JPH0451245B2 - - Google Patents

Info

Publication number
JPH0451245B2
JPH0451245B2 JP58026770A JP2677083A JPH0451245B2 JP H0451245 B2 JPH0451245 B2 JP H0451245B2 JP 58026770 A JP58026770 A JP 58026770A JP 2677083 A JP2677083 A JP 2677083A JP H0451245 B2 JPH0451245 B2 JP H0451245B2
Authority
JP
Japan
Prior art keywords
rolling
rolled material
tension
rolling mill
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58026770A
Other languages
Japanese (ja)
Other versions
JPS59153511A (en
Inventor
Akira Nomura
Tomoaki Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58026770A priority Critical patent/JPS59153511A/en
Publication of JPS59153511A publication Critical patent/JPS59153511A/en
Publication of JPH0451245B2 publication Critical patent/JPH0451245B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/68Camber or steering control for strip, sheets or plates, e.g. preventing meandering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2203/00Auxiliary arrangements, devices or methods in combination with rolling mills or rolling methods
    • B21B2203/18Rolls or rollers
    • B21B2203/187Tilting rolls

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発明は圧延機により圧延された板の板曲りの
発生を防止するようにした圧延機の蛇行修正制御
方法に示す。 〔従来技術〕 熱間仕上圧延等においてはストリツプに付与さ
れる張力が、板噛込みあるいは尻抜状態において
無張力となるためストリツプの蛇行が発生し易
い。 このようなストリツプの蛇行となる板曲りを放
置すると、圧延材の圧延機への噛込不可、あるい
はサイドガイド装置への突掛け、端折れ等の弊害
が多発する。また、圧延材をコイル状に巻取るよ
うにしたものにおいては、例えば熱間仕上げ圧延
時において板曲りが発生すると、コイル巻取時の
巻姿が悪くなり、コイル商品価値を著しく低下さ
せるものである。ところで圧延材の板曲り発生原
因について観察すると、一般に板クラウン凸の時
は板曲りが発生しにくく、逆に板クラウン凹の時
に発生しやすい事が知られている。即ち、圧延時
のロールたわみ及び圧延材断面図形状とを考察す
ると以下のようになる。 即ち第1図に示す如く圧延材5の板クラウンが
凸の場合の例で何等かの原因で圧延ロール6の操
作側WSの圧下率が駆動側DSの圧下率より大きく
なり、圧延材5が駆動側に移動した状態を考え
る。この様に圧延材5が駆動側にずれると凸状板
クラウンの場合には、駆動側のロールギヤツプは
板が駆動側にずれるに従い小さくなる。従つて、
駆動側の圧下率が大きくなり、ついには駆動側の
圧下率の方が操作側より大となり圧延材5は操作
側に逆戻りすることになる。このように圧延材5
が凸クラウン時には圧延機中心へ圧延材中心に戻
す作用を生じる。 これに対し圧延材5が凹クラウン時には逆の現
象となり発散現象となる。 次にこのような板ずれと、これによつて生じる
板曲りとの関係を第2図及び第3図を参照して説
明する。 第2図aは圧延機の一部を示したものであり、
圧延ロールである上ロール6と下ロール6により
板巾Bの圧延材5が駆動側にδだけズレて圧延さ
れている状態を示す。操作側及び駆動側のロール
ギヤツプは圧下ラム1及び圧下ラム2と油圧シリ
ンダー3及び油圧シリンダー4より成る油圧ジヤ
ツキにより操作される。記号Sw,(Sd)とPw,
(Pd)は操作側(駆動側)の無負荷のロールギヤ
ツプと圧延荷重を示す。さらにhw,(hd)は操作
側(駆動側)の出側板厚を示す。 第2図aに示すように圧延材5が駆動側へズレ
た状態では、圧延材5に作用する圧延荷重Pw
Pdの合力Pの中心Qは圧延機中心から駆動側へ
ずれ、その結果、PwとPdの関係はPw<Pdとなる。
従つて荷重が大となつた側のバネKdが、バネKW
側より余分に撓むので、第1図に示すように傾き
圧延材5の板厚分布は第2図aに示すようにhw
<hdとなり不近一となる。このために、操作側
WSの圧下率(伸び率)は駆動側よりも大きくな
り、この結果、圧延材5は駆動側へ蛇行すること
になる。ここで圧延中における圧延材5の進行速
度は圧延ロール6の周速度VRと等しくなく、出
側圧延材の進行速度Vpはロール周速度VRより速
く、入側圧延材の進行速度VIはロール周速度VR
より遅い。 圧延ロール周速度VRに対する出側圧延材の進
行速度Vpの比を示すものとして先進率F、これ
に対して入側圧延材Viの比を示すものとして後進
率Bとして各々次のように定義され、これらの値
は圧延現象を示す1つのパラメータとして広く使
用されている。 F=(Vp−VR)/VR×100(%) B=(VR−Vi)/VR×100(%) 上記の先進率F、及び後進率Bは圧下率γによ
り変化する。第3図はこの圧下率μに対する先進
率Fと後進率Bの関係を示したものである。第3
図に示される様に一般に圧下率γの変化に対する
後進率Bの変化は先進率Fの変化よりはるかに大
きく、このため圧下率に差が生じると、これによ
り生じる左右の後進率差Bdfは左右の先進率差Fdf
よりもはるかに大きいものとなる。この結果、圧
延材は出側より入側で大きく曲る圧延状態とな
る。ここで入側の曲りは左右の圧下率差γdfを助
長する方向に作用するので蛇行現象を増大させる
性質をもつている。すなわち、圧下率差γdfを生
じると入側での圧延材には左右進み量の差が生じ
て曲りが発生するため、圧延材は圧延ロールに斜
めに噛込まれることにより、圧延材の噛込位置に
ずれが生じる。このかみ込み位置のずれ方向は左
右の圧下率差γdfを増大する方向となるので時間
の経過に伴い圧下率差γdfは次第に増加し、これ
に伴つて圧延材の斜めに噛込まれる度合も大きく
なることから、噛込み位置のずれ速度も増大す
る。 上記蛇行現象の関係状況を系統的に示したのが
第4図であり、図中a,b,cは時間経過の状況
を示したものである。 〔発明の目的〕 本発明の目的は、圧延材の蛇行現象の発生を防
止した新規な圧延機の蛇行修正制御方法を提供す
ることにある。 〔発明の概要〕 上記目的を達成するために本発明では、圧延機
の操作側、駆動側の圧延荷重差に基づきロールの
傾きに対する剛性から補償制御すべきロール開度
差を算出して圧延材の蛇行を防止する圧延機の蛇
行修正制御方法において、前記圧延荷重差に対
し、前記圧延材に負荷される張力の状態に応じて
定まる制御定数を乗じて前記操作側、駆動側のロ
ール開度をフイードバツク補償制御するものであ
る。 つまり、圧延材に負荷される張力の状態に応じ
て制御定数を変えて蛇行修正制御にとり込む圧延
