JPS61207957A - Heat loss measuring instrument - Google Patents

Heat loss measuring instrument

Info

Publication number
JPS61207957A
JPS61207957A JP60048325A JP4832585A JPS61207957A JP S61207957 A JPS61207957 A JP S61207957A JP 60048325 A JP60048325 A JP 60048325A JP 4832585 A JP4832585 A JP 4832585A JP S61207957 A JPS61207957 A JP S61207957A
Authority
JP
Japan
Prior art keywords
measured
gas
liquid helium
helium
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60048325A
Other languages
Japanese (ja)
Inventor
Kunishige Kuroda
黒田 邦茂
Nobuhiro Hara
原 伸洋
Yoshitoshi Hotta
堀田 好寿
Hiroshi Kimura
浩 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60048325A priority Critical patent/JPS61207957A/en
Publication of JPS61207957A publication Critical patent/JPS61207957A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To obtain a heat loss measuring instrument which is very simple, and also has a high accuracy and a high sensitivity by constituting the device so that a cooling medium can be replaced by an evaporated gas of the cooling medium by exthothermic heat of a body to be measured, and providing a means which can measure the volume of its gas. CONSTITUTION:A gaseous helium which is evaporated by the exthothermic heat of a sample is replaced with a liquid helium in the liquid helium (in a cryostat), by which the volume is derived. This gaseous helium is maintained at a constant temperature of 4.2K, and the pressure is also scarcely varied and held in a constant state since the specific gravity of the liquid helium is small, therefore, the measuring accuracy is extremely high. For instance, a plug 7 is opened before a body to be measured is conducted electrically, and after a sample chamber 3 and a gas reservoir part 4 are filled completely with the liquid helium, the plug 7 is closed. Subsequently, the electric conduction is executed, and an evaporated gaseous helium by the generation of heat is replaced with a liquid helium collected in the gas reservoir part 4. When a prescribed time has elapsed, the electric conduction is stopped, and the height or the volume of a part 10 in which the gas has collected is measured by a suitable means. When the measurement is completed, the plug 7 is opened and the sample chamber 3 and the gas reservoir part 4 are filled with the liquid helium again.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は熱損失測定装置に係9、特に超電導導体、ま九
はそれから構成される超電導装置等の変化電流や変化磁
界などに伴なう熱損失を測定するに好適な熱損失測定装
置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a heat loss measuring device, and particularly to a heat loss measurement device for measuring heat loss caused by changing currents and changing magnetic fields in superconducting conductors, and in particular superconducting devices constructed using the same. The present invention relates to a heat loss measuring device suitable for measuring loss.

〔発明の胃景〕[The stomach view of invention]

最近、核融合用のポロイダル・コイルの超電導化か盛ん
に検討されるようになつ九が、その開発のキーポイント
は、超電導導体に流れる変化電流、もしくはそれか浴び
る変化磁界によって諸との交流損失(以下まとめて熱損
失と呼ぶ)が発生し、冷媒の損失のみならず、超電導導
体の温度上昇をもたらし、結果的に超電導状態tも消失
せしめるため、熱損失の少ない超電導導体II−開発す
ることにある。かかる超電導導体の開発過程では、効率
良く、かつ、鞠友良く熱損失を評価しりる熱損失測定装
置が必要不可欠となる。
Recently, there has been much research into making superconducting poloidal coils for nuclear fusion, but the key point in its development is to reduce AC losses due to the changing current flowing through the superconducting conductor or the changing magnetic field to which it is exposed. (hereinafter collectively referred to as heat loss) occurs, causing not only a loss of refrigerant but also a rise in the temperature of the superconducting conductor, resulting in the disappearance of the superconducting state t. Therefore, it is necessary to develop a superconducting conductor II with low heat loss. It is in. In the process of developing such superconducting conductors, a heat loss measuring device that can efficiently and conveniently evaluate heat loss is essential.

超電導導体とか、それで構成され九超電導装置(代表的
には超電導マグネット)の熱損失の測定法は、電磁気的
方式と熱的方式の2つに大別できる。前者は間接的であ
シ、後者は直接的な方法である。前者に比べ後者は測定
に置時間を要するが、測定値の精度と信頼性に優れる。
Methods for measuring heat loss in superconducting conductors and superconducting devices (typically superconducting magnets) made of them can be roughly divided into two types: electromagnetic methods and thermal methods. The former is an indirect method, and the latter is a direct method. Compared to the former, the latter requires more time to measure, but the accuracy and reliability of the measured values are superior.

