JPH0450930A - Nonlinear optical material - Google Patents

Nonlinear optical material

Info

Publication number
JPH0450930A
JPH0450930A JP15815190A JP15815190A JPH0450930A JP H0450930 A JPH0450930 A JP H0450930A JP 15815190 A JP15815190 A JP 15815190A JP 15815190 A JP15815190 A JP 15815190A JP H0450930 A JPH0450930 A JP H0450930A
Authority
JP
Japan
Prior art keywords
group
ring
thienyl
electron
nonlinear optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15815190A
Other languages
Japanese (ja)
Inventor
Satoshi Nakamura
智 中村
Satoshi Imahashi
聰 今橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP15815190A priority Critical patent/JPH0450930A/en
Publication of JPH0450930A publication Critical patent/JPH0450930A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve secondary nonlinear sensitivity and transparency by incorporating a specified thienyl deriv. CONSTITUTION:A thienyl deriv. represented by formula I is incorporated. In the formula I, each of R<1> and R<2> is an org. substituent such as amino, halogen or an electron attractive substituent, R<1> and R<2> may be different from each other, l is 1-5, m is 1-3, n is 0-3, A is an arom. hydrocarbon group of a hetero arom. group and Y is H, cyano, etc. The thienyl deriv. is a pi electron conjugate compd. and can cause high polarization when an electron donative substituent and an electron attractive substituent are properly introduced into the arom. ring A and the thienyl ring. An org. compd. having high nonlinear optical sensi tivity and superior transparency can be obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光情報、光通信等に用いられる非線形光学材料
に関するものであり、更に詳しくはチエニル誘導体から
なる有機非線形光学材料に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a nonlinear optical material used for optical information, optical communication, etc., and more particularly to an organic nonlinear optical material comprising a thienyl derivative.

例えば半導体レーザー用波長変換素子、POSシステム
、計測機器、光ファイバーによる情報伝送等に用いるこ
とができる。
For example, it can be used in wavelength conversion elements for semiconductor lasers, POS systems, measuring instruments, information transmission using optical fibers, and the like.

(従来の技術) レーザー光は単色性、指向性、即ちコヒーレント性を有
するため物質に特異的な相互作用を及ぼす。この相互作
用は非線形光学効果として知られており、高調波発生、
カー効果、光混合、パラメトリック増幅等の現象を起こ
す。特に二次及び三次非線形光学効果は比較的大きな非
線形感受率が期待できるため情報処理、光通信等への応
用か可能である。
(Prior Art) Laser light has monochromaticity and directivity, that is, coherent property, and therefore exerts a specific interaction with substances. This interaction is known as a nonlinear optical effect, and can lead to harmonic generation,
It causes phenomena such as the Kerr effect, light mixing, and parametric amplification. In particular, second-order and third-order nonlinear optical effects can be expected to have a relatively large nonlinear susceptibility, so they can be applied to information processing, optical communications, etc.

従来、非線形光学材料としてK D P (KH2PO
4)、A D P (NH4f13PO4)、K T 
P (KTiOPO4)、LjNbOa等の無機材料が
使用され一部の測定機器に応用されてきた。しかし純度
の高い単結晶が得に<<、又高価であること、耐光損傷
性に劣ること、潮解性であること、非線形光学感受率が
小さいこと等の理由から光関連への応用は困難であった
Conventionally, KDP (KH2PO
4), A D P (NH4f13PO4), K T
Inorganic materials such as P (KTiOPO4) and LjNbOa have been used and applied to some measuring instruments. However, it is difficult to apply it to light-related applications due to reasons such as high purity single crystals, high price, poor light damage resistance, deliquescent property, and low nonlinear optical susceptibility. there were.

近年になって、無機材料に比べ有機材料が優れた非線形
光学効果を有することか見出されて以来、分子設計の点
で自由度の高い有機材料が注目を浴びている。特に、2
−メチル−4−ニトロアニリン(MNA)に代表される
ようなπ電子が共役し、分子内に電子供与性置換基及び
電子吸引性置換基を佇したC −T (Charge−
Transfer)型有機化合物が大きな分子超分極率
を誘起するため大きな非線形感受率が期待できると考え
られてきた。
In recent years, it has been discovered that organic materials have superior nonlinear optical effects compared to inorganic materials, and since then, organic materials, which have a high degree of freedom in molecular design, have been attracting attention. In particular, 2
-C -T (Charge-
It has been thought that transfer-type organic compounds can be expected to have large nonlinear susceptibility because they induce large molecular hyperpolarizability.

