JPH0450729A - Device for monitoring residual amount of refrigerant - Google Patents

Device for monitoring residual amount of refrigerant

Info

Publication number
JPH0450729A
JPH0450729A JP15979290A JP15979290A JPH0450729A JP H0450729 A JPH0450729 A JP H0450729A JP 15979290 A JP15979290 A JP 15979290A JP 15979290 A JP15979290 A JP 15979290A JP H0450729 A JPH0450729 A JP H0450729A
Authority
JP
Japan
Prior art keywords
refrigerant
remaining amount
liquefied
flow rate
liquefied refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15979290A
Other languages
Japanese (ja)
Inventor
Kazumi Isomae
磯前 一己
Yoshisuke Takahira
高比良 禎資
Kenichi Kikuchi
賢一 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Hitachi Ltd
Original Assignee
Hitachi Cable Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Hitachi Ltd filed Critical Hitachi Cable Ltd
Priority to JP15979290A priority Critical patent/JPH0450729A/en
Publication of JPH0450729A publication Critical patent/JPH0450729A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To allow the omission of a heater, the extension of the period for replenishing helium and the sure announcement of the time for replenishing by providing means for measuring the flow rate of the gaseous refrigerant discharged by a heat insulating vessel, integrating this flow rate, calculating the residual amt. and displaying the same. CONSTITUTION:The flow rate of the gaseous helium from a helium evaporating port 6 is detected by an ammeter 12 and is subjected to A/D conversion 13. The converted signal is inputted to a CPU 14 where the flow rate signal is integrated. The integrated signal is stored in a memory device 15. The function to apply the liquid level value of the liquefied helium corresponding to the integrated value of the gaseous helium is stored in the device 15 and the residual amt. is thereby displayed on a monitor 16. The threshold value of the residual amt. of the liquefied helium is stored in the device 15 and an alarm is emitted when the residual amt. falls below this value. The omission of the heater, the extension of the time for replenishing the helium and the sure announcement of the time for replenishing are executed in this way.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は冷却装置に用いる液化冷媒の残量を監視する装
置に係り、例えば核磁気共鳴装置用の超伝導磁石の冷却
に用いる液化ヘリウムの残量監視装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a device for monitoring the remaining amount of liquefied refrigerant used in a cooling device. The present invention relates to a remaining amount monitoring device.

[従来技術] 従来の冷却装置における冷媒残量監視装置は、冷媒容器
内に液位センサを設置して容器内の冷媒液位を監視して
表示し、さらに上記冷媒液位が所定の値を割った場合に
警報を発生するようにしていた。
[Prior Art] A refrigerant remaining amount monitoring device in a conventional cooling device installs a liquid level sensor in a refrigerant container, monitors and displays the refrigerant liquid level in the container, and further monitors and displays the refrigerant liquid level when the refrigerant liquid level reaches a predetermined value. It was designed to generate an alarm if it breaks.

第2図は上記液位センサの一例を示す図である。容器内
の冷媒に超伝導線2が浸されると、冷媒液面下の超伝導
線2の部分の抵抗値は実質的にゼロとなり、冷媒液面よ
り上の部分は常電導性を示して高い抵抗値を呈するので
その抵抗値より液位を検出することができる。
FIG. 2 is a diagram showing an example of the liquid level sensor. When the superconducting wire 2 is immersed in the refrigerant in the container, the resistance value of the part of the superconducting wire 2 below the refrigerant liquid level becomes substantially zero, and the part above the refrigerant liquid level exhibits normal conductivity. Since it exhibits a high resistance value, the liquid level can be detected from the resistance value.

例えば核磁気共鳴装置用超伝導磁石の上記冷媒には液化
ヘリウムが用いられ、超伝導線2には常電導抵抗値が2
0インチ当り225Ωの線材が用いられる。
For example, liquefied helium is used as the refrigerant of the superconducting magnet for nuclear magnetic resonance apparatus, and the superconducting wire 2 has a normal conductivity resistance value of 2.
A wire of 225 Ω per 0 inch is used.

しかし、放置すると上記冷媒液面より上の超伝導線2の
部分も冷却されて超伝導性を示すので、第2図に示すよ
うに超伝導線2の上部にヒータ3を設け、液面の測定時
にはこの部分を定電流電源1により加熱するようにして
いた。これによりヒータ3に近接する超伝導線2部分が
常電導化して上記電流により加熱されるとその熱が下部
に伝播してそこを常電導化して加熱し、最終的には液面
より上の超伝導線2部が常電導化するようになっていた
。電圧計4は実質的に上記常電導化された液面より上の
超伝導線2の部分の電圧降下を検出するので、これより
冷媒液位を知ることが呂来る。
However, if left alone, the portion of the superconducting wire 2 above the refrigerant liquid level will also cool down and exhibit superconductivity, so a heater 3 is provided above the superconducting wire 2 as shown in FIG. At the time of measurement, this portion was heated by a constant current power source 1. As a result, the part of the superconducting wire 2 close to the heater 3 becomes normal conductive and heated by the above current, and the heat propagates to the lower part, makes it normal conductive and heats it, and finally ends up above the liquid level. Two parts of the superconducting wire had become normal conductive. Since the voltmeter 4 detects the voltage drop in the portion of the superconducting wire 2 substantially above the normal conductive liquid level, it is possible to know the refrigerant liquid level from this.

