JPH0451206B2 - - Google Patents

Info

Publication number
JPH0451206B2
JPH0451206B2 JP59099564A JP9956484A JPH0451206B2 JP H0451206 B2 JPH0451206 B2 JP H0451206B2 JP 59099564 A JP59099564 A JP 59099564A JP 9956484 A JP9956484 A JP 9956484A JP H0451206 B2 JPH0451206 B2 JP H0451206B2
Authority
JP
Japan
Prior art keywords
composite
support
film
micropores
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59099564A
Other languages
Japanese (ja)
Other versions
JPS60244303A (en
Inventor
Tomosaku Imoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP9956484A priority Critical patent/JPS60244303A/en
Publication of JPS60244303A publication Critical patent/JPS60244303A/en
Publication of JPH0451206B2 publication Critical patent/JPH0451206B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、複合体の製造法に関する。[Detailed description of the invention] The present invention relates to a method for manufacturing a composite.

更に詳しくは、イオン交換膜、イオン選択性電
極、バイオセンサーなどとして有効に用いられる
複合体の製造法に関する。
More specifically, the present invention relates to a method for producing a composite that can be effectively used as an ion-exchange membrane, an ion-selective electrode, a biosensor, and the like.

例えば、イオン交換膜の酸透析速度を増大させ
るために、多孔質支持体上に薄膜状のイオン交換
膜を積層させた複合膜が用いられているが、この
ような複合膜の製造を試みると、高分子薄膜層の
部分に微細好が形成されたりあるいは形成されな
かつたりして、一定の複合膜を得ることができな
い。
For example, in order to increase the acid dialysis rate of ion exchange membranes, composite membranes in which thin ion exchange membranes are laminated on a porous support are used, but when attempting to manufacture such composite membranes, However, fine particles may or may not be formed in the thin polymer film layer, making it impossible to obtain a certain composite film.

本発明者は、かかる現象の原因を究明すべく
種々検討した結果、複合化手段として一般的に用
いられている支持体上への膜形成性高分子の有機
溶剤溶液の塗布およびそれの乾燥において、乾燥
する際の雰囲気湿度の影響が大きいことを知り、
その湿度条件を一定範囲内に保つことにより、複
合体の高分子薄膜層に微細孔をほぼ均一に形成す
ることができることを見出した。
As a result of various studies to investigate the cause of this phenomenon, the present inventors have discovered that coating an organic solvent solution of a film-forming polymer on a support and drying it, which is commonly used as a composite means, I learned that the atmospheric humidity has a big effect on drying.
It has been found that by keeping the humidity conditions within a certain range, micropores can be formed almost uniformly in the thin polymer film layer of the composite.

従つて、本発明は支持体上に薄膜の表裏両面に
連通している微細孔をほぼ均一に形成せしめた高
分子薄膜層を積層させた複合体の製造法に係り、
複合体の製造は、支持体上に膜形成性高分子の有
機溶剤溶液を塗布した後、相対湿度約75〜100%
に調湿した雰囲気中で乾燥させることにより行わ
れる。
Therefore, the present invention relates to a method for producing a composite in which a thin polymer film layer in which micropores communicating with both the front and back surfaces of the thin film are formed almost uniformly is laminated on a support.
The production of the composite is carried out by applying an organic solvent solution of the film-forming polymer onto the support, followed by a relative humidity of about 75-100%.
This is done by drying in an atmosphere with controlled humidity.

支持体としては、耐有機溶剤性を有する限り、
その材質や形状を問わず用いることができ、従つ
て多孔質体であることが好ましいものの、非多孔
質体であつてもよい。具体的には、例えばガラ
ス、金属板、紙、プラスチツクシート、中空糸、
半導体などが用いられる。また、膜形成性高分子
としては、例えばポリスルホン、ポリ塩化ビニ
ル、ポリフツ化ビニリデン、酢酸セルロースなど
の樹脂状物質、ブタジエンゴム、ニトリルゴム、
アクリルゴム、フツ素ゴムなどのゴム状物質が単
独であるいは混合物として用いられる。また、こ
れらの膜形成性高分子は、そこに酵素、錯体など
を含有せしめた形で用いることもできる。
As a support, as long as it has organic solvent resistance,
Any material or shape can be used, and therefore, a porous body is preferable, but a non-porous body may also be used. Specifically, for example, glass, metal plates, paper, plastic sheets, hollow fibers,
Semiconductors and the like are used. Examples of film-forming polymers include resinous substances such as polysulfone, polyvinyl chloride, polyvinylidene fluoride, cellulose acetate, butadiene rubber, nitrile rubber,
Rubber-like substances such as acrylic rubber and fluorocarbon rubber can be used alone or as a mixture. Further, these film-forming polymers can also be used in a form containing enzymes, complexes, etc. therein.