しかし、有機化合物の結晶構造は分子間の相互作用即ち
水素結合、ファンデルワールス相互作用等の分子間力に
よって決定される。上記のような強い電子吸引性置換基
及び電子供与性置換基を有するC−T型分子の場合、分
子間の強い双極子−双極子相互作用か働き結晶を安定さ
せる構造、即ち二分子の双極子を打ち消し合う結晶構造
をとりやすい。このような結晶構造は分子集合体として
中心対称性結晶であり、従って非線形光学的に不活性で
ある。
However, the crystal structure of an organic compound is determined by intermolecular interactions, ie, intermolecular forces such as hydrogen bonds and van der Waals interactions. In the case of C-T type molecules having strong electron-withdrawing substituents and electron-donating substituents as described above, the structure stabilizes the crystal due to strong dipole-dipole interactions between molecules, that is, bimolecular dipoles. It is easy to form a crystal structure in which the children cancel each other out. Such a crystal structure is a centrosymmetric crystal as a molecular assembly, and is therefore nonlinearly optically inactive.

そこで、このような結晶構造の中心対称性を崩壊させる
手段として次のような手法か用いられている。即ち、ヒ
ドロキシル基、カルボキシル基、アミン基等の分子配向
を制御できる水素結合性の大きな置換基、立体的な障害
によって分子構造を大きく変化させうるバルキーな置換
基、アミノ酸又はアミノ酸誂導体等の光学活性な置換基
(D又はL体)等の他、包接化合物との錯体等、複合化
によって非中心対称性を誘起させる方法か実施されてい
る。
Therefore, the following method is used as a means of disrupting the central symmetry of such a crystal structure. In other words, substituents with large hydrogen bonds that can control molecular orientation such as hydroxyl groups, carboxyl groups, and amine groups, bulky substituents that can significantly change the molecular structure due to steric hindrance, and optical substituents such as amino acids or amino acid-like conductors. In addition to active substituents (D- or L-form), methods of inducing non-centrosymmetric properties have been carried out by conjugation, such as complexes with clathrates.

又二次非線形光学材料が非線形光学素子として適用でき
る必要十分な条件として以下の点か挙けられる。
Further, the following points can be cited as necessary and sufficient conditions for the application of the second-order nonlinear optical material as a nonlinear optical element.

■ 非線形光学感受率か極めて大きい ■ 光応答速度か早い ■ レーザー光の透過性に優れている ■ 耐光損傷性 ■ 位相整合性 ■ 結晶性(単結晶育成の可能性等) ■ 機械的強度 ■ 加工が容易である ■ 耐温性など化学的に安定である [相] 難昇華性 (発明が解決しようとする課題) 超分極率か大きく、水素結合性置換基導入及び光学活性
な置換基導入によって達成された中心対称性のないNP
PのようなC−T型化合物及びπ電子共役の長い分子の
場合、大きな二次非線形感受率は期待できるが透明性に
欠ける等の欠点を有している。そのため使用波長範囲が
限られてしまうという欠点かあった。
■ Extremely high nonlinear optical susceptibility ■ Fast light response speed ■ Excellent laser light transmission ■ Light damage resistance ■ Phase matching ■ Crystallinity (possibility of single crystal growth, etc.) ■ Mechanical strength ■ Processing ■ Chemically stable, such as temperature resistance [Phase] Difficult to sublimate (problem to be solved by the invention) Hyperpolarizability is high, and by introducing hydrogen-bonding substituents and optically active substituents Achieved NP without central symmetry
In the case of C-T type compounds such as P and molecules with long π-electron conjugation, large second-order nonlinear susceptibility can be expected, but they have drawbacks such as lack of transparency. Therefore, there was a drawback that the usable wavelength range was limited.

(課題を解決するための手段) 本発明は上記問題点を解決するために行われたものであ
り、大きな非線形光学感受率を有し、透明性に優れた有
機化合物を提供するものである。
(Means for Solving the Problems) The present invention was carried out in order to solve the above-mentioned problems, and provides an organic compound having a large nonlinear optical susceptibility and excellent transparency.

上記目的を達成するため、本発明は下記の構成を有する
。すなわち、本発明は下記一般式(1)で表されるチエ
ニル誂導体を含むことを特徴とする非線形光学材料であ
る。
In order to achieve the above object, the present invention has the following configuration. That is, the present invention is a nonlinear optical material characterized by containing a thienyl conductor represented by the following general formula (1).