[発明が解決しようとする課題] 上記従来技術においては、ヒータ3の上記消費電力によ
り蒸発される液化ヘリウム量が過大であるため、液化ヘ
リウムを補充する頻度が高いという問題があった。
[Problems to be Solved by the Invention] In the above-mentioned prior art, the amount of liquefied helium evaporated due to the above-mentioned power consumption of the heater 3 is excessive, so there is a problem in that liquefied helium must be replenished frequently.

上記核磁気共鳴装置用超伝導磁石の冷却装置における一
例では、ヒータ3を加熱しなければ上記液化ヘリウムの
蒸発量はほぼ液量に無関係に略0.003m1/see
であるのに対し、ヒータ3を加熱すると第3図に示すよ
うに、容器が液化ヘリウムで満杯の場合には0.08m
1 / s e c、容器内がほぼ空の場合には6.1
1 m 1 / ’s e cに増加し、何れもヒータ
3を加熱しない場合に比べて支配的に大きかった。ただ
し、第3図は常温抵抗値が225Ωの20インチ超伝導
線2と、3Ωのヒータ3を用いた場合である。
In one example of the cooling device for a superconducting magnet for a nuclear magnetic resonance apparatus, if the heater 3 is not heated, the amount of evaporation of the liquefied helium is approximately 0.003 m1/see, regardless of the liquid amount.
On the other hand, when the heater 3 is heated, as shown in Figure 3, when the container is full of liquefied helium,
1/sec, 6.1 when the container is almost empty
1 m 1 /'sec, which were both dominantly larger than when the heater 3 was not heated. However, FIG. 3 shows a case where a 20-inch superconducting wire 2 with a room temperature resistance value of 225Ω and a heater 3 with a resistance value of 3Ω are used.

上記ヒータ3による液化ヘリウムの蒸発を低減するため
、液面の検出を間歇的に行い、その加熱時間を例えば、
1日2回、各6秒にするようにしてもその影響は大きく
、たとえば、上記超伝導磁石用冷却装置の液化ヘリウム
が空になる期間は容器の容量にもよるが例えば約10ケ
月であった。
In order to reduce evaporation of liquefied helium by the heater 3, the liquid level is detected intermittently, and the heating time is set to, for example,
Even if the time is set twice a day for 6 seconds each time, the effect is significant.For example, the period during which the liquefied helium in the cooling device for superconducting magnets is emptied is approximately 10 months, depending on the capacity of the container. Ta.

周知のように、超伝導磁石の通電中に液化ヘリウムが枯
渇すると超伝導磁石電流が急速に減衰する。−旦、停止
した超伝導磁石は液化ヘリウムを補充して再通電するま
でに磁気特性の再調整等の大きな手間がかかるため、通
電後は液化ヘリウムを切らさぬように補充する必要があ
る。この補充のための作業量も相当に大きいので補充期
間を8来るだけ長くし、同時に上記10ケ月を12ケ月
、即ち1年のようにきりの良い期間にすることが望まし
い。1年であると毎年決まった日に補充できるので日程
の管理が容易になり補充忘れを防止することができるか
らである。
As is well known, when liquefied helium is depleted during energization of a superconducting magnet, the superconducting magnet current rapidly decays. - Once the superconducting magnet has stopped, it takes a lot of effort to readjust the magnetic properties before replenishing it with liquefied helium and energizing it again, so it is necessary to replenish the liquefied helium after energizing it so that it does not run out. Since the amount of work required for this replenishment is quite large, it is desirable to lengthen the replenishment period by 8, and at the same time make the above 10 months into a neat period such as 12 months, ie, one year. This is because if it is one year, replenishment can be done on a fixed day every year, which makes it easier to manage schedules and prevents forgetting to replenish.

また、上記ヒータ3による液化ヘリウムの蒸発量は液化
ヘリウムの残量が少なくなるにつれて加速的に増大する
ので末期では気付かぬ間に液化ヘリウムが枯渇するとい
う危険がある。したがって、液化ヘリウムの補充時期を
確実に告知する必要がある。
Furthermore, since the amount of liquefied helium evaporated by the heater 3 increases at an accelerated rate as the remaining amount of liquefied helium decreases, there is a risk that the liquefied helium will be depleted without being noticed at the final stage. Therefore, it is necessary to reliably notify when it is time to replenish liquefied helium.

本発明の目的は、上記液化ヘリウムの液面検出にヒータ
3のような加熱装置を省略、またはその加熱頻度を大幅
に低減して上記液化ヘリウムの補充期間を延長し、さら
にその補充時期を確実に告知することのできる冷媒残量
監視装置を提供することにある。
It is an object of the present invention to omit a heating device such as the heater 3 for detecting the liquid level of the liquefied helium, or to significantly reduce the heating frequency thereof, thereby extending the replenishment period of the liquefied helium, and further ensuring the timing of replenishment. An object of the present invention is to provide a refrigerant remaining amount monitoring device that can notify the user of the remaining amount of refrigerant.