ここでは後者の測定法及び測定装置とそれに関する問題
点、及び本発明の背景上述べる。
Here, the latter measuring method, measuring device, problems related thereto, and the background of the present invention will be described.

第3図に熱的方法による従来の測定装置の典型的な例を
示す。超電導状態全保持できる冷媒(以下、常圧42に
の液体ヘリウムで代表させる)を収容するクライオスタ
ット(本図では真空断熱槽と液体窒素断熱槽は省略した
]1に液体ヘリウム2を過当な高さまで張り込み、その
中に被測定体(超電導導体8、またはそれから成る超電
導マグネット9 )’を収納しうる試料!3 t−Eめ
、試料室3の底部には液体ヘリウム補給と被測定体への
電流リード線13等七通す開口部6と、そして、天井部
には被測定体中の熱損失による液体ヘリウムの気化した
ガスか、フライオスタラ)l外に取シ出せるような導管
14か取りつけられている。フライオスタラ)1外に導
ひかれたヘリウムガスは、熱交換器16でヱ温まで温め
られ、流量計19によって計量された後、大気中に放出
される。−万、クライオスタット1に外部から侵入する
熱で蒸発嘔せられたヘリウムガスは、その上部の導管1
5カラクライオスタツト1外に導ひかれ、開閉弁17を
通して大気中に放出嘔れる。これら2つの導管14と1
5の間で、かつ、流量計19の上流側に差圧計18が挿
入される。被測定体に電流リード線13から変化電流が
印加される場合を考える。この変化電流によって被測定
体で発熱があると、液体ヘリウムは気化され導管14を
通してヘリウムガスが流出してくる。この流れt生じさ
せるには、導管14、熱交換器16、流量計191cよ
る圧力損失よシも高い圧力でクライオスタット1内が常
時保持される必要がある。そのため、クライオスタット
1内での外部からの侵入熱と導管15の圧力損失を考慮
し、常時上記圧力を一定に保持するよう、差圧計18に
監視しながら、開閉弁17を調整する操作が必要となる
。不操作は極めて微妙で測定値の信頼性を左右する。
FIG. 3 shows a typical example of a conventional measuring device using a thermal method. A cryostat (hereinafter, the vacuum insulation tank and liquid nitrogen insulation tank are omitted) containing a refrigerant (hereinafter represented by liquid helium at normal pressure 42) that can maintain the full superconducting state (the vacuum insulation tank and liquid nitrogen insulation tank are omitted) 1 is filled with liquid helium 2 to an excessive height. The sample chamber 3 is equipped with liquid helium supply and electric current to the sample chamber 3 at the bottom of the sample chamber 3. An opening 6 through which the lead wires 13, etc. are passed, and a conduit 14 that can be taken out from the ceiling to allow the vaporized liquid helium gas (Fry Ostara) due to heat loss in the object to be measured are installed. . The helium gas led outside of the Fly Ostara 1 is heated to a temperature of 30 degrees by a heat exchanger 16, measured by a flow meter 19, and then released into the atmosphere. - Helium gas that has been evaporated by heat entering cryostat 1 from the outside is transferred to conduit 1 at the top of cryostat 1.
The cryostat is led out of the cryostat 1 and released into the atmosphere through the on-off valve 17. These two conduits 14 and 1
A differential pressure gauge 18 is inserted between 5 and upstream of the flow meter 19. Consider a case where a varying current is applied to the object to be measured from the current lead wire 13. When the object to be measured generates heat due to this changing current, the liquid helium is vaporized and helium gas flows out through the conduit 14. In order to generate this flow t, it is necessary to maintain the inside of the cryostat 1 at a pressure higher than the pressure loss due to the conduit 14, the heat exchanger 16, and the flow meter 191c. Therefore, it is necessary to adjust the on-off valve 17 while monitoring the differential pressure gauge 18 in order to maintain the above-mentioned pressure constant at all times, taking into consideration heat intrusion from the outside into the cryostat 1 and pressure loss in the conduit 15. Become. Non-operation is extremely subtle and affects the reliability of measured values.