(式中、置換基R′及びR2は異種でも同一でもよく、
アミノ基、炭素数1〜18を有する基で置換された置換
アミン基、環状アミン基、アルキル基、ハロゲン置換ア
ルキル基、アルコキン基、ハロゲン置換アルコキシ基、
メルカプトアルコキシ基、アシルアミド基、エステル、
チオエステル、ヒドロキシ基、メルカプトヒドロキシ基
、ハロゲン及び電子吸引性置換基から選ばれた有機性置
換基であり、Qはその数を示し1〜5であり、mは1〜
3である。nはO〜3である。環へは芳香族炭化水素基
またはへテロ芳香族基を示す。Yは水素、シアノ基、カ
ルボキシル基、炭素数1〜18のアルキル基を有するカ
ルボン酸エステル基又はニトロ基である。) 本発明のチエニル誘導体はπ電子共役型化合物であり、
芳香環であるA環及びチエニル環に電子供与性置換基、
電子吸引性置換基を適宜導入することで大きな分極を、
誘起させることかできる。
(In the formula, the substituents R' and R2 may be different or the same,
Amino group, substituted amine group substituted with a group having 1 to 18 carbon atoms, cyclic amine group, alkyl group, halogen-substituted alkyl group, alkokene group, halogen-substituted alkoxy group,
Mercaptoalkoxy group, acylamide group, ester,
It is an organic substituent selected from thioester, hydroxy group, mercaptohydroxy group, halogen, and electron-withdrawing substituent, Q indicates the number and is 1 to 5, and m is 1 to 5.
It is 3. n is O~3. The ring represents an aromatic hydrocarbon group or a heteroaromatic group. Y is hydrogen, a cyano group, a carboxyl group, a carboxylic acid ester group having an alkyl group having 1 to 18 carbon atoms, or a nitro group. ) The thienyl derivative of the present invention is a π-electron conjugated compound,
Electron-donating substituents on the aromatic ring A ring and thienyl ring,
Large polarization can be achieved by appropriately introducing electron-withdrawing substituents.
It can be induced.

即ち大きなSHG感受率か期待できる。In other words, a large SHG susceptibility can be expected.

又置換基であるR I 、 R2において配向制御能を
有する置換基、立体障害性置換基を適宜用いれば非中心
対称性構造を誘起し二次非線形光学活性化合物と成りつ
る。一方、要求特性の重要項目の一つである吸収端波長
については半導体レーザーを使用できる領域か成立する
よう、置換基RI 、 R2をうまく制御し、用いれば
良い。従って本発明のチエニル誘導体はSHG活性な材
料として有望且つ実用化可能な材料である。
Furthermore, if a substituent having orientation control ability or a sterically hindering substituent is appropriately used in the substituents R I and R2, a non-centrosymmetric structure can be induced and a second-order nonlinear optically active compound can be obtained. On the other hand, as for the absorption edge wavelength, which is one of the important characteristics required, the substituents RI and R2 may be well controlled and used so as to establish a range in which a semiconductor laser can be used. Therefore, the thienyl derivative of the present invention is a promising and practical material as an SHG active material.

本発明において、R′、R2の有機性置換基以外に、必
要に応して、本発明化合物の性能等の微調整としてその
他の置換基を適宜導入してもよい。
In the present invention, in addition to the organic substituents R' and R2, other substituents may be appropriately introduced as necessary to finely adjust the performance of the compound of the present invention.

本発明で言うその他の置換基として、電子供与性基とし
てアミン、モノメチルアミン、モノメチルアミン、ジメ
チルアミノ、ジエチルアミノ、n−ブチルアミノ、t−
ブチルアミノ基等のアミン基、ピペリジノ、ピロリジノ
、モルホリノ等の環状アミン基、炭素数1〜12である
ノルマルアルキル基、t−ブチル基等のアルキル基、光
学活性炭素を含むアルキル基、炭素数1〜12であるノ
ルマルアルコキシ基、t−ブトキン基、光学活性炭素を
含むアルコキシ基、炭素数1〜12であるメJシカプト
ノルマルアルコキ7基、t−チオブトキ7基等のアルコ
キシ基、光学活性炭素を含むメルカプトアルコキシ基の
他、ヒドロキシル基、メルカプトヒドロキンル基、ハロ
ゲン及び上記置換基を有する芳香族炭化水素基を用いる
ことかできる。
Other substituents referred to in the present invention include amine, monomethylamine, monomethylamine, dimethylamino, diethylamino, n-butylamino, t-
Amine groups such as butylamino groups, cyclic amine groups such as piperidino, pyrrolidino, and morpholino, normal alkyl groups having 1 to 12 carbon atoms, alkyl groups such as t-butyl groups, alkyl groups containing optically active carbon, and 1-carbon atoms. -12 normal alkoxy groups, t-butquine groups, alkoxy groups containing optically active carbon, alkoxy groups such as mejycato normal alkoxy 7 groups and t-thiobutyx 7 groups having 1 to 12 carbon atoms, optically active In addition to a carbon-containing mercaptoalkoxy group, a hydroxyl group, a mercaptohydroquine group, a halogen, and an aromatic hydrocarbon group having the above-mentioned substituents can be used.