[課題を解決するための手段] 本発明は上記課題を解決するために、上記断熱容器が排
気する冷媒ガスの流量を検出して積算して、上記液化冷
媒の消費量または残量等を算出しこれを表示するように
する。
[Means for Solving the Problems] In order to solve the above problems, the present invention detects and integrates the flow rate of the refrigerant gas exhausted by the heat insulating container to calculate the consumed amount or remaining amount of the liquefied refrigerant. and display this.

また、上記液化冷媒残量予測値の経時変化特性を記憶す
るようにし、上記断熱容器内に所定量の液化冷媒を充填
した時点からのタイマ信号により上記液化冷媒残量予測
値を読み呂して表示するようにする。
Further, the time-dependent change characteristic of the predicted value of the remaining amount of liquefied refrigerant is stored, and the predicted value of the remaining amount of liquefied refrigerant is read by a timer signal from the time when a predetermined amount of liquefied refrigerant is filled into the insulated container. Make it visible.

さらに、上記断熱容器が排気する上記冷媒ガスの流量積
算値より算8される液化冷媒残量値と上記記憶装置の液
化冷媒残量予測値とを比較して得られる信号により警報
を発生するようにする。
Further, an alarm is generated by a signal obtained by comparing a liquefied refrigerant remaining amount calculated from the integrated flow rate value of the refrigerant gas exhausted by the heat insulating container with a predicted liquefied refrigerant remaining amount in the storage device. Make it.

さらに、上記断熱容器内に液面センサを挿入して上記液
化冷媒の液面値を検出し、これにより上記冷媒ガスの流
量積算値より算出される液化冷媒残量値や上記記憶装置
の液化冷媒残量予測値等を修正するようにする。
Furthermore, a liquid level sensor is inserted into the heat insulating container to detect the liquid level value of the liquefied refrigerant, and thereby the liquefied refrigerant remaining amount value calculated from the integrated flow rate value of the refrigerant gas and the liquefied refrigerant in the storage device. The remaining amount predicted value etc. will be corrected.

また、上記冷媒ガスの流量積算値より上記液化冷媒の消
費量または残量を算出するための演算式または演算テー
ブルを記憶するようにし、さらに、上記液面センサの検
出値により上記演算式または演算テーブルを修正してそ
の結果を記憶するようにする。
Further, an arithmetic formula or a calculation table for calculating the consumption amount or remaining amount of the liquefied refrigerant from the integrated flow rate value of the refrigerant gas is stored, and further, the arithmetic formula or calculation table is stored based on the detected value of the liquid level sensor. Modify the table to remember the results.

さらに、上記液化冷媒の残量限界値を記憶し、これを上
記冷媒残量や同予測値とを比較して警報を発生するよう
にする。
Further, the limit value of the remaining amount of the liquefied refrigerant is stored, and this is compared with the remaining amount of the refrigerant and the predicted value to generate an alarm.

[作用] 以上のように構成した本発明の冷媒残量監視装置は、上
記断熱容器が排気する冷媒ガスの流量より上記液化冷媒
の消費量または残量等を算出し、従来の液面センサを省
略あるいはその加熱頻度を大幅に低減する。
[Function] The refrigerant remaining amount monitoring device of the present invention configured as described above calculates the consumption amount or remaining amount of the liquefied refrigerant from the flow rate of the refrigerant gas exhausted by the heat insulating container, and uses the conventional liquid level sensor. Omit or significantly reduce the frequency of heating.

また、上記液化冷媒残量予測値の経時変化特性より上記
液化冷媒残量値を読み呂して表示する。
Further, the liquefied refrigerant remaining amount value is read and displayed based on the temporal change characteristics of the liquefied refrigerant remaining amount predicted value.

さらに、上記冷媒ガスの流量積算値より算出される液化
冷媒残量値と上記液化冷媒残量予測値とを比較し、その
差が所定の値を越える場合には警報を発生するようにす
る。
Further, the liquefied refrigerant remaining amount value calculated from the integrated flow rate value of the refrigerant gas is compared with the liquefied refrigerant remaining amount predicted value, and if the difference exceeds a predetermined value, an alarm is generated.

さらに、従来の液面センサを併用し、その液面値により
上記冷媒ガスの流量積算値より算出される液化冷媒残量
値と上記液化冷媒残量予測値を正しく修正する。
Further, a conventional liquid level sensor is used in combination, and the liquefied refrigerant remaining amount value calculated from the flow rate integrated value of the refrigerant gas and the liquefied refrigerant remaining amount predicted value are corrected based on the liquid level value.

