JPH0450903A - Semiconductor laser module - Google Patents

Semiconductor laser module

Info

Publication number
JPH0450903A
JPH0450903A JP2158212A JP15821290A JPH0450903A JP H0450903 A JPH0450903 A JP H0450903A JP 2158212 A JP2158212 A JP 2158212A JP 15821290 A JP15821290 A JP 15821290A JP H0450903 A JPH0450903 A JP H0450903A
Authority
JP
Japan
Prior art keywords
semiconductor laser
light emitting
flat part
emitting element
submount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2158212A
Other languages
Japanese (ja)
Inventor
Makoto Fujiwara
誠 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2158212A priority Critical patent/JPH0450903A/en
Publication of JPH0450903A publication Critical patent/JPH0450903A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters

Abstract

PURPOSE:To facilitate an operation for position adjustment by mounting a semiconductor laser and light emitting element for monitor on the same sub- mount. CONSTITUTION:This module is constituted by mounting an optical transmission system 1 to the side wall 32 of a case 30 and fixing the sub-mount 50 having a 1st flat part 51 and a 2nd flat part 52 and a perpendicular wall 53 facing the 1st flat part 51 at the end of the 2nd flat part 52 to a case bottom plate 31. The semiconductor laser 10 and the light emitting element 20 for monitor are mounted on the same sub-mount 50. The sub-mount 50 adjusted and mounted in a relative position is carried into the case 30 and the position of the sub-mount 50 is so adjusted that the optical coupling of the light transmission system 1 and the semiconductor laser 10 is maximized. The adjusting operation is facilitated in this way.

Description

【発明の詳細な説明】 〔概要〕 光伝送系と、光信号を光伝送系に投入する半導体レーザ
と、半導体レーザの作動を監視するモニタ用発光素子と
を、ケースに収容した半導体レーザモジュールに関し、 半導体レーザ、モニタ用発光素子の位置調整作業が容易
で、且つ小形化された半導体レーザモジュールを提供す
ることを目的とし、 光伝送系と、光信号を該光伝送系に投入する半導体レー
ザと、該半導体レーザの作動を監視するモニタ用発光素
子とを、ケースに収容したモジュールにおいて、該ケー
スの側壁に該光伝送系が装着され、 第1の平坦部と、第2の平坦部と、該第2の平坦部の端
部に該第1の平坦部に対向して設けた垂直壁とを備えた
サブマウントが、ケース底板に固着され、該半導体レー
ザが、一方の発光面を該光伝送系に対向して該第1の平
坦部に搭載され、該モニタ用発光素子が、受光面を該半
導体レーザの他方の発光面に対向して、該垂直壁に搭載
された構成とする。
[Detailed Description of the Invention] [Summary] This invention relates to a semiconductor laser module in which an optical transmission system, a semiconductor laser that inputs an optical signal to the optical transmission system, and a monitoring light emitting element that monitors the operation of the semiconductor laser are housed in a case. The purpose of the present invention is to provide a semiconductor laser module which is easy to adjust the positions of a semiconductor laser and a light emitting element for monitoring, and which is miniaturized. , a module in which a monitor light emitting element for monitoring the operation of the semiconductor laser is housed in a case, the optical transmission system is attached to a side wall of the case, a first flat part, a second flat part, A submount having a vertical wall provided at an end of the second flat part facing the first flat part is fixed to the case bottom plate, and the semiconductor laser has one light emitting surface facing the light emitting surface. The monitoring light-emitting element is mounted on the vertical wall with its light-receiving surface facing the other light-emitting surface of the semiconductor laser.

〔産業上の利用分野〕[Industrial application field]

本発明は、光伝送系と、光信号を光伝送系に投入する半
導体レーザと、半導体レーザの作動を監視するモニタ用
発光素子とを、ケースに収容した半導体レーザモジュー
ルに関する。
The present invention relates to a semiconductor laser module in which an optical transmission system, a semiconductor laser for inputting an optical signal into the optical transmission system, and a monitoring light emitting element for monitoring the operation of the semiconductor laser are housed in a case.

〔従来の技術〕[Conventional technology]

第3図は従来の半導体レーザモジュールの断面図である
FIG. 3 is a sectional view of a conventional semiconductor laser module.

第f図において30は、上部が開口した箱形で、Fe−
Ni−Co合金(商品名コバール)等の金属よりなるケ
ースであって、開口部は最後に蓋で封止されるものであ
る。
In FIG.
The case is made of metal such as Ni-Co alloy (trade name: Kovar), and the opening is finally sealed with a lid.

1は、レンズ2と光ファイバ3とが光結合するように組
合わせられた光伝送系である。
Reference numeral 1 denotes an optical transmission system in which a lens 2 and an optical fiber 3 are combined for optical coupling.

詳述すると、光伝送系1のレンズ2は、ホルダー5の軸
孔に挿入されており、軸心の微細孔に光ファイバ3の端
末が挿着されてなるフェルール4を、その受光側端面を
レンズ2に対向させホルダー5の軸孔に挿入し、レンズ
2と端面との距離を所定に調整した後に、ホルダー5の
端面とフェルール4の外周面とをレーザ溶接等して固着
しである。
To be more specific, the lens 2 of the optical transmission system 1 is inserted into the shaft hole of the holder 5, and the ferrule 4, in which the end of the optical fiber 3 is inserted into the fine hole at the shaft center, is inserted into the ferrule 4 with its light-receiving end surface. After inserting it into the shaft hole of the holder 5 facing the lens 2 and adjusting the distance between the lens 2 and the end surface to a predetermined value, the end surface of the holder 5 and the outer peripheral surface of the ferrule 4 are fixed by laser welding or the like.