液体ヘリウムの比iが他めて小さいため、極くわずかの
圧力差で導管14内の液面の高さが大きく変動し、この
導管14内の温度勾配(温度分布)tみだし、ガスの体
積ひいては流量計19の指示を大さく変動させ、測定が
困難になるばかシでなく信頼性も失なわれる。測定中は
導管14内の液面為さは一定に保持し、望ましくはクラ
イオスタット1内の液面と等しいか、それよシ多少上に
保つのがよいとさnている。また、計量されたヘリウム
ガスは大気中に放出されるのが普通で、これtヘリウム
ガス回収系に接続すると回収コンプレッサーによる圧力
変動、回収系までの圧力損失などが影響し、測定が不可
能となる。従って、不経済ではあるか大気中に逃がさざ
るを得ない状況におる。
Since the ratio i of liquid helium is smaller than others, the height of the liquid level inside the conduit 14 changes greatly with a very small pressure difference, the temperature gradient (temperature distribution) inside this conduit 14 protrudes, and the volume of gas increases. As a result, the reading on the flowmeter 19 will fluctuate greatly, which will not only make measurement difficult but also cause loss of reliability. During the measurement, the liquid level in the conduit 14 is kept constant, preferably equal to or slightly higher than the liquid level in the cryostat 1. In addition, the measured helium gas is normally released into the atmosphere, and if it is connected to a helium gas recovery system, it will be affected by pressure fluctuations due to the recovery compressor and pressure loss up to the recovery system, making measurement impossible. Become. Therefore, we are in a situation where we have no choice but to release it into the atmosphere, which may be uneconomical.

また、クライオスタット1内に液体ヘリウム2を張シ込
んだ直後から、装置全体が熱平衡状態になる時間は極め
て長く、数時間を喪し、この間クライオスタット1内の
液体ヘリウムの装発量か側割変動し、クライオスタット
1内の圧力も変化する九め測定不能となる。
In addition, immediately after filling the cryostat 1 with liquid helium 2, it takes an extremely long time for the entire device to reach a state of thermal equilibrium, which takes several hours, and during this period, the amount of liquid helium in the cryostat 1 fluctuates. However, the pressure inside the cryostat 1 also changes, making measurement impossible.

尚、この種の装置として関連するものには、例えば、[
ジャーナル アプリケイジョン フイジイクス(Jou
rnal Application Physics 
 )vow、53,41.(1982)p578に、[
uroda Jか挙げられる。
Incidentally, related devices of this type include, for example, [
Journal Application Physics (Jou
rnal Application Physics
) vow, 53, 41. (1982) p578, [
One example is uroda J.

〔発明の目的〕[Purpose of the invention]

本発明は上述の点に鑑み成されたもので、その目的とす
るところは、極めて簡便で、かつ、高精度、高感度の熱
損失測定装置上提供するにある。
The present invention has been made in view of the above points, and its object is to provide an extremely simple, highly accurate, and highly sensitive heat loss measuring device.

〔発明の概要〕 本発明の要点は、試料の発熱によシ気化されたヘリウム
ガスを液体ヘリツム中(クライオスタット内)で、液体
ヘリウムと置換することによって体積を求めることにあ
る。このヘリウムガスは4.2にの一定温度に保持され
、圧力も液体ヘリウムの比重か小さい九め、はとんど変
動なく一定に4M持されるので測定相良は極めて高い。
[Summary of the Invention] The gist of the present invention is to determine the volume by replacing helium gas vaporized by heat generation in a sample with liquid helium in a liquid helium (inside a cryostat). This helium gas is kept at a constant temperature of 4.2 mm, and the pressure is kept constant at 4 M without any fluctuation, which is lower than the specific gravity of liquid helium, so the measured Sagara is extremely high.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を8141図、及び第2図の実施例によっ
て説明する。第1図に本発明の基本的な構成を示し友。
The present invention will be explained below with reference to the embodiments shown in FIG. 8141 and FIG. FIG. 1 shows the basic configuration of the present invention.