同時に、上記液面センサが検出する液面値により、上記
冷媒ガス流量積算値より液化冷媒残量を算出するための
演算式と上記液化冷媒残量予測値の経時変化特性を修正
して記憶するようにする。
At the same time, based on the liquid level value detected by the liquid level sensor, the calculation formula for calculating the remaining amount of liquefied refrigerant from the integrated value of the refrigerant gas flow rate and the temporal change characteristics of the predicted value of the remaining amount of liquefied refrigerant are corrected and stored. Do it like this.

さらに、−上記各液化冷媒残量値をその許容限界値とを
比較してこれが所定の範囲を越える場合に警報を発生す
るようにする。
Furthermore, - each of the above-mentioned liquefied refrigerant remaining amount values is compared with its permissible limit value, and if this exceeds a predetermined range, an alarm is generated.

[実施例] 第1図は本発明による冷媒残量監視装置を備えた超伝導
磁石用冷却装置の1実施例を示す図である。
[Embodiment] FIG. 1 is a diagram showing an embodiment of a superconducting magnet cooling device equipped with a refrigerant remaining amount monitoring device according to the present invention.

第1図において、100は超伝導磁石とその冷却装置を
収容する超伝導磁石部であり、その内部は第4図に示す
ような断面構造になっている。
In FIG. 1, 100 is a superconducting magnet section that houses a superconducting magnet and its cooling device, and its interior has a cross-sectional structure as shown in FIG. 4.

第4図に示す構造は全体がドーナツ状を呈し、ドーナツ
状の超伝導コイル8を取り巻くように第1および第2ヘ
リウム容器91と92が設けられ、さらにその外部を窒
素容器10が取り囲み、これらが本体容器11内に収容
されている。
The structure shown in FIG. 4 has a donut shape as a whole, and first and second helium containers 91 and 92 are provided to surround the donut-shaped superconducting coil 8, and a nitrogen container 10 surrounds the outside of the helium container 92. is housed in the main body container 11.

上記各容器は断熱構造をとり、液化ヘリウムは液化ヘリ
ウム充填口5より第1ヘリウム容器91に充填され、液
化窒素は液化窒素充填ロアより窒素容器10内に充填さ
れる。
Each of the containers described above has a heat insulating structure, and liquefied helium is filled into the first helium container 91 from the liquefied helium filling port 5, and liquefied nitrogen is filled into the nitrogen container 10 from the liquefied nitrogen filling lower.

従来装置においては、ヘリウムの液位は液化ヘリウム充
填口5より第1ヘリウム容器91内に挿入された第2図
に示す液位センサにより測定されていた。
In the conventional device, the helium liquid level was measured by a liquid level sensor shown in FIG. 2 inserted into the first helium container 91 from the liquefied helium filling port 5.

これに対し本発明ではヘリウム蒸発口6から出てくるヘ
リウムガス量を測定して上記液化ヘリウムの消費量を算
定するようにし、上記液位センサは較正、確認等の補助
的な目的で必要に応じて用いるようにする。
In contrast, in the present invention, the amount of helium gas coming out of the helium evaporation port 6 is measured to calculate the amount of liquefied helium consumed, and the liquid level sensor is necessary for auxiliary purposes such as calibration and confirmation. Please use it accordingly.

第1図に示すように、ヘリウム蒸発口6から呂てくるヘ
リウムガスの流量は電気流量計12により検品され、A
/D変換器13によりデジタル信号に変換されてCPt
J (中央処理装置)14に入力される。
As shown in FIG.
/D converter 13 converts it into a digital signal and outputs CPt.
J (central processing unit) 14.

CPtJ14は上記ヘリウムガスの流量信号を積算しそ
の結果を記憶装置15に格納する。
The CPtJ 14 integrates the helium gas flow rate signal and stores the result in the storage device 15.

また、記憶装置15には第5図に示すような上記ヘリウ
ムガスの積算値に対応する液化ヘリウムの液位値を与え
る関数が格納され、これにより液化ヘリウムの液位即ち
残量がモニタ16に表示される。
Further, the storage device 15 stores a function that gives a liquid level value of liquefied helium corresponding to the integrated value of the helium gas as shown in FIG. Is displayed.

また、上記記憶装置15には液化ヘリウム残量の限界値
も格納され、上記残量がこの限界値を割った場合に警報
を発生するようになっている。そして、作業者はモニタ
16の表示や、上記警報に応じて液化ヘリウムを補充す
る。なお、上記記憶装置15に格納する関数は演算式以
外に関数テーブルとしてもよい。
The storage device 15 also stores a limit value for the remaining amount of liquefied helium, and an alarm is generated when the remaining amount falls below this limit value. Then, the operator replenishes liquefied helium in response to the display on the monitor 16 or the above-mentioned alarm. Note that the function stored in the storage device 15 may be a function table other than an arithmetic expression.