レンズ2をケースの内側にして、ホルダー5の円筒部を
ケース30の側壁32に設けた孔(軸心がケース底板3
1に平行する孔)に挿入し、ホルダー5のフランジと側
壁32の外側面とをレーザ溶接等して固着して、光伝送
系1をケース30に装着している。
With the lens 2 inside the case, the cylindrical part of the holder 5 is a hole provided in the side wall 32 of the case 30 (the axis is aligned with the case bottom plate 3).
The flange of the holder 5 and the outer surface of the side wall 32 are fixed by laser welding or the like, and the optical transmission system 1 is attached to the case 30.

上面に半導体レーザ10を搭載するサブマウント15は
、セラミックスよりなる直方体形で、その上面にはメタ
ライズ膜16を設けである。
The submount 15 on which the semiconductor laser 10 is mounted has a rectangular parallelepiped shape made of ceramics, and a metallized film 16 is provided on the upper surface.

半導体レーザ10は、一方の発光面11がレンズ2に対
向するようにサブマウント15の上面に載せられ、底面
を導電性接着剤を用いてメタライズ#16に固着するこ
とで、サブマウント15に搭載されている。
The semiconductor laser 10 is placed on the top surface of the submount 15 with one light emitting surface 11 facing the lens 2, and is mounted on the submount 15 by fixing the bottom surface to metallization #16 using a conductive adhesive. has been done.

レーザ10の電極13は、金線等のワイヤを介して回路
基板(図示省略)の駆動回路に接続されている。
The electrode 13 of the laser 10 is connected to a drive circuit on a circuit board (not shown) via a wire such as a gold wire.

一方、垂直面にモニタ用発光素子20を搭載するサブマ
ウント25は、セラミックスよりなる矩形板状で、半導
体レーザ10に対向する垂直面にメタライズ膜26を設
けである。
On the other hand, the submount 25 on which the monitor light emitting element 20 is mounted on the vertical surface is a rectangular plate made of ceramic, and a metallized film 26 is provided on the vertical surface facing the semiconductor laser 10.

モニタ用発光素子20は、受光面21を半導体レーザ1
0の他方の発光面12に対向させ、底面を垂直面に当接
させ、底面を導電性接着剤を用いてメタライズ膜26に
固着することで、サブマウント25に搭載されている。
The monitor light emitting element 20 has a light receiving surface 21 connected to the semiconductor laser 1.
0, the bottom surface is in contact with a vertical surface, and the bottom surface is fixed to the metallized film 26 using a conductive adhesive, thereby being mounted on the submount 25.

そしてモニタ用発光素子20の電極23は、金線等のワ
イヤを介して回路基板の増幅回路に接続されている。
The electrode 23 of the monitor light emitting element 20 is connected to the amplifier circuit of the circuit board via a wire such as a gold wire.

尚、半導体レーザ10は、光伝送系1との光結合度が最
高になるような位置に、サブマウント15がケース底板
31に固着され、モニタ用発光素子20は、半導体レー
ザ10との光結合が最高になるような位置に、サブマウ
ント25がケース底板31に固着されている。
The semiconductor laser 10 has a submount 15 fixed to the case bottom plate 31 at a position where the degree of optical coupling with the optical transmission system 1 is maximized, and the monitor light emitting element 20 has the highest optical coupling with the semiconductor laser 10. The submount 25 is fixed to the case bottom plate 31 at a position where the height is the highest.

上述のように半導体レーザモジュールが構成されている
ので、半導体レーザ10の一方の発光面11から出射し
た光信号は、レンズ2に投射され、レンズ2により光フ
ァイバ3の端面で集光して光ファイバ3を進行する。
Since the semiconductor laser module is configured as described above, the optical signal emitted from one light emitting surface 11 of the semiconductor laser 10 is projected onto the lens 2, and is focused by the lens 2 on the end face of the optical fiber 3 to generate light. Proceed through fiber 3.

一方、半導体レーザ10の他方の発光面12からも光信
号が出射して、モニタ用発光素子20の受光面21に投
射する。
On the other hand, an optical signal is also emitted from the other light emitting surface 12 of the semiconductor laser 10 and projected onto the light receiving surface 21 of the monitor light emitting element 20 .

したがって、このような半導体レーザモジュールは、光
ファイバ3を進行する光信号と同波形の信号を、モニタ
用発光素子20を介してモニターすることができる。
Therefore, such a semiconductor laser module can monitor a signal having the same waveform as the optical signal traveling through the optical fiber 3 via the monitoring light emitting element 20.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、半導体レーザ10と光伝送系1との光結合度
が最高になるように位置調整するには、半導体レーザ1
0を駆動し光ファイバ3に装着した光検出器を観測しな
がら、サブマウント15をZ軸(光軸方向をいう)及び
X軸、Y軸方向に微細に移動調整し、光ファイバ3の出
力が最高の位置でサブマウント15をケース底板31に
固着(接着剤等を用いて固着)している。
By the way, in order to adjust the position so that the degree of optical coupling between the semiconductor laser 10 and the optical transmission system 1 is maximized, the semiconductor laser 1
0 and while observing the photodetector attached to the optical fiber 3, finely move and adjust the submount 15 in the Z-axis (referring to the optical axis direction), X-axis, and Y-axis directions to adjust the output of the optical fiber 3. The submount 15 is fixed to the case bottom plate 31 (fixed using adhesive or the like) at the highest position.