荷重差の量を変えることで、圧延機の幅方向の見
かけ上の剛性を変えることができるため、圧延材
の幅方向に対する求心性を持たせることができ、
最適な蛇行修正制御が可能となる。 〔発明の実施例〕 次に本発明の実施例を説明するにあたり、本発
明の蛇行修正制御につきその機能を説明する。 第2図において、Kは圧延機片側のバネ定数を
示し、出側板厚は圧延荷重による圧延機の延び量
と無負荷時のロールギヤツプの和となることから
出側板厚hw,hdは各々次式であらわすことが出来
る。 hw=SW+PW/K …(1) hd=Sd+Pd/K …(2) (1)(2)式より左右の板厚差hdfは下次で示される。 hdf=hw−hd =(SW−Sd)+(PW−Pd)・1/K …(3) ここでSdf=SW−Sd、Pdf=PW−Pdとおくと hdf=Sdf+Pdf/K (4) となり、操作側WSと駆動側DSの無負荷時ロール
ギヤツプの差Sdfと圧延荷重Pdfを検出することに
より操作側WS、駆動側DSの板厚差hdfを知る事
が出来る。(4)式は圧延材の巾方向の板厚制御を行
なえることを表わすものであり、 Sdf+Pdf/K=0 (5) となるようにロールギヤツプ差Sdfを制御するこ
とにより操作側、駆動側の板厚差hdfを零とする
ことができるものである。 さらに制御にとり込む圧延荷重信号にαlなる定
数をかけ合せ Sdf+Pdf/K・αl=0 …(6) 常に(6)式を満足するように圧延荷重差Pdfの変
化に応じてロールギヤツプ差Sdfを制御すれば、
αlの値を変えて制御にとり込む荷重差Pdfの量を
変える事により圧延機の巾方向の見かけ上の剛性
を変えることが出来、αl≧1とすることにより圧
延材の巾方向の位置ズレに対する求心性を持たせ
る事ができる。実機においては荷重差によつてロ
ール開度差を生じる圧延機の剛性ロール偏平等の
バネ要素も考慮して従来のミル定数Kに対してミ
ル平行剛性Klとしている。 次に、実際の圧延機について考える。実際の圧
延においては、圧延機の入出側の張力状態に応じ
て以下の4つに区別することができる。 つまり、第4図に示したように圧延機入出側で
板幅方向に対して無張力状態である場合、タンデ
ム式圧延機等の出側に張力がある場合、入側に張
力のある場合、そして入出側に張力のある場合で
ある。 以下、この4つの状態のうち圧延機の出側に張
力がある場合、入側に張力がある場合、及び、入
出側に張力がある場合の現象を説明する。 説明の便宜上、圧延機の入側に張力がある場合
を示すが、他の状態においても同様なことが言え
る。 第5図は圧延の入側に張力がある状態を示す、
圧延材5が前段の圧延機でも圧延されている時、
圧延材5の板幅方向に曲がろうとする力は前段の
圧延機により拘束されているため後進率差Bdf
圧延材5の後方張力σw,σdとして現われる。 ここで第6図を参照して圧延状態を示すと、当
該圧延機に対して前方張力をσf、後方張力をσb
して噛込み角α、圧延ロール6の周側VRと圧延
材5の速度の一致する中立点の角度をφで示す
と、中立点の角度φは下式で示される。 φ=α/2−F1(γ)−F2(σb)+F3(σf) (7) この(7)式を具体的に表すと次のようになる。 φ=α/2−(1+F)・h2・γ/4μR・k1−(
1−B)・h1・σb/4μR・k2+(1+F)h2σf/4μR
・k2(8) ここで k1:入側板厚 k2:出側板厚 F:先進率 B:後進率 μ:摩擦係数 k1,k2:係数 R:ロール半径 である。 つまり、F1,F3は先進率Fの関数として、F2
は後進率Bの関数として表現される。 表1は圧延材5が駆動側にDSに位置ずれを起
こした場合の上記(8)のパラメータのうち、中立点
の角度φ、後進率B及び先進率Fの状態の変化を
示すものである。
[Field of Application of the Invention] The present invention is directed to a meandering correction control method for a rolling mill, which prevents the occurrence of plate bending in a plate rolled by a rolling mill. [Prior Art] In hot finish rolling, etc., the tension applied to the strip becomes zero when the strip is inserted into the plate or when the strip is pulled out, so that meandering of the strip is likely to occur. If such bending of the strip, which results in a meandering strip, is left unaddressed, problems such as the rolled material not being able to be caught in the rolling mill, bumping against the side guide device, or end bending occur frequently. In addition, in the case of rolled material that is wound into a coil shape, if plate bending occurs during hot finish rolling, for example, the appearance of the coil during winding will deteriorate, significantly reducing the product value of the coil. be. By the way, when observing the causes of plate bending in rolled materials, it is generally known that plate bending is less likely to occur when the plate crown is convex, and conversely, plate bending is more likely to occur when the plate crown is concave. That is, considering the roll deflection during rolling and the cross-sectional shape of the rolled material, the following results are obtained. That is, as shown in FIG. 1, in an example where the plate crown of the rolled material 5 is convex, for some reason the rolling reduction ratio on the operating side WS of the rolling roll 6 becomes larger than the rolling reduction ratio on the driving side DS, and the rolling material 5 Consider the state where it has moved to the drive side. When the rolled material 5 shifts toward the drive side in this way, in the case of a convex plate crown, the roll gap on the drive side becomes smaller as the plate shifts toward the drive side. Therefore,