電子吸引性基として、ニトロ基、ンアノ基、トリフルオ
ロメチル基、インシアネート基、スルフォニル基、カル
ボキンル基、カルボン酸エステル基、アシルアミノ基、
ハロゲン及び上記置換基を有する芳香族基を用いること
かできる。本発明で言う芳香族炭化水素基及びヘテロ芳
香環とはベンゼン環、ナフタレン環、アントラセン環、
ビフェニル環、ターフェニル環、チアゾール環、フラン
環、チオフェン環、ピロール環、ピリジン環、ピリミジ
ン環、ピラジン環、ピリダジン環、トリアジン環、テト
ラジン環等を用いることかできる。
As the electron-withdrawing group, a nitro group, an ano group, a trifluoromethyl group, an incyanate group, a sulfonyl group, a carboxyl group, a carboxylic acid ester group, an acylamino group,
Halogens and aromatic groups having the above substituents can also be used. The aromatic hydrocarbon group and heteroaromatic ring referred to in the present invention include a benzene ring, a naphthalene ring, an anthracene ring,
A biphenyl ring, terphenyl ring, thiazole ring, furan ring, thiophene ring, pyrrole ring, pyridine ring, pyrimidine ring, pyrazine ring, pyridazine ring, triazine ring, tetrazine ring, etc. can be used.

本発明の有機非線形光学材料は2式等の一般合成法を用
いて合成することか出来る。
The organic nonlinear optical material of the present invention can be synthesized using a general synthesis method such as Equation 2.

即ち置換チエニル−2−アセトニトリル、置換チエニル
−3−アセトニトリル、置換+ x−ルー2−酢酸、置
換チエニル−3−酢酸、置換チエニル−2−酢酸アルキ
ルエステル、置換チエニル−3−酢酸アルキルエステル
を原料とし、ピペリジン等の塩基性溶媒を触媒として用
い対応するアルデヒド誂導体とのカップリング反応を行
わせることで本発明のチエニル誘導体を合成することか
できる。
That is, substituted thienyl-2-acetonitrile, substituted thienyl-3-acetonitrile, substituted + The thienyl derivative of the present invention can be synthesized by carrying out a coupling reaction with the corresponding aldehyde conductor using a basic solvent such as piperidine as a catalyst.

(実施例) 以下、実施例に従って本発明を更に詳しく説明するが、
本発明はこれら実施例に限定されるものではない。
(Example) Hereinafter, the present invention will be explained in more detail according to Examples.
The present invention is not limited to these examples.

第二次高調波発生(SHG)の測定は粉末法(SK、K
urz、T、T、Perry 、39.3798(19
68))に従って行った。測定に用いた光源はNd;Y
AGレーザーであり、基本波長11084nのレーザー
光を粉末試料へ照射し、発生する二倍波(532nm)
を分光器で検出した。第二次高調波発生装置の概略図を
第1図に示す。
Measurement of second harmonic generation (SHG) is performed using the powder method (SK, K
urz, T, T, Perry, 39.3798 (19
68)). The light source used for measurement was Nd;Y
It is an AG laser, which irradiates a powder sample with a laser beam with a fundamental wavelength of 11084n and generates a double wave (532nm).
was detected using a spectrometer. A schematic diagram of the second harmonic generator is shown in FIG.

使用した粉末試料は(a)アセトン、(b)ソクロヘキ
サノン、(c)THF、(d)E tOHで再結晶精製
した粉末をメノウ鉢で粉砕した後、約100戸に分級し
たものを用いた。
The powder samples used were (a) acetone, (b) isochlohexanone, (c) THF, and (d) E. The powder was recrystallized and purified with tOH, crushed in an agate pot, and then classified into approximately 100 units. there was.