これらの膜形成性高分子は、それが溶解する有
機溶剤溶液として、支持体上に塗布される。塗布
は、一般に用いられている浸漬、噴霧、刷毛塗
り、流延などの任意の方法によつて行なうことが
できる。
These film-forming polymers are applied onto a support as a solution in an organic solvent in which they are dissolved. Application can be carried out by any commonly used method such as dipping, spraying, brushing, and casting.

支持体上に塗布された膜形成性高分子の有機溶
剤溶液の乾燥は、塗布後直ちに相対湿度約75〜
100%の雰囲気で行われる。このような湿度条件
下での乾燥では、雰囲気中の水分が溶液中に侵入
することにより、有機溶剤に溶解していた高分子
がもはや安定に溶解していられない状態となり、
それに伴つて高分子同士の凝集が生じ、その凝集
の微粒の隙間から微細孔、一般には孔径約0.1〜
10μ程度の微細孔が、膜の表裏両面に連通した状
態で形成されるものと考えられる。なお、このよ
うな湿度条件下の乾燥は、一般に約0〜100℃、
好ましくは約10〜80℃の温度で約1〜60分間程度
行われる。
Drying of an organic solvent solution of a film-forming polymer coated on a support is carried out immediately after coating at a relative humidity of about 75 to
It will be held in 100% atmosphere. When drying under such humid conditions, moisture in the atmosphere enters the solution, and the polymer dissolved in the organic solvent can no longer be stably dissolved.
As a result, aggregation of polymers occurs, and micropores are created from the gaps between the fine particles of the aggregation, generally with a pore size of about 0.1 to
It is thought that micropores of about 10 μm are formed in communication with both the front and back surfaces of the membrane. In addition, drying under such humidity conditions is generally about 0 to 100℃,
It is preferably carried out at a temperature of about 10 to 80°C for about 1 to 60 minutes.

これに対して、これより低い相対湿度雰囲気中
の乾燥では、雰囲気中の水分の割合が高分子同士
の凝集を生ぜしめるには少なすぎ、従つて高分子
は有機溶剤に均一に溶解した状態のまま溶剤が揮
発し、乾燥して行くので、形成された膜の表面に
は微細孔が形成されず、フラツトな状態を維持し
ているものと考えられる。
On the other hand, when drying in an atmosphere with a lower relative humidity, the proportion of moisture in the atmosphere is too low to cause aggregation of the polymers, and therefore the polymers remain uniformly dissolved in the organic solvent. It is thought that because the solvent evaporates and dries, no micropores are formed on the surface of the formed film and it maintains a flat state.

このようにして形成される本発明の複合体は、
支持体上に薄膜の表裏両面に連通している微細な
孔をほぼ均一に形成せしめた高分子薄膜層を積層
させているので、次のような各種の用途に有効に
用いることができる。
The composite of the present invention thus formed is
Since a polymer thin film layer in which fine pores are formed almost uniformly on both the front and back surfaces of the thin film is laminated on the support, it can be effectively used for various purposes such as the following.

多孔質支持体上にイオン交換基導入可能な高分
子薄膜層を積層させた場合には、イオン選択性透
過膜、荷電型限外口過膜、逆浸透膜などの選択透
過膜に用いることができ、微細孔が薄膜の表裏両
面に連通しているため透水速度の増加効果が、ま
たかかる微細孔が均一に形成されているため選択
性能の向上効果がそれぞれもたらされる。
When a thin polymer film layer into which ion exchange groups can be introduced is laminated on a porous support, it can be used for selective permeation membranes such as ion-selective permeation membranes, charged type ultraporous membranes, and reverse osmosis membranes. Since the fine pores are connected to both the front and back sides of the thin film, the water permeation rate is increased, and since the fine pores are uniformly formed, the selection performance is improved.