一方、モニタ用発光素子20を半導体レーザ10と光結
合度が最高になるように位置調整するには、半導体レー
ザ10を駆動しモニタ用発光素子2oの出力を観測しな
がら、サブマウント25をZ軸(光軸方向をいう)及び
X軸、Y軸方向に微細に移動調整し、モニタ用発光素子
20の出力が最高の位置でサブマウント25をケース底
板31に固着(接着剤等を用いて固着)している。
On the other hand, in order to adjust the position of the monitor light emitting element 20 so that the degree of optical coupling with the semiconductor laser 10 is maximized, the submount 25 is moved to Z while driving the semiconductor laser 10 and observing the output of the monitor light emitting element 2o. Finely move the submount 25 in the axis (referring to the optical axis direction), X-axis, and Y-axis directions, and fix the submount 25 to the case bottom plate 31 (using adhesive or the like) at the position where the output of the monitor light emitting element 20 is the highest. fixed).

したがって従来の半導体レーザモジュールは、狭いケー
ス内で半導体レーザの位置調整と、モニタ用発光素子の
位置調整を実施しなければならず、調整作業性が劣ると
いう問題点があった。
Therefore, the conventional semiconductor laser module has a problem in that the position of the semiconductor laser and the monitor light emitting element must be adjusted within a narrow case, resulting in poor adjustment workability.

また、2個のサブマウントを収容するための広いケース
底板が必要となり、半導体レーザモジュールが大形化す
る恐れがあった。
Furthermore, a wide bottom plate of the case is required to accommodate the two submounts, which may increase the size of the semiconductor laser module.

本発明はこのような点に鑑みて創作されたもので、半導
体レーザ、モニタ用発光素子の位置調整作業が容易で、
且つ小形化された半導体レーザモジュールを提供するこ
とを目的としている。
The present invention was created in view of these points, and it is easy to adjust the position of the semiconductor laser and the monitor light emitting element.
Another object of the present invention is to provide a miniaturized semiconductor laser module.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するために本発明は、第1図に例示し
たように、光伝送系1と、光信号を光伝送系1に投入す
る半導体レーザ10と、半導体レーザ10の作動を監視
するモニタ用発光素子20を、ケース30に収容したモ
ジュールにおいて、ケース30の側壁32に光伝送系1
を装着する。
In order to achieve the above object, the present invention, as illustrated in FIG. In a module in which a monitor light emitting element 20 is housed in a case 30, an optical transmission system 1 is mounted on a side wall 32 of the case 30.
Attach.

第1の平坦部51と、第2の平坦部52と、第2の平坦
部52の端部に第1の平坦部51に対向する垂直壁53
とを備えたサブマウント50を、ケース底板31に固着
する構成とする。
A first flat part 51 , a second flat part 52 , and a vertical wall 53 facing the first flat part 51 at the end of the second flat part 52
The submount 50 is configured to be fixed to the case bottom plate 31.

そして、半導体レーザ10は、一方の発光面11が光伝
送系lに対向した状態で第1の平坦部51に搭載された
ものとし、モニタ用発光素子20は、受光面21を半導
体レーザ10の他方の発光面12に対向した状態で、垂
直壁53に搭載されたものとする。
The semiconductor laser 10 is mounted on the first flat part 51 with one light emitting surface 11 facing the optical transmission system l, and the monitor light emitting element 20 has the light receiving surface 21 of the semiconductor laser 10 facing the optical transmission system l. It is assumed that it is mounted on a vertical wall 53 while facing the other light emitting surface 12 .

また、第2図に例示したように、半導体レーザ10が搭
載される第1の平坦部61と、モニタ用発光素子20の
下部側面が当接する第2の平坦部62と、第2の平坦部
62の端部に第1の平坦部61に対向して設けられ、モ
ニタ用発光素子20が受光面21を半導体レーザ10の
他方の発光面12に対向して搭載される垂直壁63とを
備えたサブマウント60の構造において、第1の平坦部
61と第2の平坦部62との段差を所定の高さとする。
In addition, as illustrated in FIG. 2, a first flat part 61 on which the semiconductor laser 10 is mounted, a second flat part 62 to which the lower side surface of the monitor light emitting element 20 comes into contact, and a second flat part 61 on which the semiconductor laser 10 is mounted are provided. A vertical wall 63 is provided at an end of the semiconductor laser 62 to face the first flat part 61, and the monitor light emitting element 20 is mounted with the light receiving surface 21 facing the other light emitting surface 12 of the semiconductor laser 10. In the structure of the submount 60, the step difference between the first flat part 61 and the second flat part 62 is set to a predetermined height.

また、第1の平坦部61に、半導体レーザ10のモニタ
用発光素子20側の発光面12の両サイドが当接する一
対の角柱65と、半導体レーザ10の選択した側面が当
接するストッパ66とを設ける。
Furthermore, a pair of prisms 65 on which both sides of the light emitting surface 12 of the semiconductor laser 10 on the monitoring light emitting element 20 side come into contact with the first flat portion 61, and a stopper 66 on which a selected side surface of the semiconductor laser 10 comes into contact are provided. establish.

一方、第2の平坦部62に、モニタ用発光素子20の選
択した側面が当接するストッパ67を設けた構成とする
On the other hand, the second flat portion 62 is provided with a stopper 67 against which a selected side surface of the monitor light emitting element 20 comes into contact.

〔作用〕[Effect]

上述のように半導体レーザ10とモニタ用発光素子20
とは、同一のサブマウント50に搭載されている。
As described above, the semiconductor laser 10 and the monitor light emitting element 20
are mounted on the same submount 50.

したたがって、半導体レーザ10とモニタ用発光素子2
0との関係位置を調整し搭載したサブマウント50を、
ケース内に持ち込み、光伝送系1と半導体レーザ10と
の光結合が最高になるようにサブマウント50の位置調
整を実施することで、調整作業が容易となる。
Therefore, the semiconductor laser 10 and the monitor light emitting element 2
The submount 50 is mounted with the adjusted position relative to 0.
The adjustment work is facilitated by bringing it into the case and adjusting the position of the submount 50 so that the optical coupling between the optical transmission system 1 and the semiconductor laser 10 is maximized.