実」1例」− 2−チエニルアセトニトリル5 、0 g (40J5
04mM)及び4−メトキシベンズアルデヒド5.53
g (40,6504mM)をニロナスフラに入れ、ピ
リジン50社で溶解させる。反応溶液は2時間加熱還流
を行い、TLCで生成物の確認をした後室温に戻して、
エバポレーターでf[を除去した。析出した褐色粗結晶
はEtOHで再結晶精製した。減圧上結晶を分取した後
、ガスクロで不純物ピークが消失するまで再結晶精製を
繰り返した。得られた淡黄色結品はアセトンに加熱溶解
し一日放置したところ微細なプリズム状単結晶↓か得ら
れた。
1 example of 2-thienylacetonitrile 5,0 g (40J5
04mM) and 4-methoxybenzaldehyde 5.53
g (40,6504mM) was placed in Nironasufura and dissolved with pyridine 50. The reaction solution was heated under reflux for 2 hours, and after confirming the product by TLC, it was returned to room temperature.
f[ was removed using an evaporator. The precipitated brown crude crystals were purified by recrystallization with EtOH. After separating the crystals under reduced pressure, recrystallization purification was repeated using gas chromatography until the impurity peak disappeared. The pale yellow crystals obtained were heated and dissolved in acetone and left to stand for one day, yielding fine prismatic single crystals.

生成物の確認は核磁気共鳴スペクトル、赤外吸収スペク
トル、元素分析を用いて行ったまた得られた微細単結晶
1はメノウ鉢で粉砕し約100゜に分級した後、880
強度の測定を実施した。
The product was confirmed using nuclear magnetic resonance spectroscopy, infrared absorption spectroscopy, and elemental analysis.The obtained fine single crystal 1 was crushed in an agate pot and classified to approximately 100°, and then 880°
Intensity measurements were carried out.

880強度;X23.1 (対尿素) 又化合物1を(b)シクロヘキサノン、(c)THFl
(d)EtOHで再結晶精製した粉末試料を同様に分級
を行いS HG 191定を行った。その結果(b)2
0.5、(c)19.7、(d)20.7の880強度
を確認することができた。
880 strength;
(d) A powder sample purified by recrystallization with EtOH was similarly classified and SHG 191 was determined. The result (b)2
It was possible to confirm 880 intensities of 0.5, (c) 19.7, and (d) 20.7.

以下、再結晶溶媒として、(a)アセトン、(b)シク
ロ・\キサノン、(C)THFX (d)x9ノールを
使用したが、それぞれ(a)〜(d)の記号で略記する
Hereinafter, (a) acetone, (b) cyclo.\xanone, and (C) THFX (d) x9nol were used as recrystallization solvents, which will be abbreviated with symbols (a) to (d), respectively.

実」L医2− 2−チエニルアセトニトリル5 、0 g (40,6
504mM)及び4− (N、N−ジメチル)ベンズア
ルテヒド6.06g (40,6504mM)を二口ナ
スフラに入れ、ピペリジンsomQで溶解させる。
2-thienyl acetonitrile 5,0 g (40,6
504mM) and 6.06g (40,6504mM) of 4-(N,N-dimethyl)benzaltehyde were placed in a two-neck Nasufura vessel and dissolved with piperidine somQ.

反応溶液は2時間加熱還流を行い、TLcで生成物の確
認をした後室温に戻して、エバポレーターで溶媒を除去
した。析出した褐色粗結晶はEtOHで再結晶精製した
。減圧下結品を分取した後、ガスクロで不純物ピークか
消失するまで再結晶精製を繰り返し、純粋な化合物2を
得た。
The reaction solution was heated under reflux for 2 hours, and after confirming the product by TLc, the temperature was returned to room temperature, and the solvent was removed using an evaporator. The precipitated brown crude crystals were purified by recrystallization with EtOH. After fractionating the precipitate under reduced pressure, recrystallization purification was repeated by gas chromatography until impurity peaks disappeared to obtain pure Compound 2.

生成物の確認は核磁気共鳴スペクトル、赤外吸収スペク
トル、元素分析を用いて行った得られた粉末試料はメノ
ウ鉢で粉砕し約100戸に分級した後、880強度の測
定を実施した。
The product was confirmed using nuclear magnetic resonance spectroscopy, infrared absorption spectroscopy, and elemental analysis. The obtained powder sample was crushed in an agate pot and classified into approximately 100 units, and then 880 intensity was measured.