The rolling reduction ratio on the driving side increases, and eventually the rolling reduction ratio on the driving side becomes larger than that on the operating side, and the rolled material 5 returns to the operating side. In this way, the rolled material 5
However, when the crown is convex, an effect is produced that returns the rolled material to the center of the rolling mill. On the other hand, when the rolled material 5 has a concave crown, the opposite phenomenon occurs, resulting in a divergence phenomenon. Next, the relationship between such plate deviation and plate bending caused by this will be explained with reference to FIGS. 2 and 3. Figure 2a shows a part of the rolling mill.
A state in which a rolled material 5 having a width B is rolled by an upper roll 6 and a lower roll 6, which are rolling rolls, is shifted by δ toward the drive side. The roll gap on the operation side and the drive side is operated by a hydraulic jack consisting of a reduction ram 1, a reduction ram 2, a hydraulic cylinder 3, and a hydraulic cylinder 4. Symbols S w , (S d ) and Pw,
(P d ) indicates the unloaded roll gap and rolling load on the operation side (drive side). Furthermore, h w and (h d ) indicate the outlet side plate thickness on the operation side (drive side). As shown in Fig. 2a, when the rolled material 5 is shifted toward the drive side, the rolling load P w acting on the rolled material 5 is
The center Q of the resultant force P of P d shifts from the center of the rolling mill to the driving side, and as a result, the relationship between P w and P d becomes P w <P d .
Therefore, the spring K d on the side where the load is greater is the spring K W
Since it bends excessively from the side, the thickness distribution of the inclined rolled material 5 as shown in Fig. 1 is h w as shown in Fig. 2 a.
<h d , and it becomes the closest. For this purpose, the operating side
The rolling reduction rate (elongation rate) of the WS becomes larger than that on the drive side, and as a result, the rolled material 5 meanders toward the drive side. Here, the advancing speed of the rolled material 5 during rolling is not equal to the circumferential speed V R of the rolling roll 6, the advancing speed V p of the exit side rolled material is faster than the roll circumferential speed V R , and the advancing speed V of the incoming rolled material I is the roll peripheral speed V R
slower. The advancing rate F indicates the ratio of the advancing speed V p of the exit side rolled material to the circumferential speed V R of the rolling roll, and the backward advancement rate B indicates the ratio of the incoming rolled material V i to this, as follows. These values are widely used as one parameter indicating the rolling phenomenon. F = (V p - V R ) / V R × 100 (%) B = (V R - V i ) / V R × 100 (%) The above advance rate F and backward rate B change depending on the rolling reduction rate γ do. FIG. 3 shows the relationship between the advance rate F and the backward rate B with respect to the rolling reduction rate μ. Third
As shown in the figure, the change in the backward movement rate B with respect to the change in the rolling reduction rate γ is generally much larger than the change in the advance rate F. Therefore, when a difference occurs in the rolling reduction rate, the resulting left and right backward movement rate difference B df is Left and right advanced rate difference F df