また、半導体レーザ10とモニタ用発光素子20とが近
接配置したサブマウント構造とすることで、半導体レー
ザ10とモニタ用発光素子20との光結合度が高くなる
ばかりでなく、サブマウント50が小形化される。即ち
、半導体レーザモジュールが小形になる。
Further, by adopting a submount structure in which the semiconductor laser 10 and the monitor light emitting element 20 are arranged close to each other, not only the degree of optical coupling between the semiconductor laser 10 and the monitor light emitting element 20 is increased, but also the submount 50 is made smaller. be converted into That is, the semiconductor laser module becomes smaller.

第2の発明においては、第1の平坦部61と第2の平坦
部62との段差を、半導体レーザ10の発光面の中心か
ら底面までの距離と、モニタ用発光素子20の受光面2
1の中心から下部側面まで距離との、差に等しくするも
のとする。
In the second invention, the step between the first flat part 61 and the second flat part 62 is determined by the distance from the center of the light emitting surface of the semiconductor laser 10 to the bottom surface and the light receiving surface 2 of the monitoring light emitting element 20.
It shall be equal to the difference between the distance from the center of 1 to the lower side surface.

また、第1の平坦部61のストッパ66の位置は、半導
体レーザ10の発光面の中心線から所定に離れた位置と
する。
Further, the position of the stopper 66 of the first flat portion 61 is set at a predetermined distance from the center line of the light emitting surface of the semiconductor laser 10.

さらに第2の平坦部62のストッパ67の位置は、モニ
タ用発光素子20の受光面21の中心線から所定に離れ
た位置とする。
Further, the stopper 67 of the second flat portion 62 is located at a predetermined distance from the center line of the light receiving surface 21 of the monitor light emitting element 20.

このような構成になっているので、ストッパ66に半導
体レーザ10の側面を当接し、モニタ用発光素子20の
側面をストッパ67に当接すると、半導体レーザ10と
モニタ用発光素子20の光軸が一致する。
With this configuration, when the side surface of the semiconductor laser 10 is brought into contact with the stopper 66 and the side surface of the monitor light emitting element 20 is brought into contact with the stopper 67, the optical axes of the semiconductor laser 10 and the monitor light emitting element 20 are aligned. Match.

よって、半導体レーザ10とモニタ用発光素子20との
位置調整は、殆ど実施しなくて済む。
Therefore, there is almost no need to adjust the positions of the semiconductor laser 10 and the monitoring light emitting element 20.

〔実施例〕〔Example〕

以下図を参照しながら、本発明を具体的に説明する。な
お、全図を通じて同一符号は同一対象物を示す。
The present invention will be specifically described below with reference to the drawings. Note that the same reference numerals indicate the same objects throughout the figures.

第1図は第1の発明の図で、(alは側断面図、(b)
は平面図、第2図は第2の発明の図で、(a)はサブマ
ウントの斜視図、(blは側断面図である。
FIG. 1 is a diagram of the first invention, (al is a side sectional view, (b)
is a plan view, FIG. 2 is a diagram of the second invention, (a) is a perspective view of the submount, and (bl is a side sectional view).

第1図において、レンズ2と光ファイバ3とを光結合す
るように組み合わせた光伝送系工は、レンズ2がホルダ
ー5の軸孔に挿入され、光ファイバ3はその端末がフェ
ルール4の軸心の微細孔に挿着され、フェルール4をホ
ルダー5の軸孔に挿入し、光ファイバ3の受光端面とレ
ンズ2との距離が所定に調整されている。
In FIG. 1, in an optical transmission system in which a lens 2 and an optical fiber 3 are combined so as to be optically coupled, the lens 2 is inserted into the shaft hole of the holder 5, and the end of the optical fiber 3 is centered on the axis of the ferrule 4. The ferrule 4 is inserted into the shaft hole of the holder 5, and the distance between the light-receiving end surface of the optical fiber 3 and the lens 2 is adjusted to a predetermined value.

そして、上部が開口した箱形のFe−Ni−Co合金等
の金属よりなるケース30の側壁32に、ケース底板3
1に平行する孔33を穿孔し、この孔33にホルダー5
の円筒部を挿入することで、光伝送系lがケース30に
装着されている。
A case bottom plate 3 is attached to a side wall 32 of a box-shaped case 30 made of metal such as Fe-Ni-Co alloy with an open top.
A hole 33 parallel to 1 is drilled, and a holder 5 is inserted into this hole 33.
The optical transmission system 1 is attached to the case 30 by inserting the cylindrical portion of the cylindrical portion.

50は、セラミックスよりなりサブマウントであって、
その上部の光伝送系寄りに、水平な第1の平坦部51を
設けである。
50 is a submount made of ceramics,
A horizontal first flat portion 51 is provided above the optical transmission system.

そして、光伝送系1とは反対側に、第1の平坦部51よ
りも低い第2の平坦部52を設け、この第2の平坦部5
2の端に垂直壁53を設けである。
A second flat part 52 lower than the first flat part 51 is provided on the opposite side of the optical transmission system 1, and this second flat part 5
A vertical wall 53 is provided at the end of 2.

第1の平坦部51の表面に、半導体レーザ10の底面を
導電性接着剤を用いて接着するメタライズ膜51Aを形
成してあり、また垂直壁53の垂直面にはモニタ用発光
素子20の底面を導電性接着剤を用いて接着するメタラ
イズ膜53Aを形成しである。
A metallized film 51A is formed on the surface of the first flat portion 51 to adhere the bottom surface of the semiconductor laser 10 using a conductive adhesive, and the bottom surface of the monitor light emitting element 20 is formed on the vertical surface of the vertical wall 53. A metallized film 53A is formed which is bonded using a conductive adhesive.