その結果(aH7,6、(b)19.4、(c)15.
8、(d)19.9の880強度を確認することかでき
た。
The results (aH7.6, (b) 19.4, (c) 15.
8, (d) 880 intensity of 19.9 could be confirmed.

実JL医Jユ 2−チエニルアセトニトリル5 、0 g (40,6
504mM) 及び4−ブロモベンズアルデヒド7.5
2g (40,6504mM)をニロナスフラに入れ、
ピペリジン40vaQで溶解させる。反応溶液は2時間
加熱還流を行い、TLCで生成物の確認をした後室温に
戻して、エバポレーターで溶媒を除去した。析出した褐
色粗結晶はM e OHで再結晶精製した。減圧上結晶
を分取した後、ガスクロで不純物ピークが消失するまで
再結晶精製を縁り返し、純粋な化合物足を得た。
Real JL Doctor J Yu 2-Thienylacetonitrile 5,0 g (40,6
504mM) and 4-bromobenzaldehyde 7.5
Put 2g (40,6504mM) into Nironasufura,
Dissolve with piperidine 40 vaQ. The reaction solution was heated under reflux for 2 hours, and after confirming the product by TLC, the temperature was returned to room temperature, and the solvent was removed using an evaporator. The precipitated brown crude crystals were purified by recrystallization with M e OH. After separating the crystals under reduced pressure, the recrystallization purification was repeated until the impurity peak disappeared using gas chromatography to obtain a pure compound base.

生成物の確認は核磁気共鳴スペクトル、赤外吸収スペク
トル、元素分析を用いて行った得られた粉末試料はメノ
ウ鉢で粉砕し7約100uに分級した後、880強度の
測定を実施した。
The product was confirmed using nuclear magnetic resonance spectroscopy, infrared absorption spectroscopy, and elemental analysis. The obtained powder sample was crushed in an agate pot and classified into about 100 u, and then the 880 intensity was measured.

その結果(a)30.1、(b)29.8、(c)29
.4、(d)21.4の880強度を確認することがで
きた。
Results (a) 30.1, (b) 29.8, (c) 29
.. 4, (d) 880 intensity of 21.4 could be confirmed.

ILK上 3−チエニルアセトカルボン酸5.0g(35,211
2mM)及び4−ンアノベンズアルデヒド4.Big 
(35,2112mM)を二ロナスフラに入れ、ピペリ
ジン40 mQで溶解させる。反応溶液は3時間加熱還
流を行い、TLcて生成物の確認をした後室温に戻して
、エバポレーターで溶媒を除去した。析出した褐色粗結
晶はEtOHで再結晶精製した。減圧上結晶を分取した
後、ガスクロで不純物ピークか消失するまで再結晶精製
を繰り返し、純粋な化合物4を得た。
5.0 g of 3-thienylacetocarboxylic acid (35,211
2mM) and 4-anobenzaldehyde4. Big
(35,2112mM) was placed in Nironasufura and dissolved with 40 mQ of piperidine. The reaction solution was heated under reflux for 3 hours, the product was confirmed by TLc, and then returned to room temperature, and the solvent was removed using an evaporator. The precipitated brown crude crystals were purified by recrystallization with EtOH. After fractionating the crystals under reduced pressure, recrystallization purification was repeated using gas chromatography until impurity peaks disappeared to obtain pure Compound 4.

N 生成物の確認は核磁気共鳴スペクトル、赤外吸収スペク
トル、元素分析を用いて行った得られた粉末試料はメノ
ウ鉢で粉砕し約100uに分級した後、880強度の測
定を実施した。
The N 2 product was confirmed using nuclear magnetic resonance spectroscopy, infrared absorption spectroscopy, and elemental analysis. The obtained powder sample was crushed in an agate pot and classified into about 100 u, and then 880 intensity was measured.

その結果(aH2,2、(bHO,0,(c)11.2
.(d)11.7の880強度を確認することができた
The result (aH2,2, (bHO,0, (c)11.2
.. (d) 880 intensity of 11.7 could be confirmed.