It will be much larger than. As a result, the rolled material is in a rolled state in which it bends more on the entry side than on the exit side. Here, the curve on the entry side acts in a direction that promotes the difference in rolling reduction γ df between the left and right sides, so it has the property of increasing the meandering phenomenon. In other words, when a rolling reduction difference γ df occurs, the rolled material on the entry side will have a difference in the left and right advance amount and will be bent, so the rolled material will be bitten diagonally by the rolling rolls, causing the rolling material to be bitten. A shift occurs in the insertion position. The direction of deviation of this biting position is the direction that increases the rolling reduction difference γ df between the left and right sides, so the rolling reduction difference γ df gradually increases as time passes, and as a result, the degree of diagonal biting of the rolled material increases. Since this also increases, the speed of displacement of the biting position also increases. FIG. 4 systematically shows the relationship of the above-mentioned meandering phenomenon, and symbols a, b, and c in the figure show the situation over time. [Object of the Invention] An object of the present invention is to provide a novel meandering correction control method for a rolling mill that prevents the occurrence of the meandering phenomenon in a rolled material. [Summary of the Invention] In order to achieve the above object, the present invention calculates the roll opening difference to be compensated for from the roll inclination rigidity based on the rolling load difference between the operating side and the driving side of the rolling mill, and In the meandering correction control method for a rolling mill that prevents meandering, the rolling load difference is multiplied by a control constant determined according to the state of tension applied to the rolled material to determine the roll opening on the operating side and the driving side. This is to perform feedback compensation control. In other words, by changing the control constant according to the state of tension applied to the rolled material and changing the amount of rolling load difference incorporated into meandering correction control, the apparent rigidity of the rolling mill in the width direction can be changed. , it is possible to provide centripetal properties in the width direction of the rolled material,
Optimal meandering correction control becomes possible. [Embodiments of the Invention] Next, in describing embodiments of the present invention, the functions of the meandering correction control of the present invention will be explained. In Fig. 2, K indicates the spring constant on one side of the rolling mill, and the outlet side plate thickness is the sum of the elongation of the rolling mill due to the rolling load and the roll gap at no load, so the outlet side plate thicknesses h w and h d are respectively It can be expressed by the following formula. h w =S W +P W /K (1) h d =S d +P d /K (2) From equations (1) and (2), the left and right plate thickness difference h df is shown below. h df = h w − h d = (S W − S d ) + (P W − P d )・1/K …(3) Here, S df = S W − S d , P df = P W −P d , h df = S df + P df /K (4) By detecting the difference S df in the roll gap at no load between the operating side WS and the driving side DS and the rolling load P df , the operating side WS and the driving side DS are You can know the thickness difference h df of DS. Equation (4) expresses that it is possible to control the thickness of the rolled material in the width direction, and by controlling the roll gap difference S df so that S df + P df /K = 0 (5) , the plate thickness difference h df on the drive side can be made zero. Furthermore, the rolling load signal taken into the control is multiplied by a constant α l S df +P df /K・α l =0...