第S図の関数は標準的なものであるから、これより割り
出される液化ヘリウムの液位と実際の液位との間には誤
差が生じる。この誤差は液化ヘリウム充填口Sより挿入
された第2図の液位センサにより補正することができる
。すなわち、上記ヘリウムガスの積算値が所定の値に達
した時点でCPt、T14は第2図の定電流電源1や電
圧計を含む冷媒監視装置17に指令を発し液化ヘリウム
充填口5に挿入された液位センサを稼働させて液化ヘリ
ウムの液位を測定し、A/D変換器13により測定結果
をデジタル化し、これによりCPUは第5図に示した関
数の勾配を補正する演算を行い、この補正した関数を記
憶装置15に格納して以後のヘリウム液位の算出に用い
るようにする。上記液位センサによる測定は定期的に行
うようにしてもよい。
Since the function shown in Figure S is a standard one, there will be an error between the liquefied helium level determined from this and the actual level. This error can be corrected by the liquid level sensor shown in FIG. 2 inserted through the liquefied helium filling port S. That is, when the integrated value of helium gas reaches a predetermined value, CPt, T14 issues a command to the refrigerant monitoring device 17 including the constant current power supply 1 and voltmeter shown in FIG. The liquid level sensor is operated to measure the liquid level of liquefied helium, the measurement result is digitized by the A/D converter 13, and the CPU performs calculations to correct the slope of the function shown in FIG. This corrected function is stored in the storage device 15 and used for subsequent calculation of the helium liquid level. The measurement by the liquid level sensor may be performed periodically.

上記補正は、原理的に液化ヘリウムが消費される中間で
1度行えば大体十分なので、上記液位センサの加熱によ
る液化ヘリウムの消費量を従来装置に比べて無視できる
程度に少なくなるのである。この測定を定期的(例えば
1ケ月に1度程度)に行う場合でも、従来装置に較べ、
液位センサの加熱頻度を格段に低下することができ、こ
の結果、上記液位センサの加熱による液化ヘリウムの消
費分を無視できる程度に少なくすることができる。
In principle, it is sufficient to perform the above correction once during the time when liquefied helium is consumed, so that the amount of liquefied helium consumed due to heating of the liquid level sensor is negligible compared to conventional devices. Even when this measurement is performed periodically (for example, once a month), compared to conventional equipment,
The frequency of heating the liquid level sensor can be significantly reduced, and as a result, the amount of liquefied helium consumed by heating the liquid level sensor can be reduced to a negligible level.

また、上記液化ヘリウム残量の限界値を余裕を持って設
定するようにすれば、第5図による上記液位の算定に多
少の誤差が生じても液化ヘリウムが枯渇する前に上記警
報を発するようにすることができるので、上記液位セン
サを省略することができる。
Furthermore, if the limit value of the remaining amount of liquefied helium is set with a margin, even if there is a slight error in calculating the liquid level according to Fig. 5, the above-mentioned alarm will be issued before the liquefied helium is depleted. Therefore, the liquid level sensor can be omitted.

第6図の実線は上記本発明装置における液化ヘリウムの
残量を示す特性線であり、点線は従来装置において第2
図の液面センサを1日当り2回、各6秒間加熱した場合
の同特性線である。
The solid line in FIG. 6 is a characteristic line showing the remaining amount of liquefied helium in the device of the present invention, and the dotted line is a characteristic line showing the remaining amount of liquefied helium in the device of the present invention.
This is the same characteristic line when the liquid level sensor shown in the figure is heated twice a day for 6 seconds each time.

これより液化ヘリウムの消費期間が従来装置では略10
カ月であるのに対し、本発明装置では略12カ月に伸び
ていることがわかる。したがって、液化ヘリウムの充填
期間を1年とし、毎年、決まった日に充填するようにす
ることが出来る。なお、第6図は液化ヘリウムの満タン
充填量が80リツトルの場合であるが、この量を多めに
すれば上記1年という充填期間を余裕をもって設定する
ことができる。
From this, the consumption period of liquefied helium is approximately 10 years with conventional equipment.
It can be seen that while the period of time for the device of the present invention is approximately 12 months. Therefore, the liquefied helium filling period can be set to one year, and the filling can be done on a fixed day every year. Note that although FIG. 6 shows a case where the amount of liquefied helium filled is 80 liters, if this amount is increased, the filling period of one year can be set with plenty of time.

次に本発明の他の実施例につき説明する。上記のように
液位センサの加熱による液化ヘリウムの消費分が無視で
きるようになると、第6図の実線に示した液化ヘリウム
の残量特性線は略直線状となり、また、そのバラツキも
減少する。
Next, other embodiments of the present invention will be described. As mentioned above, when the consumption of liquefied helium due to heating of the liquid level sensor becomes negligible, the remaining amount characteristic line of liquefied helium shown by the solid line in Figure 6 becomes approximately linear, and its variation decreases. .

したがって、液化ヘリウムを所定の満タン量に充填した
後、タイマ装置を起動して第6図実線の液化ヘリウム残
量を定期的に読みだして表示し、また、所定の限界値に
達した時には警報を発するようにすることもできる。
Therefore, after filling the tank with liquefied helium to a predetermined amount, the timer device is activated to periodically read out and display the remaining amount of liquefied helium as shown by the solid line in Figure 6. It is also possible to issue an alarm.