支り九1 2−チエニルアセトカルボン酸メチルエステル5.0g
 (32,0512mM)及び4−ニトロベンズアルデ
ヒド4.84g (32,0512mM)をニロナスフ
ラに入れ、ピペリジン60mQで溶解させる。反応溶液
は2時間加熱還流を行い、TLCで生成物の確認をした
後室温に戻して、エバポレーターで溶媒を除去した。析
出した褐色粗結晶はEtOHで再結晶精製した。減圧ド
結晶を分取した後、ガスクロで不純物ピークが消失する
まで再結晶精製を縁り返し、純粋な化合物生成物の確認
は核磁気共鳴スペクトル、赤外吸収スペクトル、元素分
析を用いて行った得られた粉末試料はメノウ鉢で粉砕し
約100IUに分級した後、880強度の測定を実施し
た。
Support 91 2-thienylacetocarboxylic acid methyl ester 5.0g
(32,0512mM) and 4.84g (32,0512mM) of 4-nitrobenzaldehyde are placed in Nironasfura and dissolved with 60mQ of piperidine. The reaction solution was heated under reflux for 2 hours, and after confirming the product by TLC, the temperature was returned to room temperature, and the solvent was removed using an evaporator. The precipitated brown crude crystals were purified by recrystallization with EtOH. After separating the crystals under reduced pressure, we repeated the recrystallization purification using gas chromatography until the impurity peak disappeared, and confirmed the purity of the compound product using nuclear magnetic resonance spectroscopy, infrared absorption spectroscopy, and elemental analysis. The obtained powder sample was crushed in an agate pot and classified into approximately 100 IU, and then 880 intensity was measured.

その1古果(a)21.1.(b)20.0.(c)2
0.5.(d)20.7の880強度を確認することが
できた。
Part 1 Old fruit (a) 21.1. (b) 20.0. (c)2
0.5. (d) 880 intensity of 20.7 could be confirmed.

〜 実施例1〜5と同様に下記化合物の合成を行い、880
強度の測定を行った。
~ The following compounds were synthesized in the same manner as Examples 1 to 5, and 880
The strength was measured.

化合物と880強度の結果を表1〜4に示す。The results of the compounds and 880 intensity are shown in Tables 1-4.

表−1 表−2 表−3 (発明の効果) 本化合物のチエニル誘導体は長いπ電子共役型構造を有
しており、又電子吸引性置換基であるシアン基、カルボ
キ/ル基、カルボン酸エステル基を打しているため大き
な分極率を有しており大きなSHG光学感受率か期待で
きる。
Table-1 Table-2 Table-3 (Effects of the invention) The thienyl derivative of the present compound has a long π-electron conjugated structure, and has electron-withdrawing substituents such as cyan group, carboxyl group, and carboxylic acid group. Since it has an ester group, it has a high polarizability and can be expected to have a high SHG optical susceptibility.

従ってこの骨格に配向制御基を導入することで結晶構造
を制御し、非中心対称性を誂起すればより大きな非線形
光学感受率が期待できる。
Therefore, greater nonlinear optical susceptibility can be expected by controlling the crystal structure by introducing an orientation control group into this skeleton and inducing non-centrosymmetric properties.

また環へとして、ヘテロ芳香環を用いた場合吸収端波長
の短波長化が可能であり半導体レーザー用波長変換素子
としての適用が可能である。
Furthermore, when a heteroaromatic ring is used as the ring, the absorption edge wavelength can be shortened, and it can be applied as a wavelength conversion element for a semiconductor laser.

本発明の化合物は高融点ををし、昇華性も無く、吸水性
も低いため保存安定性に優れており、且つ極めて大きな
非線形光学感受率を有しており、レーザー耐性に優れた
有機非線形光学材料を提供することができる。
The compound of the present invention has a high melting point, no sublimation, and low water absorption, so it has excellent storage stability. It also has an extremely high nonlinear optical susceptibility, and is an organic nonlinear optical compound with excellent laser resistance. material can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

図1;本発明の実施例において使用した第二高調波発生
装置の概略図 表−4 ;QスイッチNd;YAGレーザー ;1064n■用レーザーミラー シャッター  4;試料(粉末状) 集光レンズ  6;赤外カットフィルターポリクロメー
ター マルチチャンネルフォトダイオード MCPD駆動回路 コンピューター インターフェース
Figure 1; Schematic diagram of the second harmonic generator used in the examples of the present invention -4; Q switch Nd; YAG laser; laser mirror shutter for 1064n 4; sample (powder) condensing lens 6; infrared Cut filter polychromator multi-channel photodiode MCPD drive circuit computer interface

Claims (1)