(6) According to changes in the rolling load difference P df so that equation (6) is always satisfied. If you control the roll gap difference S df ,
By changing the value of α l and the amount of load difference P df taken into control, the apparent stiffness of the rolling mill in the width direction can be changed, and by setting α l ≧1, the width direction of the rolled material can be changed. It is possible to provide centripetal property against positional deviation. In an actual machine, the mill parallel rigidity Kl is set for the conventional mill constant K, taking into account the spring element of the rolling mill's rigid roll bias, which causes a difference in roll opening due to a load difference. Next, let's consider an actual rolling mill. In actual rolling, the following four types can be distinguished depending on the tension state on the input and output sides of the rolling mill. In other words, as shown in Fig. 4, when there is no tension in the strip width direction at the entrance and exit side of the rolling mill, when there is tension on the exit side of a tandem rolling mill, etc., when there is tension on the entry side, This is the case where there is tension on the input and output sides. Hereinafter, among these four states, phenomena will be explained when there is tension on the exit side of the rolling mill, when there is tension on the entry side, and when there is tension on the entry and exit sides. For convenience of explanation, a case where there is tension on the entry side of the rolling mill is shown, but the same can be said in other situations. Figure 5 shows a state where there is tension on the entry side of rolling.
When the rolled material 5 is also being rolled in the preceding rolling mill,
Since the force that tends to bend the rolled material 5 in the width direction is restrained by the rolling mill in the previous stage, the backward movement rate difference B df appears as the backward tension forces σ w and σ d of the rolled material 5 . Here, the rolling state is shown with reference to FIG. 6. With respect to the rolling mill, the front tension is σ f and the rear tension is σ b , the biting angle α, the peripheral side V R of the rolling roll 6, and the rolled material 5. If the angle of the neutral point where the velocities of φ=α/2−F 1 (γ)−F 2b )+F 3f ) (7) Expression (7) can be specifically expressed as follows. φ=α/2−(1+F)・h 2・γ/4μR・k 1 −(
1-B)・h 1・σ b /4μR・k 2 + (1+F) h 2 σ f /4μR
・k 2 (8) Here, k 1 : Inlet side plate thickness k 2 : Outlet side plate thickness F: Advance rate B: Reverse rate μ: Friction coefficient k 1 , k 2 : Coefficient R: Roll radius. In other words, F 1 and F 3 are F 2
is expressed as a function of the backward movement rate B. Table 1 shows the changes in the angle φ of the neutral point, the backward movement rate B, and the forward movement rate F, among the parameters in (8) above, when the rolled material 5 is misaligned in the DS on the drive side. .