この場合には、第6図実線の液化ヘリウム残量特性線を
関数またはテーブルの形で第1図の記憶装置15に格納
し、これをCPU14に内蔵されたタイマ部のタイミン
グ信号により読みだしてモニタ16に表示し、或いは上
記警報を発生するようにする。したがって、電気流量計
12によるヘリウム蒸発量の検出は不必要になる。また
、液面センサを用いて第6図実線の液く化ヘリウム残量
特性を較正することもできる。
In this case, the liquefied helium remaining amount characteristic curve shown by the solid line in FIG. 6 is stored in the storage device 15 shown in FIG. It is displayed on the monitor 16 or the above-mentioned alarm is generated. Therefore, detection of the amount of helium evaporation using the electric flowmeter 12 becomes unnecessary. Furthermore, the liquefied helium remaining amount characteristic shown by the solid line in FIG. 6 can also be calibrated using a liquid level sensor.

しかし、電気流量計12によるヘリウム蒸発量の検出を
併用すると以下に述べるような異常検出機能を併せ持た
せることができる。
However, if the electric flow meter 12 is used to detect the amount of helium evaporation, an abnormality detection function as described below can also be provided.

例えば第1ヘリウム容器91とその配管系に真空漏れが
生じた場合、実際の液化ヘリウム残量は第6図実線の特
性とはかけ離れたものとなるので、電気流量計12、A
/D変換器13およびCPU14の経路でヘリウム蒸発
量からヘリウムの残量を算定し、これを第6図実線の特
性と比較して両者間の差異が所定の値を越えた場合には
警報を発生するようにする。この警報により作業者は装
置を点検し正常な状態に戻すことができる。
For example, if a vacuum leak occurs in the first helium container 91 and its piping system, the actual remaining amount of liquefied helium will be far from the characteristics shown by the solid line in FIG.
The remaining amount of helium is calculated from the amount of helium evaporated in the path of the /D converter 13 and the CPU 14, and this is compared with the characteristics shown by the solid line in Figure 6. If the difference between the two exceeds a predetermined value, an alarm is issued. Let it happen. This alarm allows the operator to inspect the equipment and restore it to normal condition.

上記本発明の各実施例では第4図のヘリウム残量の検出
に焦点を合わせて説明したが、本発明はこの他、液化窒
素消費量の検出等に適用して同様な効果を得ることがで
きる。
Although the above embodiments of the present invention have been explained with a focus on detecting the remaining amount of helium shown in FIG. 4, the present invention can also be applied to detecting the amount of liquefied nitrogen consumed, etc. to obtain similar effects. can.

[発明の効果コ 本発明によれば、上記断熱容器が排気する冷媒ガスの流
量より上記液化冷媒の消費量または残量等を算呂するの
で、従来の液面センサを省略あるいはその加熱頻度を大
幅に低減することができ、これにより液化冷媒の消費量
を低減することができる。
[Effects of the Invention] According to the present invention, since the consumption amount or remaining amount of the liquefied refrigerant is calculated from the flow rate of the refrigerant gas exhausted by the heat insulating container, the conventional liquid level sensor can be omitted or its heating frequency can be reduced. This can significantly reduce the amount of liquefied refrigerant consumed.

また、上記液化冷媒残量の予測経時変化特性より冷媒残
量等を算出して、従来の液面センサを省略あるいはその
加熱頻度を大幅に低減することができ、これにより液化
冷媒の消費量を低減することができる。
In addition, the remaining amount of refrigerant can be calculated from the predicted aging characteristics of the remaining amount of liquefied refrigerant, and the conventional liquid level sensor can be omitted or its heating frequency can be significantly reduced, thereby reducing the amount of liquefied refrigerant consumed. can be reduced.

また、上記液化冷媒残量の予測変化特性と上記冷媒ガス
の流量より算出される上記液化冷媒残量を比較すること
によりより、真空漏れその他の異常事態を検出して警報
を発生することができる。
Furthermore, by comparing the predicted change characteristics of the remaining amount of liquefied refrigerant with the remaining amount of liquefied refrigerant calculated from the flow rate of the refrigerant gas, vacuum leaks and other abnormal situations can be detected and an alarm can be issued. .

さらに、上記液化冷媒残量を表示1. また、これが所
定量以下と成った場合には警、qを発生して液化冷媒の
枯渇を未然に防止することができる。
Furthermore, the remaining amount of liquefied refrigerant is displayed 1. Moreover, when this becomes less than a predetermined amount, an alarm, q, can be generated to prevent the depletion of the liquefied refrigerant.

