is always applied, so even if the resistance of the piston rod changes, the fluctuations in the overall resistance will be small, and the injection speed will remain stable because it will not fluctuate.

勿論、高速射出する場合は、流入側の第1流量
制御弁の開度を大きくするとともに、流出側の第
2流量制御弁の開度も、第1流量制御弁の開度の
大きさに比例して大きくするので、流出側の抵抗
はなく、所要の高速射出速度を得ることができ
る。
Of course, for high-speed injection, the opening of the first flow control valve on the inflow side is increased, and the opening of the second flow control valve on the outflow side is also proportional to the opening of the first flow control valve. Since the injection size is made larger, there is no resistance on the outflow side, and the required high injection speed can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はメータイン回路の一般例を示す図であ
り、第2図はランアランド回路を有する一般的な
メータイン回路を示す図、第3図は本発明に用い
る流量制御弁の一例を示す図にして、第4図は射
出成形における射出速度の変化の一例を示す図、
第5図及び第6図は本発明に係る制御装置の油圧
回路の要部を示す図であり、第7図及び第8図は
一般的なメータイン回路の要部を示す図、第9図
及び第10図は一般的なメータアウト回路の要部
を示す図、第11図は本発明におけるシリンダ内
油圧を示す図にして、第12図はメータアウト回
路におけるシリンダ内油圧を示す図である。 11…油圧源、12…切換弁、14…制御弁、
16…流入回路、17…流出回路、18…ランア
ランド回路、20…射出シリンダ、21…ピスト
ン、22…ピストン後室、23…ピストン前室、
26…シリンダロツド、28…射出スリーブ、2
9…プランジヤチツプ、30…第1流量制御弁、
50…第2流量制御弁。
Fig. 1 is a diagram showing a general example of a meter-in circuit, Fig. 2 is a diagram showing a general meter-in circuit having a run-a-land circuit, and Fig. 3 is a diagram showing an example of a flow control valve used in the present invention. FIG. 4 is a diagram showing an example of changes in injection speed in injection molding.
5 and 6 are diagrams showing the main parts of the hydraulic circuit of the control device according to the present invention, FIGS. 7 and 8 are diagrams showing the main parts of a general meter-in circuit, and FIGS. FIG. 10 is a diagram showing the essential parts of a general meter-out circuit, FIG. 11 is a diagram showing the cylinder oil pressure in the present invention, and FIG. 12 is a diagram showing the cylinder oil pressure in the meter-out circuit. 11... Hydraulic source, 12... Switching valve, 14... Control valve,
16... Inflow circuit, 17... Outflow circuit, 18... Run-a-land circuit, 20... Injection cylinder, 21... Piston, 22... Piston rear chamber, 23... Piston front chamber,
26...Cylinder rod, 28...Injection sleeve, 2
9... Plunger tip, 30... First flow control valve,
50...Second flow rate control valve.

Claims (1)

【特許請求の範囲】[Claims] 1 射出成形装置の射出シリンダ等のピストン速
度制御装置において、ピストン後室への作動油流
入回路に低速射出速度及び高速射出速度を調整決
定する高速応答性の第1流量制御弁を設けるとと
もに、ピストン前室からの作動油流出回路中にも
高速応答性を有する第2流量制御弁を設け、か
つ、前記第1流量制御弁の開度を小さくした時は
第2流量制御弁の開度を小さくし、第1流量制御
弁の開度を大きくした時は第2流量制御弁の開度
を大きくするように、第1流量制御弁の開度に比
例させて第2流量制御弁の開度を変化させる制御
弁制御装置を設けたことを特徴とする射出成形装
置におけるピストン速度制御装置。
1. In a piston speed control device for an injection cylinder or the like of an injection molding device, a first flow control valve with high-speed response for adjusting and determining a low injection speed and a high injection speed is provided in the hydraulic oil inflow circuit to the piston rear chamber, and the piston A second flow control valve having high-speed response is provided also in the hydraulic oil outflow circuit from the front chamber, and when the opening of the first flow control valve is reduced, the opening of the second flow control valve is reduced. However, when the opening degree of the first flow control valve is increased, the opening degree of the second flow control valve is increased in proportion to the opening degree of the first flow control valve. 1. A piston speed control device for an injection molding apparatus, characterized in that a control valve control device for changing the speed is provided.
JP14053883A 1983-08-02 1983-08-02 Control device for piston speed in injection molding device Granted JPS6033863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14053883A JPS6033863A (en) 1983-08-02 1983-08-02 Control device for piston speed in injection molding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14053883A JPS6033863A (en) 1983-08-02 1983-08-02 Control device for piston speed in injection molding device