半導体支持体上にイオン交換基導入可能な高分
子薄膜層を積層させた場合には、イオン選択性電
極への利用が図れる。更に、この支持体上に、酵
素あるいは錯体を高分子溶液に添加した系を適用
し、そこに薄膜層を積層させた場合には、これを
バイオセンサ−などに用いることができ、この場
合には微細孔が薄膜の表裏両面に連通しているた
め応答速度の増大効果が、またかかる微細孔が均
一に形成されているためイオンの透過性能の向上
効果、ひいてはセンサー感度の向上効果がそれぞ
れ得られる。
When a thin polymer film layer into which ion exchange groups can be introduced is laminated on a semiconductor support, it can be used as an ion-selective electrode. Furthermore, if a system in which an enzyme or a complex is added to a polymer solution is applied to this support and a thin film layer is laminated thereon, this can be used for biosensors, etc. Because the micropores are connected to both the front and back surfaces of the thin film, the response speed is increased, and because the micropores are uniformly formed, the ion permeation performance is improved, which in turn improves sensor sensitivity. It will be done.

次に、実施例について本発明を説明する。 Next, the present invention will be explained with reference to examples.

実施例 ビニルベンジルクロライドースチレン等モル共
重合体の3重量%四塩化炭素溶液中に次の各種の
支持体を浸漬した。
Examples The following various supports were immersed in a 3% by weight carbon tetrachloride solution of an equimolar vinylbenzyl chloride-styrene copolymer.

顕微鏡用カバーグラス ポリプロピレン多孔質膜:日本ポリプラスチツク
社製品シユラガード2400 ポリフツ化ビニリデン多孔質膜:ポリフツ化ビニ
リデン(カイナー社製品カイナー460)20重量
部、ジメチルホルムアミド78重量部およびポリ
エチレングリコール(関東化学製品#6000)2
重量部の混合溶液をガラス板上に流延し、10秒
後にこれを水中に浸漬し、これを引き上げて乾
燥して製造した ポリフツ化ビニリデン多孔質中空系:上記混合溶
液を中空環状ノズルから乾湿式紡糸し、芯液お
よび凝固浴にいずれも水を用いて製造された外
径1.5mm、内径1.0mmの中空糸 前記共重合体溶液を浸漬塗布した各支持体は、
溶液中から引き上げられた後、直ちに温度20℃、
相対湿度75%、88%、95%または100%に調湿さ
れたデシケ−タ−中に入れ、10分間乾燥させた。
なお、調湿は、硫酸および水の混合割合を種々変
更することにより行われた。
Microscope cover glass polypropylene porous membrane: Syuraguard 2400, manufactured by Nippon Polyplastics Co., Ltd. Polyvinylidene fluoride porous membrane: Polyvinylidene fluoride (Kynar 460, manufactured by Kynar Corporation) 20 parts by weight, dimethylformamide 78 parts by weight, and polyethylene glycol (Kanto Chemical Product #) 6000)2
Polyvinylidene fluoride porous hollow system manufactured by casting part by weight of the mixed solution onto a glass plate, immersing it in water after 10 seconds, pulling it up and drying it: The above mixed solution is poured into dry and wet form through a hollow annular nozzle. Hollow fibers with an outer diameter of 1.5 mm and an inner diameter of 1.0 mm manufactured by formula spinning and using water for both the core solution and coagulation bath. Each support coated with the copolymer solution by dip coating was
Immediately after being lifted from the solution, the temperature is 20℃.
The sample was placed in a desiccator with a relative humidity of 75%, 88%, 95%, or 100% and dried for 10 minutes.
Note that the humidity was controlled by variously changing the mixing ratio of sulfuric acid and water.

得られた複合膜の表面を、走査型電子顕微鏡を
用い倍率2500倍で観察すると、微孔径の孔がほぼ
均一に形成されていた。また、形成された高分子
薄膜層の断面を観察すると、この微孔径の孔は薄
膜層の表裏両面に貫通していた。
When the surface of the obtained composite membrane was observed using a scanning electron microscope at a magnification of 2,500 times, it was found that pores with micropore diameters were formed almost uniformly. Furthermore, when the cross section of the formed polymer thin film layer was observed, it was found that the micropores penetrated both the front and back sides of the thin film layer.

比較例 実施例において、乾燥条件の相対湿度を16%、
22%、35%または57%にそれぞれ変更した。得ら
れた複合膜の表面を、同様に走査型電子顕微鏡を
用いて観察したが、いずれの表面にも微細孔は形
成されておらず、フラツトな表面が形成されてい
た。
Comparative Example In the example, the relative humidity of the drying conditions was 16%,
changed to 22%, 35% or 57%, respectively. The surfaces of the resulting composite membranes were similarly observed using a scanning electron microscope, but no micropores were formed on any of the surfaces, and a flat surface was formed.