上述のようなサブマウント50は、まず半導体レーザ1
0を第1の平坦部51に固着する。次に垂直壁53の垂
直面に導電性接着剤を塗布して、モニタ用発光素子20
の底面を当接し、半導体レーザ10を駆動し、モニタ用
発光素子20の出力を観測しながら、モニタ用発光素子
20を垂直壁53の垂直面上でX軸。
The above-mentioned submount 50 first includes a semiconductor laser 1
0 is fixed to the first flat portion 51. Next, conductive adhesive is applied to the vertical surface of the vertical wall 53, and the monitor light emitting element 20
While driving the semiconductor laser 10 and observing the output of the monitor light emitting element 20, the monitor light emitting element 20 is placed on the vertical surface of the vertical wall 53 on the X axis.

Y軸方向に微細に移動調整し、モニタ用発光素子20の
出力が最高の位置で導電性接着剤を加熱し硬化して、モ
ニタ用発光素子20を垂直壁53に固着するものである
The monitor light emitting element 20 is fixed to the vertical wall 53 by finely adjusting the movement in the Y-axis direction and heating and curing the conductive adhesive at the position where the output of the monitor light emitting element 20 is highest.

なお、サブマウント50の底面から第1の平坦部51ま
での高さは、半導体レーザ10の発光面11の中心から
底面までの距離、及び導電性接着剤の厚さ等を考慮して
予め設定して、半導体レーザ10の光軸が光伝送系1の
光軸と同一レベルになるように、加工しておくことが好
ましい。
Note that the height from the bottom surface of the submount 50 to the first flat portion 51 is set in advance in consideration of the distance from the center of the light emitting surface 11 of the semiconductor laser 10 to the bottom surface, the thickness of the conductive adhesive, etc. It is preferable to process the semiconductor laser 10 so that its optical axis is on the same level as the optical axis of the optical transmission system 1.

半導体レーザ10とモニタ用発光素子20とが所定に搭
載されたサブマウント50を、ケース30内に持ち込み
、半導体レーザlOを駆動し光ファイバ3に装着した光
検出器を観測しながら、サブマウント50をケース底板
31の表面を微細にZ軸(図では左右方向で光軸に平行
する方向をいう)及びX軸(図では用紙に対して垂直の
方向)に摺動移動させ、光ファイバ3の出力が最高の位
置でサブマウント50をケース底板31に固着している
The submount 50 on which the semiconductor laser 10 and the monitor light emitting element 20 are mounted is brought into the case 30, and the submount 50 is moved while driving the semiconductor laser IO and observing the photodetector attached to the optical fiber 3. The surface of the case bottom plate 31 is finely slid along the Z-axis (in the figure, the left-right direction parallel to the optical axis) and the X-axis (in the figure, the direction perpendicular to the paper). The submount 50 is fixed to the case bottom plate 31 at the highest output position.

一方、70は、半導体レーザ10の駆動回路、及びモニ
タ用発光素子20の増幅回路等を形成した回路基板であ
って、第1図(′b)に示すように、ケース30の所定
の位置にケース底板31に平行に搭載されている。
On the other hand, 70 is a circuit board on which a drive circuit for the semiconductor laser 10, an amplification circuit for the monitor light emitting element 20, etc. are formed, and is mounted at a predetermined position in the case 30, as shown in FIG. 1('b). It is mounted parallel to the case bottom plate 31.

そして、レーザ10の電極13及びメタライズ膜51A
は、それぞれ金線等のワイヤを介して回路基板70の駆
動回路に接続され、モニタ用発光素子20の電極23及
びメタライズ膜53Aは、それぞれ金線等のワイヤを介
して回路基板70の増幅回路に接続されている。
Then, the electrode 13 of the laser 10 and the metallized film 51A
are connected to the drive circuit of the circuit board 70 through wires such as gold wires, and the electrodes 23 of the monitor light emitting element 20 and the metallized film 53A are connected to the amplifier circuit of the circuit board 70 through wires such as gold wires. It is connected to the.

なお、半導体レーザ10とモニタ用発光素子20とが近
接配置したサブマウント構造とすることで、半導体レー
ザ10とモニタ用発光素子20との光結合度が高くなる
ばかりでなく、サブマウント50が小形化される。即ち
半導体レーザモジュールが小形になる。
Note that by adopting a submount structure in which the semiconductor laser 10 and the monitor light emitting element 20 are arranged close to each other, not only the degree of optical coupling between the semiconductor laser 10 and the monitor light emitting element 20 is increased, but also the submount 50 is made smaller. be converted into That is, the semiconductor laser module becomes smaller.

第2図に図示したように、第2の発明にかかわるサブマ
ウント60は、半導体レーザ10を搭載する第1の平坦
部61と、モニタ用発光素子20の下部側面が当接する
第2の平坦部62と、第2の平坦部62の端部に第1の
平坦部61に対向して設けられ、モニタ用発光素子20
を受光面21を半導体レーザ10の他方の発光面12に
対向して搭載する垂直壁63とを備えたものである。
As shown in FIG. 2, the submount 60 according to the second invention includes a first flat part 61 on which the semiconductor laser 10 is mounted, and a second flat part on which the lower side surface of the monitor light emitting element 20 comes into contact. 62 and a monitor light emitting element 20 provided at the end of the second flat part 62 to face the first flat part 61.
and a vertical wall 63 on which the light-receiving surface 21 is mounted facing the other light-emitting surface 12 of the semiconductor laser 10.