さらに、従来の液面センサの併用により、上記液化冷媒
残量を正しい値に補正することができる。
Furthermore, by using a conventional liquid level sensor in combination, the remaining amount of liquefied refrigerant can be corrected to a correct value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による液面検出装置実施例の構成を示す
図、第2図は従来の液面センサの回路図、第3図は従来
の液面センサによるヘリウムの蒸発量を示す図、第4図
は本発明による超伝導磁石部の断面図、第5図は本発明
に用いる液化ヘリウム残量特性図、第6図は本発明装置
の液化ヘリウム残量特性を従来装置と比較して示す図で
ある。 1・・・定電流電源、2・・・超伝導線、3・・・ヒー
タ、4・・・電圧計、5・・・液化ヘリウム充填口、6
・・・ヘリウム蒸発口、7・・・液化窒素充填口、8・
・・超伝導コイル、91・・・第1ヘリウム容器、92
・・・第2ヘリウム容器、10・・・窒素容器、11・
・・本体容器、12・・・電気流量計、13・・・A/
D変換器、 14・・・CPU、 15・・・記憶装置、 6・・・モニタ、 17・・・冷媒監視装置、 100・・・ 超伝導磁石部。
FIG. 1 is a diagram showing the configuration of an embodiment of a liquid level detection device according to the present invention, FIG. 2 is a circuit diagram of a conventional liquid level sensor, and FIG. 3 is a diagram showing the amount of helium evaporated by a conventional liquid level sensor. FIG. 4 is a cross-sectional view of the superconducting magnet according to the present invention, FIG. 5 is a diagram showing the remaining amount of liquefied helium used in the present invention, and FIG. FIG. 1... constant current power supply, 2... superconducting wire, 3... heater, 4... voltmeter, 5... liquefied helium filling port, 6
... Helium evaporation port, 7... Liquid nitrogen filling port, 8.
...Superconducting coil, 91...First helium container, 92
...Second helium container, 10...Nitrogen container, 11.
...Main container, 12...Electric flow meter, 13...A/
D converter, 14... CPU, 15... Storage device, 6... Monitor, 17... Refrigerant monitoring device, 100... Superconducting magnet section.

Claims (1)

【特許請求の範囲】 1、断熱容器内に充填した液化冷媒の気化潜熱により上
記断熱容器内を冷却する冷却装置において、上記断熱容
器が排気する上記冷媒ガスの流量を検出するガス流量測
定装置と、上記ガス流量測定装置が検出する上記冷媒ガ
スの流量を積算して上記液化冷媒の残量を算出する演算
装置と、上記液化冷媒残量の表示装置とを備えたことを
特徴とする冷媒残量監視装置。 2、断熱容器内に充填した液化冷媒の気化潜熱により上
記断熱容器内を冷却する冷却装置において、タイマ装置
と、少なくとも上記液化冷媒残量の経時変化特性を記憶
する記憶装置とを備え、上記断熱容器内に所定量の液化
冷媒を充填した時点に上記タイマ装置を起動し、上記タ
イマ装置の時刻信号により上記液化冷媒残量値を読み出
して表示するようにしたことを特徴とする冷媒残量監視
装置。 3、断熱容器内に充填した液化冷媒の気化潜熱により上
記断熱容器内を冷却する冷却装置において、上記断熱容
器が排気する上記冷媒ガスの流量を検出するガス流量測
定装置と、上記ガス流量測定装置が検出する上記冷媒ガ
スの流量を積算して上記液化冷媒の残量を算出する演算
装置と、上記液化冷媒の残量の表示装置と、タイマ装置
と、少なくとも上記液化冷媒残量予測値の経時特性を記
憶する記憶装置と、警報装置を備え、さらに、上記断熱
容器内に所定量の液化冷媒を充填した時点に起動される
上記タイマ装置の時刻信号により上記記憶装置の上記液
化冷媒残量予測値を読み出し、これを上記演算装置が算
出する上記液化冷媒の残量と比較する手段を備え、上記
比較手段の出力により上記警報装置を駆動するようにし
たことを特徴とする冷媒残量監視装置。 4、請求項1ないし3の何れかにおいて、上記断熱容器
内に挿入される液面センサを備え、上記液面センサが検
出する上記液化冷媒の液面値により上記冷媒ガス流量よ
り算出される上記液化冷媒の消費量または残量、および
または、上記記憶装置が記憶する上記液化冷媒残量予測
値の経時変化特性値を修正するようにしたことを特徴と
する冷媒残量監視装置。 5、請求項4において、上記冷媒ガスの流量積算値より
上記液化冷媒の消費量または残量を算出するための演算
式または演算テーブルを格納する記憶装置を備え、さら
に、上記演算装置は上記液面センサが検出する上記液化
冷媒の液面値により上記演算式または演算テーブルを修
正してその結果を上記記憶装置に格納するようにしたこ
とを特徴とする冷媒残量監視装置。
[Scope of Claims] 1. A cooling device that cools the inside of the insulating container using the latent heat of vaporization of a liquefied refrigerant filled in the insulating container, comprising: a gas flow rate measuring device that detects the flow rate of the refrigerant gas exhausted from the insulating container; , a refrigerant residue comprising: a calculation device that calculates the remaining amount of the liquefied refrigerant by integrating the flow rate of the refrigerant gas detected by the gas flow rate measuring device; and a display device for the remaining amount of the liquefied refrigerant. Quantity monitoring device. 2. A cooling device that cools the inside of the heat insulating container using the latent heat of vaporization of the liquefied refrigerant filled in the heat insulating container, comprising a timer device and a storage device that stores at least the temporal change characteristics of the remaining amount of the liquefied refrigerant; Remaining refrigerant amount monitoring characterized in that the timer device is activated when a predetermined amount of liquefied refrigerant is filled into the container, and the liquefied refrigerant remaining amount value is read out and displayed based on the time signal of the timer device. Device. 3. In a cooling device that cools the inside of the heat insulating container using latent heat of vaporization of a liquefied refrigerant filled in the heat insulating container, a gas flow rate measuring device for detecting the flow rate of the refrigerant gas exhausted by the heat insulating container, and the gas flow rate measuring device a calculation device that calculates the remaining amount of the liquefied refrigerant by integrating the flow rate of the refrigerant gas detected by the controller, a display device for the remaining amount of the liquefied refrigerant, a timer device, and at least a predicted value of the remaining amount of the liquefied refrigerant over time. A storage device for storing characteristics and an alarm device are provided, and the remaining amount of the liquefied refrigerant in the storage device is predicted based on a time signal from the timer device that is activated when a predetermined amount of liquefied refrigerant is filled into the insulated container. A refrigerant remaining amount monitoring device comprising means for reading a value and comparing it with the remaining amount of the liquefied refrigerant calculated by the arithmetic unit, and driving the alarm device based on the output of the comparing means. . 4. Any one of claims 1 to 3, further comprising a liquid level sensor inserted into the heat insulating container, wherein the liquid level value of the liquefied refrigerant detected by the liquid level sensor is calculated from the refrigerant gas flow rate. A refrigerant remaining amount monitoring device, characterized in that the amount of consumption or remaining amount of liquefied refrigerant and/or the time-varying characteristic value of the predicted value of the remaining amount of liquefied refrigerant stored in the storage device is corrected. 5. Claim 4, further comprising a storage device that stores an arithmetic expression or a calculation table for calculating the consumed amount or remaining amount of the liquefied refrigerant from the integrated flow rate value of the refrigerant gas, A refrigerant remaining amount monitoring device characterized in that the arithmetic expression or arithmetic table is corrected based on the liquid level value of the liquefied refrigerant detected by a surface sensor, and the result is stored in the storage device.
JP15979290A 1990-06-20 1990-06-20 Device for monitoring residual amount of refrigerant Pending JPH0450729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15979290A JPH0450729A (en) 1990-06-20 1990-06-20 Device for monitoring residual amount of refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15979290A JPH0450729A (en) 1990-06-20 1990-06-20 Device for monitoring residual amount of refrigerant