Claims (1)

【特許請求の範囲】[Claims] 1 支持体上に膜形成性高分子の有機溶剤溶液を
塗布した後、相対湿度約75〜100%に調湿した雰
囲気中で乾燥させ、薄膜の表裏両面に連通してい
る微細孔をほぼ均一に形成せしめた高分子薄膜層
を積層させることを特徴とする複合体の製造法。
1 After applying an organic solvent solution of a film-forming polymer onto a support, it is dried in an atmosphere with a relative humidity of about 75 to 100%, so that the micropores communicating on both the front and back surfaces of the thin film are almost uniformly formed. 1. A method for producing a composite, characterized by laminating thin polymer film layers formed on.
JP9956484A 1984-05-17 1984-05-17 Composite and preparation thereof Granted JPS60244303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9956484A JPS60244303A (en) 1984-05-17 1984-05-17 Composite and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9956484A JPS60244303A (en) 1984-05-17 1984-05-17 Composite and preparation thereof

Publications (2)

Publication Number Publication Date
JPS60244303A JPS60244303A (en) 1985-12-04
JPH0451206B2 true JPH0451206B2 (en) 1992-08-18

Family

ID=14250630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9956484A Granted JPS60244303A (en) 1984-05-17 1984-05-17 Composite and preparation thereof

Country Status (1)

Country Link
JP (1) JPS60244303A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2512534B2 (en) * 1988-07-19 1996-07-03 日本碍子株式会社 Method for producing porous ceramic membrane
ATE139713T1 (en) * 1991-03-12 1996-07-15 Toray Industries METHOD FOR PRODUCING A PARTIALLY PERMEABLE COMPOSITE MEMBRANE

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56152703A (en) * 1980-04-26 1981-11-26 Nitto Electric Ind Co Ltd Preparation of composite tubular semipermeable membrane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56152703A (en) * 1980-04-26 1981-11-26 Nitto Electric Ind Co Ltd Preparation of composite tubular semipermeable membrane

Also Published As

Publication number Publication date
JPS60244303A (en) 1985-12-04

Similar Documents

Publication Publication Date Title
US5540837A (en) Permanent hydrophilic modification of fluoropolymers
CN109304106B (en) Janus forward osmosis membrane and preparation method and application thereof
JPS62196390A (en) Ion permeable diaphragm for improved electrolytic cell
US5630941A (en) Permanent hydrophilic modification of fluoropolymers
CN108043248B (en) A kind of PVA-PVDF hollow fiber ultrafiltration membrane, preparation method, preparation facilities and application
WO1999020378A1 (en) A manufacturing method of composite membrane having hydrophilic coating layer on hydrophobic support membrane
JPH07258456A (en) Production of porous polymer article from nonporous polymer composition and article produced thereby
CA1073822A (en) Ethylene-vinyl alcohol copolymer membranes with improved permeability characteristics and a method for producing the same
CN109453674A (en) The preparation method of ultra-thin composite membrane
JPS5940042B2 (en) Semipermeable membrane and its manufacturing method
JPS6219205A (en) Preparation of ultrafilter membrane
JPH0451206B2 (en)
JP2519831B2 (en) Method for producing charged separation membrane
JPS63296940A (en) Polyvinylidene fluoride resin porous film and its manufacture
CN109126479B (en) Silver nanowire-fluorinated ethylene propylene super-hydrophobic porous membrane and preparation method thereof
KR20140113113A (en) Positive charged poly(vinylidene fluoride) porous membranes and manufacturing method thereof
CN110523297A (en) A kind of graphene oxide composite nano filter membrane and preparation method thereof
JP4395904B2 (en) Hydrophilized porous polymer membrane and method for producing the same
CN108889142A (en) A kind of polyvinyl alcohol-hydroxyethyl cellulose/polyacrylonitrile gas dehumidification membrane preparation method
CN115025636B (en) Polymer ultrafiltration membrane with bicontinuous high through hole structure and preparation method and application thereof
JPH02207827A (en) Anisotropic hollow fiber composite membrane
KR100418859B1 (en) Composition for producing polyethersulfone membrane and method for preparing microfilteration membrane using the same
JPH0430418B2 (en)
JPS6160729A (en) Anion exchange membrane
KR19990019013A (en) Manufacturing method of crosslinked polyamide reverse osmosis membrane