サブマウント60は、第1の平坦部61と第2の平坦部
62との段差を、半導体レーザ10の発光面の中心から
底面までの距離と、モニタ用発光素子20の受光面21
の中心から下部側面まで距離との、差に等しくしである
The submount 60 has a height difference between the first flat part 61 and the second flat part 62 based on the distance from the center of the light emitting surface of the semiconductor laser 10 to the bottom surface and the light receiving surface 21 of the monitoring light emitting element 20.
is equal to the difference between the distance from the center to the bottom side of the plane.

また、第1の平坦部61に、半導体レーザ10のモニタ
用発光素子20側の発光面12の両サイドが当接する一
対の角柱65と、半導体レーザ10の選択した側面が当
接するストッパ66とを設けである。
Furthermore, a pair of prisms 65 on which both sides of the light emitting surface 12 of the semiconductor laser 10 on the monitoring light emitting element 20 side come into contact with the first flat portion 61, and a stopper 66 on which a selected side surface of the semiconductor laser 10 comes into contact are provided. It is a provision.

このストッパ66の垂直面(半導体レーザ10の側面が
当接する面)と一対の角柱65の中間線との距離は、半
導体レーザ10の発光面の中心から側面までの距離に等
しくしである。
The distance between the vertical surface of this stopper 66 (the surface that the side surface of the semiconductor laser 10 contacts) and the midline between the pair of prisms 65 is equal to the distance from the center of the light emitting surface of the semiconductor laser 10 to the side surface.

一方、第2の平坦部62に、モニタ用発光素子20の一
方の側面が当接する直方体形のストッパ67を設けであ
る。
On the other hand, a rectangular parallelepiped stopper 67 is provided on the second flat portion 62, with which one side surface of the monitor light emitting element 20 comes into contact.

そして、このストッパ67の垂直面(モニタ用発光素子
20の側面が当接する面)と一対の角柱65の中間線と
の距離は、モニタ用発光素子20の受光面の中心からモ
ニタ用発光素子の側面までの距離に等しくしである。
The distance between the vertical surface of this stopper 67 (the surface that the side surface of the monitor light emitting element 20 contacts) and the midline between the pair of prisms 65 is determined from the center of the light receiving surface of the monitor light emitting element 20 to the distance between the monitor light emitting element 20 It is equal to the distance to the side.

また、第1の平坦部61の表面に、メタライズ膜61A
を形成し、選択した一方の角柱65の上面から外側の側
面にかけて逆り形に導体パターン68を形成しである。
Further, a metallized film 61A is provided on the surface of the first flat portion 61.
, and a conductor pattern 68 is formed in an inverted shape from the top surface to the outer side surface of one of the selected prisms 65.

この導体パターン68は、一端を金線等のワイヤを介し
て電極に接続し、他端を金線等のワイヤを介して回路基
板(図示省略)のパターンに接続するものである。
The conductor pattern 68 has one end connected to an electrode via a wire such as a gold wire, and the other end connected to a pattern on a circuit board (not shown) via a wire such as a gold wire.

また、垂直壁63の垂直面にメタライズ膜63Aを形成
し、上面から外側の側面にかけて逆り形に導体パターン
69を形成しである。
Further, a metallized film 63A is formed on the vertical surface of the vertical wall 63, and a conductive pattern 69 is formed in an inverted shape from the top surface to the outer side surface.

この導体パターン69は、一端を金線等のワイヤを介し
てモニタ用発光素子20の電極に接続し、他端を金線等
のワイヤを介して、回路基板(図示省略)のパターンに
接続するものである。
This conductor pattern 69 has one end connected to the electrode of the monitor light emitting element 20 via a wire such as a gold wire, and the other end connected to a pattern on a circuit board (not shown) via a wire such as a gold wire. It is something.

第2図(b)に図示したように、半導体レーザ10は発
光面120両サイドが角柱65の垂直面に当接し、その
側面がストッパ66の垂直面に当接した状態で底面が第
1の平坦部61の表面に密接し、導電性接着剤によりメ
タライズ膜61Aに固着されて、搭載されている。
As shown in FIG. 2(b), in the semiconductor laser 10, both sides of the light emitting surface 120 are in contact with the vertical surface of the prism 65, and with the side surfaces in contact with the vertical surface of the stopper 66, the bottom surface is in contact with the first vertical surface. It is mounted in close contact with the surface of the flat portion 61 and fixed to the metallized film 61A with a conductive adhesive.

モニタ用発光素子20は下部側面が第2の平坦部62に
当接し、一方の側面がストッパ67の垂直面に当接した
状態で、底面が垂直壁63の垂直面に密接し、導電性接
着剤によりメタライズ膜63Aに固着されて、搭載され
ている。
The monitor light emitting element 20 has a lower side surface in contact with the second flat part 62, one side surface in contact with the vertical surface of the stopper 67, a bottom surface in close contact with the vertical surface of the vertical wall 63, and conductive adhesive It is fixed to and mounted on the metallized film 63A by an agent.

即ち、半導体レーザ10の光軸とモニタ用発光素子20
の光軸が一致しているので、調整作業を実施する必要が
ない。
That is, the optical axis of the semiconductor laser 10 and the monitor light emitting element 20
Since the optical axes of the two are aligned, there is no need to perform adjustment work.

上述のようなサブマウント60は、ケース30内に持ち
込まれ、半導体レーザ10と光伝送系1との光結合度が
最高になるような位置で、底面がケース底板31に固着
されている。
The above-described submount 60 is brought into the case 30, and its bottom surface is fixed to the case bottom plate 31 at a position where the degree of optical coupling between the semiconductor laser 10 and the optical transmission system 1 is maximized.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、半導体レーザとモニタ用
発光素子とを同一のサブマウントに搭載する構造である
ので、半導体レーザとモニタ用発光素子との光学的関係
位置の調整をケースの外で実施することができる。即ち
、位置調整作業が容易である。
As explained above, the present invention has a structure in which the semiconductor laser and the monitor light emitting element are mounted on the same submount, so the optical relationship between the semiconductor laser and the monitor light emitting element can be adjusted outside the case. It can be implemented. That is, position adjustment work is easy.