【表】 圧延材5が駆動側DSに位置ずれを起こすと後
進率差を生じるが、前段の圧延機で圧延材が拘束
されているために当該圧延機の入側で張力差、つ
まり、後方張力差θbw<θbdとなつて現われる。 また、(8)式における中立点の角度θ、後進率B
及び先進率Fは表1の様に変化する。 表1から分かるように、圧下率γの大きい側の
後進率Bを減少させるように変化するため、前段
に圧延機がある場合、すなわち、張力のある場
合、蛇行現象の減少方向に働くようになるわけで
ある。 第5図で張力の有る場合で位置ずれ量δが存在
するとき、操作側WS、駆動側DSの圧下率はγw
>γdなる状態となり、張力σw,σd及び入側速度
VHW,VHdは第5図の実線のようになる。ここで
時間の経過に伴い(7)式及び表1に示されるように
後進率Bは操作側で減少し駆動側で増加するため
に操作側入側速度VHW、駆動側入側速度VHdは破
線のように変化しこのことから操作側張力σw
駆動側張力σdも破線のようになり、自己平衡的に
張力が減少することになる。この結果、板厚制御
で制御定数を大きくすると微少な偏差に対して大
きな修正量を与えるために振動現象を生じること
が知られている様に蛇行修正制御においても同様
に張力条件により制御定数αlを切替えることによ
り最適な蛇行制御が可能となる。 位置ズレ量δ(mm)を取り、横軸にはロールバ
イトより先進率材先端までの圧延長さである進み
量Lを取り、実線は入出側張力の有る側へ進み量
Lを取り、実線は入出側張力の有る状態を示し、
破線は入出側張力の状態を示している。第7図で
無張力で制御定数αl=0の場合は無制御状態を示
し、無張力時αl=0.75では蛇行現象は弱くなるが
発散している。これに対し、入出側張力のある時
は制御定数αl=0でも弱い発散となり制御定数αl
<1の時でも収束している。 本発明は以上の事実より圧延時の張力条件の変
化により板曲り制御の制御定数αlを変化させるも
ので第9図にその圧延中の定数αlの変化を示す。
第8図はタンデム圧延機における適用例を示し、
第9図にタンデム圧延機のある圧延機の圧延材1
本を圧延した時の制御定数αlと圧延荷重Pの変化
を示したもので、当概の圧延機10が圧延材5を
噛込むと圧延荷重Pが立上がる。このとき拘束条
件は後方に張力が発生し、前方では無張力である
ので、その時の最適定数αl〓とし、先端が後段の
圧延機11に噛込まれると拘束条件は、前方、後
方ともに張力が存在するため、その時の最適条件
αl〓に変更される。そして圧延材の後端が前段の
圧延機9を抜けると拘束条件は前方張力があり、
後方は無張力となるのでその時の最適条件αl〓に
変更される。 以上の制御定数の切替は前後段の圧延機のロー
ドセル7による圧延荷重Pの変化に基づき、あら
かじめ予想される圧延条件と同一の圧延条件を実
験的につくり、この実験的に作り出した条件の下
の実圧延において決定された所定の圧延条件に応
じた制御定数に切替えるようになつている。な
お、ここで圧延条件には、圧延材の板厚、板幅及
び圧延機入出側の圧延材の拘束条件が挙げられ
る。 表2には上記説明したように決定された定数値
の一例を示す。
[Table] When the rolled material 5 is misaligned on the driving side DS, a difference in backward movement rate occurs, but since the rolled material is restrained in the preceding rolling mill, there is a tension difference on the entry side of the rolling mill, that is, a backward movement rate difference occurs. The tension difference appears as θ bwbd . Also, the angle θ of the neutral point in equation (8), the backward movement rate B
and the advanced rate F change as shown in Table 1. As can be seen from Table 1, the backward movement rate B on the side where the rolling reduction rate γ is large changes to decrease, so when there is a rolling mill in the previous stage, that is, when there is tension, the meandering phenomenon works in the direction of decreasing. That's why it happens. In Fig. 5, when there is tension and there is a positional deviation amount δ, the rolling reduction ratio of the operating side WS and the driving side DS is γ w
>γ d , the tension σ w , σ d and the entrance speed
V HW and V Hd are as shown by the solid line in Figure 5. Here, as time passes, as shown in equation (7) and Table 1, the backward movement rate B decreases on the operation side and increases on the drive side, so the input side speed on the operation side V HW and the input side speed on the drive side V Hd changes as shown by the broken line, and from this, the operating side tension σ w ,
The driving side tension σ d also becomes as shown by the broken line, and the tension decreases in a self-balancing manner. As a result, just as it is known that increasing the control constant in plate thickness control causes a vibration phenomenon because it applies a large correction amount to a minute deviation, the control constant α also changes depending on the tension condition in meandering correction control. Optimal meandering control is possible by switching l . The amount of positional deviation δ (mm) is taken, and the horizontal axis is the advance amount L, which is the rolling length from the roll bite to the tip of the advanced rate material, and the solid line is the advance amount L toward the side where there is tension on the input and output side. indicates a state where there is tension on the input and output sides,
The broken line indicates the state of tension on the input and output sides. In FIG. 7, when there is no tension and the control constant α l =0, it indicates an uncontrolled state, and when there is no tension and α l =0.75, the meandering phenomenon becomes weak but diverges. On the other hand, when there is tension on the input and output sides, there is a weak divergence even when the control constant α l = 0, and the control constant α l
It converges even when <1. Based on the above facts, the present invention changes the control constant α l for plate bending control by changing the tension conditions during rolling, and FIG. 9 shows the change in the constant α l during rolling.
Figure 8 shows an example of application in a tandem rolling mill.
Figure 9 shows rolled material 1 of a rolling mill with a tandem rolling mill.
This figure shows changes in the control constant α l and rolling load P when rolling a book. When the current rolling mill 10 bites the rolled material 5, the rolling load P rises. At this time, the constraint condition is that tension is generated in the rear and there is no tension in the front, so the optimal constant at that time is α l 〓, and when the tip is bitten by the rolling mill 11 in the subsequent stage, the constraint condition is that the tension is generated in both the front and rear. exists, the optimal condition at that time is changed to α l 〓. When the rear end of the rolled material passes through the rolling mill 9 in the previous stage, the constraint condition is the forward tension.
Since there is no tension at the rear, the optimum condition at that time is changed to α l 〓. The above control constants are switched by experimentally creating the same rolling conditions as the expected rolling conditions based on changes in the rolling load P by the load cells 7 of the front and rear rolling mills, and under these experimentally created conditions. The control constants are changed according to predetermined rolling conditions determined during actual rolling. Here, the rolling conditions include the plate thickness and width of the rolled material, and the constraint conditions of the rolled material on the entrance and exit sides of the rolling machine. Table 2 shows an example of constant values determined as explained above.