Publications (2)

Publication Number Publication Date
JPS6033863A JPS6033863A (en) 1985-02-21
JPH0451260B2 true JPH0451260B2 (en) 1992-08-18

Family

ID=15270998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14053883A Granted JPS6033863A (en) 1983-08-02 1983-08-02 Control device for piston speed in injection molding device

Country Status (1)

Country Link
JP (1) JPS6033863A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038321A1 (en) * 2008-10-01 2010-04-08 東洋機械金属株式会社 Hydraulic circuit of injection cylinder in die casting apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2900229B2 (en) 1994-12-27 1999-06-02 株式会社半導体エネルギー研究所 Semiconductor device, manufacturing method thereof, and electro-optical device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51101065A (en) * 1975-03-04 1976-09-07 Ube Industries SHASHUTSUSEIKEISOCHINO SHASHUTSUSOCHI

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51101065A (en) * 1975-03-04 1976-09-07 Ube Industries SHASHUTSUSEIKEISOCHINO SHASHUTSUSOCHI

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038321A1 (en) * 2008-10-01 2010-04-08 東洋機械金属株式会社 Hydraulic circuit of injection cylinder in die casting apparatus
US8561400B2 (en) 2008-10-01 2013-10-22 Toyo Machinery & Metal Co., Ltd. Hydraulic circuit of injection cylinder in die-casting apparatus
JP5485903B2 (en) * 2008-10-01 2014-05-07 東洋機械金属株式会社 Hydraulic circuit of injection cylinder in die casting equipment
TWI486223B (en) * 2008-10-01 2015-06-01 Toyo Machinery & Metal The hydraulic circuit of the injection cylinder of the die casting device

Also Published As

Publication number Publication date
JPS6033863A (en) 1985-02-21

Similar Documents

Publication Publication Date Title
KR920001605B1 (en) Controlling method of cyhinder speed in injection molding machine
JP3506800B2 (en) Injection control method and apparatus for die casting machine
KR100992723B1 (en) Injection apparatus of die cast machine
JPH0665912B2 (en) Flow control valve
US5585053A (en) Method of controlling a movable member in a molding machine
JPH0451260B2 (en)
JPS59229271A (en) Method for controlling cylinder speed of injection molding device or the like
US20210114089A1 (en) Die casting machine and control method thereof
JP3828857B2 (en) Die casting machine injection equipment
JP5491264B2 (en) Injection machine for molding machine
JPH0453613B2 (en)
JP2938962B2 (en) Injection control method for die casting machine
JP3713416B2 (en) Die casting machine
JPH0310428B2 (en)
JP2731557B2 (en) Squeeze plunger operation method in die casting machine
JPS616473A (en) Flow-rate control valve
JPH0356826B2 (en)
JPH0261348B2 (en)
JP2806100B2 (en) Injection speed and firing power control device
JPH0259025B2 (en)
JP3167183B2 (en) Die casting machine injection control method and device
JPS6233050A (en) Method for ejecting injection product at mold opening of injection molding machine
JPH07115148B2 (en) Cylinder speed controller for molding machine
JPS60108153A (en) Method for controlling injection speed
JPS63312128A (en) Dwelling process control device of injection molder