また第2の発明は、半導体レーザとモニタ用発光素子と
の間の光学的関係位置の調整が不要であるという優れた
効果がある。
Furthermore, the second invention has an excellent effect in that it is not necessary to adjust the optical position between the semiconductor laser and the monitoring light emitting element.

さらにまた、第1.第2の発明はともに、サブマウント
が1個だけであるので、半導体レーザモジュールの小形
化を推進できる。
Furthermore, the first. In both of the second inventions, since there is only one submount, it is possible to promote downsizing of the semiconductor laser module.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1の発明の図で、 (a)は側断面図、 (b)は平面図、 第2図は第2の発明の図で、 (alはサブマウントの斜視図、 0))は側断面図、 第3図は従来例の断面図である。 図において、 1は光伝送系、      2はレンズ、3は光ファイ
バ、     4はフェルール、5はホルダー    
  10は半導体レーザ、11.12は発光面、   
 13.23は電極、20はモニタ用発光素子、 30
はケース、31はケース底板、     32は側壁、
15.25,50.60はサブマウント、51.61は
第1の平坦部、 52.62は第2の平坦部、 53.63は垂直壁、 53A、63Aはメタライズ膜、 65は角柱、 66.67はストッパ、 70は回路基板をそれぞれ示す。 10 °半導体ドーザ I+、+2・臂り面 !3: 電極 20°モニフ出臂左1(ケ 21、す′L面 23  電稀 第1の発明の図 第 1  図 ML +7ブ7ウシ1 bS、西オ七 66 ; スト・ンパ 2Q:干二ZFfl+尤を乎 昇2F発明の図 第 ? 図 10  子連り本L・−サ 10   五ニタ刷+オい亭工 11、/2:/発九面 zl  +丸面 13.23 雷7.極 第 図
Fig. 1 is a diagram of the first invention, (a) is a side sectional view, (b) is a plan view, and Fig. 2 is a diagram of the second invention, (al is a perspective view of the submount, 0) ) is a side sectional view, and FIG. 3 is a sectional view of a conventional example. In the figure, 1 is an optical transmission system, 2 is a lens, 3 is an optical fiber, 4 is a ferrule, and 5 is a holder
10 is a semiconductor laser, 11.12 is a light emitting surface,
13. 23 is an electrode, 20 is a monitor light emitting element, 30
is the case, 31 is the case bottom plate, 32 is the side wall,
15.25, 50.60 are submounts, 51.61 is the first flat part, 52.62 is the second flat part, 53.63 is the vertical wall, 53A, 63A are the metallized films, 65 is the prism, 66 .67 indicates a stopper, and 70 indicates a circuit board. 10° Semiconductor dozer I+, +2・Bend surface! 3: Electrode 20° Monif protrusion left 1 (Ke 21, S'L side 23 Denki first invention figure 1 ML +7 bu 7 ushi 1 bS, west o 7 66; strike 2Q: kanji ZFfl + 尤也上2F Invented figure No. ? Figure 10 Children's book L・-sa 10 Five-nit printing + Oitei 11, /2: /9-face zl + Round surface 13.23 Lightning 7. Pole Diagram

Claims (1)

【特許請求の範囲】 〔1〕光伝送系(1)と、光信号を該光伝送系(1)に
投入する半導体レーザ(10)と、該半導体レーザ(1
0)の作動を監視するモニタ用発光素子(20)とを、
ケース(30)に収容したモジュールにおいて、該ケー
ス(30)の側壁(32)に該光伝送系(1)が装着さ
れ、 第1の平坦部(51)と、第2の平坦部(52)と、該
第2の平坦部(52)の端部に該第1の平坦部(51)
に対向して設けた垂直壁(53)とを備えたサブマウン
ト(50)が、ケース底板(31)に固着され、該半導
体レーザ(10)が、一方の発光面(11)を該光伝送
系(1)に対向して該第1の平坦部(51)に搭載され
、該モニタ用発光素子(20)が、受光面(21)を該
半導体レーザ(10)の他方の発光面(12)に対向し
て、該垂直壁(53)に搭載されたことを特徴とする半
導体レーザモジュール。 〔2〕半導体レーザ(10)が搭載される第1の平坦部
(61)と、モニタ用発光素子(20)の下部側面が当
接する第2の平坦部(62)と、該第2の平坦部(62
)の端部に該第1の平坦部(61)に対向して設けられ
、受光面(21)を該半導体レーザ(10)の他方の発
光面(12)に対向した状態でモニタ用発光素子(20
)が搭載される垂直壁(63)とを、備えたサブマウン
ト(60)であって、 該第1の平坦部(61)と該第2の平坦部(62)との
段差が所定の高さであり、 該第1の平坦部(61)に、該半導体レーザ(10)の
該モニタ用発光素子(20)側の発光面(12)の両サ
イドが当接する一対の角柱(65)と、該半導体レーザ
(10)の選択した側面が当接するストッパ(66)と
を有し、 該第2の平坦部(62)に、該モニタ用発光素子(20
)の選択した側面が当接するストッパ(67)を有する
ことを、特徴とする請求項1に記載の半導体レーザモジ
ュール。
[Scope of Claims] [1] An optical transmission system (1), a semiconductor laser (10) that inputs an optical signal to the optical transmission system (1), and a semiconductor laser (10) that inputs an optical signal to the optical transmission system (1).
0) and a monitor light emitting element (20) for monitoring the operation of the
In a module housed in a case (30), the optical transmission system (1) is attached to the side wall (32) of the case (30), and has a first flat part (51) and a second flat part (52). and the first flat part (51) at the end of the second flat part (52).
A submount (50) is fixed to the case bottom plate (31) and has a vertical wall (53) provided opposite to the submount (50), and the semiconductor laser (10) uses one light emitting surface (11) as the light transmitting surface. The monitor light emitting element (20) is mounted on the first flat part (51) facing the system (1), and the light receiving surface (21) is connected to the other light emitting surface (12) of the semiconductor laser (10). ), and is mounted on the vertical wall (53), facing the semiconductor laser module. [2] A first flat part (61) on which the semiconductor laser (10) is mounted, a second flat part (62) on which the lower side surface of the monitor light emitting element (20) comes into contact, and the second flat part Department (62
) is provided at the end of the semiconductor laser (10) to face the first flat part (61), and a light emitting element for monitoring is provided with the light receiving surface (21) facing the other light emitting surface (12) of the semiconductor laser (10). (20
) on which a vertical wall (63) is mounted, the step between the first flat part (61) and the second flat part (62) being at a predetermined height. A pair of prisms (65) on which both sides of the light emitting surface (12) of the semiconductor laser (10) on the monitor light emitting element (20) side are in contact with the first flat part (61). , a stopper (66) with which a selected side surface of the semiconductor laser (10) comes into contact;
2. The semiconductor laser module according to claim 1, further comprising a stopper (67) against which a selected side surface of the semiconductor laser module (67) abuts.
JP2158212A 1990-06-15 1990-06-15 Semiconductor laser module Pending JPH0450903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2158212A JPH0450903A (en) 1990-06-15 1990-06-15 Semiconductor laser module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2158212A JPH0450903A (en) 1990-06-15 1990-06-15 Semiconductor laser module