〔発明の効果〕〔Effect of the invention〕

本発明によれば圧延材に負荷される張力条件に
応じて常に最適な制御定数αlを板曲り制御装置に
与える事が可能である事から、板曲りの少ない圧
延材が得られ、邪行が防止出来るという効果を奏
する。
According to the present invention, it is possible to always give the optimum control constant α l to the plate bending control device according to the tension conditions applied to the rolled material, so it is possible to obtain a rolled material with less bending of the plate, and to prevent undesirable behavior. This has the effect of preventing

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は圧延材の板曲り状況を説明する説明
図、第2図乃至第10図は本発明の実施例を説明
するものであり、第2図乃至第4図は圧延材の蛇
行時の挙動を示す説明図、第5図及び第6図は拘
束時の挙動を示す説明図、第7図は無張力時と張
力のある時の制御定数αlと位置ズレ量δの関係を
示す特性図、第8図は本発明の蛇行制御装置の概
要を示す簡略図、第9図は圧延荷重と制御定数αl
の圧延時の時間経過を示す特性図、第10図は第
8図の制御装置の部分ブロツク図である。 1…圧下ラム(操作側)、2…圧下ラム(駆動
側)、3…油圧ジヤツキ(操作側)、4…油圧ジヤ
ツキ(駆動側)、5…圧延材、6…圧延ロール、
7…ロードセル、8…制御装置、9…前段の圧延
機、10…当概の圧延機、11…後段の圧延機、
12…αl〓切替スイツチ、13…αl〓切替スイツ
チ、14…αl〓切替スイツチ。
Fig. 1 is an explanatory diagram for explaining the state of plate bending of a rolled material, Figs. 2 to 10 are for explaining an embodiment of the present invention, and Figs. An explanatory diagram showing the behavior. Figures 5 and 6 are explanatory diagrams showing the behavior when restrained. Figure 7 is a characteristic showing the relationship between the control constant α l and the positional deviation amount δ when there is no tension and when there is tension. 8 is a simplified diagram showing the outline of the meandering control device of the present invention, and FIG. 9 is a rolling load and control constant α l
FIG. 10 is a partial block diagram of the control device shown in FIG. 8. DESCRIPTION OF SYMBOLS 1... Reduction ram (operation side), 2... Reduction ram (drive side), 3... Hydraulic jack (operation side), 4... Hydraulic jack (drive side), 5... Rolling material, 6... Rolling roll,
7...Load cell, 8...Control device, 9...Previous stage rolling mill, 10...Current rolling machine, 11...Late stage rolling machine,
12...α l = changeover switch, 13...α l = changeover switch, 14...α l = changeover switch.