【特許請求の範囲】[Claims] (1)下記一般式(1)で表示されるチエニル誘導体を
含むことを特徴とする非線形光学材料。 ▲数式、化学式、表等があります▼−−−−−−−−(
1) (式中、置換基R^1及びR_2は異種でも同一でもよ
く、アミノ基、炭素数1〜18を有する基で置換された
置換アミノ基、環状アミノ基、アルキル基、ハロゲン置
換アルキル基、アルコキシ基、ハロゲン置換アルコキシ
基、メルカプトアルコキシ基、アシルアミド基、エステ
ル、チオエステル、ヒドロキシ基、メルカプトヒドロキ
シ基、ハロゲン及び電子吸引性置換基から選ばれた有機
性置換基であり、lはその数を示し1〜5であり、mは
1〜3である。nは0〜3である。環Aは芳香族炭化水
素基またはヘテロ芳香族基を示す。Yは水素、シアノ基
、カルボキシル基、炭素数1〜18のアルキル基を有す
るカルボン酸エステル基又はニトロ基である。)
(1) A nonlinear optical material characterized by containing a thienyl derivative represented by the following general formula (1). ▲There are mathematical formulas, chemical formulas, tables, etc.▼−−−−−−−−(
1) (In the formula, the substituents R^1 and R_2 may be different or the same, and include an amino group, a substituted amino group substituted with a group having 1 to 18 carbon atoms, a cyclic amino group, an alkyl group, a halogen-substituted alkyl group) , an alkoxy group, a halogen-substituted alkoxy group, a mercaptoalkoxy group, an acylamido group, an ester, a thioester, a hydroxy group, a mercaptohydroxy group, a halogen, and an electron-withdrawing substituent, and l is the number thereof. m is 1 to 3. n is 0 to 3. Ring A represents an aromatic hydrocarbon group or a heteroaromatic group. Y is hydrogen, cyano group, carboxyl group, carbon It is a carboxylic acid ester group or nitro group having an alkyl group of number 1 to 18.)
JP15815190A 1990-06-15 1990-06-15 Nonlinear optical material Pending JPH0450930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15815190A JPH0450930A (en) 1990-06-15 1990-06-15 Nonlinear optical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15815190A JPH0450930A (en) 1990-06-15 1990-06-15 Nonlinear optical material

Publications (1)

Publication Number Publication Date
JPH0450930A true JPH0450930A (en) 1992-02-19

Family

ID=15665379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15815190A Pending JPH0450930A (en) 1990-06-15 1990-06-15 Nonlinear optical material

Country Status (1)

Country Link
JP (1) JPH0450930A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8053445B2 (en) 2001-09-14 2011-11-08 Shionogi & Co., Ltd. Utilities of olefin derivatives

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8053445B2 (en) 2001-09-14 2011-11-08 Shionogi & Co., Ltd. Utilities of olefin derivatives
US8124625B2 (en) 2001-09-14 2012-02-28 Shionogi & Co., Ltd. Method of enhancing the expression of apolipoprotein AI using olefin derivatives

Similar Documents

Publication Publication Date Title
JPH0440429A (en) Nonlinear optical material
JPH0450930A (en) Nonlinear optical material
JPH0389219A (en) Nonlinear optical material
JPH0442131A (en) Nonlinear optical material
EP0355326B1 (en) Nonlinear optical material
JPH0450929A (en) Nonlinear optical material
JPH0444016A (en) Nonlinear optical material
JPH03291635A (en) Nonlinear optical material
JPH04161932A (en) Non-linear optical material
WO1994018601A1 (en) Third-order nonlinear optical material
JPH0572582A (en) Nonlinear optical material
JP2533660B2 (en) Organic nonlinear optical material
Cao et al. A novel amphiphilic ferrocene derivative containing a barbituric acid unit: synthesis and quadratic optical non-linearity
JPH01291223A (en) Organic nonlinear optical material
JP2539850B2 (en) Nonlinear optical material and nonlinear optical element using the same
EP0534596A2 (en) Novel hydrazine compound, process for the preparation of the same, and non-linear optical organic material
JP3754825B2 (en) Third-order nonlinear optical material, diacetylene ester and method for producing the same
JPH03293334A (en) Nonlinear optical material
JPH0498225A (en) Nonlinear optical material
JPS6351371A (en) Organic nonlinear optical compound
JPH01173017A (en) Organic second order non-linear optical material
JPH03266819A (en) Nonlinear optical material
JPH02285329A (en) Nonlinear optical material
JPH0498224A (en) Nonlinear optical material
JPH04161933A (en) Non-linear optical material