Publications (1)

Publication Number Publication Date
JPH0450903A true JPH0450903A (en) 1992-02-19

Family

ID=15666734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2158212A Pending JPH0450903A (en) 1990-06-15 1990-06-15 Semiconductor laser module

Country Status (1)

Country Link
JP (1) JPH0450903A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6036375A (en) * 1996-07-26 2000-03-14 Kyocera Corporation Optical semiconductor device housing package
JP2002158392A (en) * 2000-11-22 2002-05-31 Furukawa Electric Co Ltd:The Semiconductor, laser module and manufacturing method thereof
JP2003023203A (en) * 2001-07-05 2003-01-24 Furukawa Electric Co Ltd:The Apparatus for soldering mounting base for semiconductor laser element and method for manufacturing semiconductor laser module
JP2013140259A (en) * 2012-01-05 2013-07-18 Ntt Electornics Corp Receiving package for flat plate arrangement, optical module, and manufacturing method of receiving package for flat plate arrangement

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61226989A (en) * 1985-04-01 1986-10-08 Mitsubishi Electric Corp Dual-in-line package type laser diode module
JPS62169487A (en) * 1986-01-22 1987-07-25 Hitachi Ltd Photoelectronic device
JPS62234390A (en) * 1986-04-04 1987-10-14 Nec Corp Semiconductor laser equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61226989A (en) * 1985-04-01 1986-10-08 Mitsubishi Electric Corp Dual-in-line package type laser diode module
JPS62169487A (en) * 1986-01-22 1987-07-25 Hitachi Ltd Photoelectronic device
JPS62234390A (en) * 1986-04-04 1987-10-14 Nec Corp Semiconductor laser equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6036375A (en) * 1996-07-26 2000-03-14 Kyocera Corporation Optical semiconductor device housing package
JP2002158392A (en) * 2000-11-22 2002-05-31 Furukawa Electric Co Ltd:The Semiconductor, laser module and manufacturing method thereof
JP2003023203A (en) * 2001-07-05 2003-01-24 Furukawa Electric Co Ltd:The Apparatus for soldering mounting base for semiconductor laser element and method for manufacturing semiconductor laser module
JP2013140259A (en) * 2012-01-05 2013-07-18 Ntt Electornics Corp Receiving package for flat plate arrangement, optical module, and manufacturing method of receiving package for flat plate arrangement

Similar Documents

Publication Publication Date Title
US6533471B2 (en) Optical subassembly
JPH1090580A (en) Manufacture of photonics device
JP4142050B2 (en) Optical module
JP2700010B2 (en) Photoelectric device package and method of forming the same
US6588945B2 (en) Interface between opto-electronic devices and fibers
JPH0450903A (en) Semiconductor laser module
JPS60212070A (en) Solid-state image pickup device
US5297218A (en) Optical semiconductor laser and optical waveguide alignment device
US6643420B2 (en) Optical subassembly
US4488304A (en) Stem for semiconductor laser devices
JP2857222B2 (en) Optoelectronic integrated devices
JP2002189148A (en) Optical semiconductor element module
JPH08122578A (en) Optical module and its assembling method
JP3295327B2 (en) Bidirectional optical module
JPH0461175A (en) Photo-coupler device
JP2002062458A (en) Optical module, its assembling method, and image display device using optical module
JPS63234585A (en) Semiconductor laser array device
JPH04309908A (en) Wavelength multiplex transmission and reception module
JPH095582A (en) Semiconductor optically coupling device and its assembling method
JPH0588051A (en) Optical module
JPH06201921A (en) Optical parts and its fixing method
JP2002258115A (en) Optical module
JPH04204403A (en) Optical multiplexer module
JP2968550B2 (en) Airtight structure of optical module
JP2007199122A (en) Optical module