Claims (1)

【特許請求の範囲】 1 圧延機の操作側、駆動側の圧延荷重差に基づ
きロールの傾きに対する剛性から補償制御すべき
ロール開度差を算出して圧延材の蛇行を防止する
圧延機の蛇行修正制御方法において、 前記圧延荷重差に対し、前記圧延材に負荷され
る張力の状態に応じて定まる制御定数を乗じて前
記操作側、駆動側のロール開度をフイードバツク
補償制御することを特徴とする圧延機の蛇行修正
制御方法。
[Scope of Claims] 1 Meandering of a rolling mill that prevents meandering of rolled material by calculating a difference in roll opening degree to be compensated and controlled from the rigidity against roll inclination based on the rolling load difference between the operating side and the driving side of the rolling mill. The corrective control method is characterized in that the rolling load difference is multiplied by a control constant determined according to the state of tension applied to the rolled material to perform feedback compensation control of the roll openings on the operating side and the driving side. A meandering correction control method for a rolling mill.
JP58026770A 1983-02-18 1983-02-18 Method for controlling correction of meandering in rolling mill Granted JPS59153511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58026770A JPS59153511A (en) 1983-02-18 1983-02-18 Method for controlling correction of meandering in rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58026770A JPS59153511A (en) 1983-02-18 1983-02-18 Method for controlling correction of meandering in rolling mill

Publications (2)

Publication Number Publication Date
JPS59153511A JPS59153511A (en) 1984-09-01
JPH0451245B2 true JPH0451245B2 (en) 1992-08-18

Family

ID=12202523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58026770A Granted JPS59153511A (en) 1983-02-18 1983-02-18 Method for controlling correction of meandering in rolling mill

Country Status (1)

Country Link
JP (1) JPS59153511A (en)

Also Published As

Publication number Publication date
JPS59153511A (en) 1984-09-01

Similar Documents

Publication Publication Date Title
JP3121471B2 (en) Rolling mill and rolling method
KR20010031851A (en) Sheet hot rolling mill
JPH0451245B2 (en)
JPS595044B2 (en) Rolling mill control method and equipment
JP2915184B2 (en) Plate rolling method
JP4213434B2 (en) Edge drop control device for rolling mill
JP3301393B2 (en) Plate shape control method using multiple rolling mills
JP2605546B2 (en) Shape control method in cold continuous rolling
JP3328566B2 (en) Method and apparatus for camber control of rolled material
KR100478084B1 (en) Rolling method with excellent width and thickness quality
JP2607012B2 (en) Method for determining reverse rolling schedule
JP2575585B2 (en) Meander control method of plate in rolling mill
JP7200918B2 (en) Cold-rolling method for steel plate and method for manufacturing cold-rolled steel plate
JPH0510164B2 (en)
JP7258790B2 (en) Rolling control system and rolling control method
JP2962867B2 (en) Setup control method in rolling of single crown metal strip
JP3848462B2 (en) Rolling method for H-section steel
JPS58184003A (en) Tandem rolling method
JP3541973B2 (en) Edge drop control method in cold rolling
JPS6120362B2 (en)
JP2005313190A (en) Method for suppressing meandering in rolling mill
JP2533564B2 (en) Shape control method of strip in perfect continuous rolling mill
JP2756871B2 (en) Setup control method in rolling of single crown metal strip
JP2807555B2 (en) Automatic thickness control method
JPS5839003B2 (en) Method for preventing meandering of rolled material