Publications (1)

Publication Number Publication Date
JPH0450729A true JPH0450729A (en) 1992-02-19

Family

ID=15701368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15979290A Pending JPH0450729A (en) 1990-06-20 1990-06-20 Device for monitoring residual amount of refrigerant

Country Status (1)

Country Link
JP (1) JPH0450729A (en)

Similar Documents

Publication Publication Date Title
EP0773440B1 (en) Method of determining magnetic powder concentration and apparatus used for the method
US20060156809A1 (en) Resistive level sensor for cryo-liquid gas tanks
US6838964B1 (en) Method and apparatus for monitoring superconducting magnet data
US11402250B2 (en) Liquid level meter, vaporizer equipped with the same, and liquid level detection method
JP2002093465A (en) Battery life estimating device for gas meter
US10823497B2 (en) Insulation-time determining device for a thermally insulated container
FI70641C (en) PROCEDURE FOR IMPROVING THE PROCESSING OF OILS
US6539796B2 (en) Liquid level sensor, ampoule, and liquid amount detection method
JP2009186321A (en) Level gage, low-temperature thermostat equipped with level gage, and superconducting magnet equipped with level gage
JPH0450729A (en) Device for monitoring residual amount of refrigerant
US20020130662A1 (en) Open type magnetic resonance imaging apparatus
JP2011501175A (en) Two-phase transient nuclear calorimeter outside the reactor
JP3977105B2 (en) Open magnetic resonance imaging system
GB2467410A (en) Detection of frozen deposits due to air ingress into cryogen vessels by change in resonant frequency of tensioned wire
JP2002336216A5 (en)
CN209841744U (en) Constant-temperature water circulation controller
US6528738B2 (en) Electronic balance/scale
JPH04132948A (en) Ph meter with life-prediction display
JPH08196082A (en) Service life decision unit for filter capacitor in power converter
EP3781059A1 (en) Cryogenic surgical systems
JP2004085490A (en) Pressure gauge and thermal type flowmeter
JP2004327874A (en) Cooling system and biomagnetism measuring apparatus equipped with coolant consumption amount monitoring function
JPS61207957A (en) Heat loss measuring instrument
KR20120074917A (en) Electronic watt-hour meter with burnout-proof
Sauerland et al. An automatic adiabatic calorimeter for intermediate and high temperatures