該図の如く、クライオスタット1内に液体ヘリウム2を
張シ込み、その中に試料室3を沈め、試料室3中に被測
定体となる超電導導体8、ま九はそれから構成される超
電導マグネット9を収納せしめる、試料室3の底部には
液体ヘリウムを補給しうる開口部6を、天井部には気化
したヘリウムガスを溜めるガス溜め部4を設ける。開口
部6は第3囚の場合と同様であるか、ガス溜め部4は上
端か液体ヘリウム中にあり、その上端部にヘリウムガス
か漏洩しない程度に密着した栓7が設けらn1クライオ
スタツトl外から操作棒11で開閉できるようになって
いる。被測定体に変化電流を印加する場合を例にとシそ
の動作を説明する。被測定体に通電する前に栓7t−開
け、試料室3とカス溜め部4を完全に液体ヘリウムで満
してから栓7を閉じる。次に通電を行ない、熱発生によ
るfi化したヘリウムガスをガス溜め部4に溜め成体ヘ
リウムと置換させる。一定時間経過すると通電を止め、
カスが溜つ′fc部分10の高さまたは俸yLを適当な
手段で測定する。測定が終了すれば栓7をhv5試料試
料色3ス溜め部4に液体ヘリクムを再び満す。以上で1
回の測定を終了することになる。
As shown in the figure, a cryostat 1 is filled with liquid helium 2, a sample chamber 3 is submerged therein, and a superconducting conductor 8, which becomes the object to be measured, is placed in the sample chamber 3, and a superconducting magnet 9 made of the superconducting conductor 8 is placed inside the sample chamber 3. An opening 6 for replenishing liquid helium is provided at the bottom of the sample chamber 3, and a gas reservoir 4 for storing vaporized helium gas is provided at the ceiling. The opening 6 is the same as that for the third prisoner, or the gas reservoir 4 is located at the upper end or in liquid helium, and the upper end is provided with a stopper 7 that is tightly sealed to the extent that helium gas does not leak. It can be opened and closed from the outside using an operating rod 11. The operation will be explained using an example in which a changing current is applied to the object to be measured. Before energizing the object to be measured, the stopper 7t is opened, and after the sample chamber 3 and waste reservoir 4 are completely filled with liquid helium, the stopper 7 is closed. Next, electricity is applied, and the helium gas, which has been converted into fi due to heat generation, is stored in the gas reservoir section 4 and replaced with solid helium. After a certain period of time, the power is turned off,
The height or height yL of the 'fc portion 10 where debris accumulates is measured by an appropriate means. When the measurement is completed, the stopper 7 is used to refill the HV5 sample color 3 reservoir 4 with liquid helicum. That's 1
This marks the end of the measurement.

試料からの熱発生が1mWのとき4.2に、1気圧あヘ
リウムガスの体積は2.8X10−”副3/Sに相当し
、例えばガス溜め54t−パイプで構成しその直径を5
0とすれは、10分間の通電で8.56創の高さになる
。この高さは観測に十分かかる童であることはいうまで
もない。この高さが5チのhLで計られたとすると、熱
量では、わずか10分間で0.05mWの感度t−Vす
ることになり、従来の方法でどんなに長時間をかけても
1mWの測定は信頼性かないといわれていたのに比べ格
段の改善となる。
When the heat generation from the sample is 1 mW, the volume of helium gas at 1 atm is equivalent to 2.8 x 10-" sub-3/S. For example, if the gas reservoir is composed of a 54-t pipe and its diameter is
0 and 0, the height of the wound will be 8.56 after 10 minutes of energization. Needless to say, this height is quite high for observation. If this height is measured in hL of 5 inches, the heat value will have a sensitivity t-V of 0.05 mW in just 10 minutes, and no matter how long it takes with the conventional method, the measurement of 1 mW is reliable. This is a significant improvement compared to what was said to be no sex.

液体ヘリウムの比重は1気圧4.2にでO,126g/
Cm”でめることから、ガス溜め部4内の液面が30画
低下したとしてもその圧力はわずか0.0037気圧で
、4.2にのヘリウムガスの再液化は考えられず測定に
及ぼす影響は全くない。仮りに何らかの原因で体積変化
が生じても、同一条件で既知の発熱体による収正金して
おけはその懸念は解消式れる。
The specific gravity of liquid helium is O, 126g/at 1 atm 4.2
Cm", even if the liquid level in the gas reservoir 4 drops by 30 degrees, the pressure will be only 0.0037 atm, and re-liquefaction of the helium gas in 4.2 is unlikely to affect the measurement. There is no effect at all. Even if a volume change occurs for some reason, if the specie is collected using a known heating element under the same conditions, that concern will be resolved.

フライオスフット1か熱平衡状態でなくとも、鷹タクラ
イオスタットl内からの蒸発ヘリウムガスを回収するた
め導管15を回収系に接続したとしても、ガス溜め部4
内の液面扁さを読む瞬間だけ、クライオスタット内圧力
かわかれば補正作業だけで正しい熱損失を求めることが
できる。従って測定時間も著しく短縮され、高価なヘリ
ウムガスも大気中に逃すことなくはとんと回収可能とな
る。
Even if the fly-oss foot 1 is not in thermal equilibrium, even if the conduit 15 is connected to the recovery system to recover the evaporated helium gas from inside the Takata cryostat 1, the gas reservoir 4
If you know the pressure inside the cryostat at the moment when you can read the liquid level inside the cryostat, you can calculate the correct heat loss just by making corrections. Therefore, the measurement time is significantly shortened, and expensive helium gas can be recovered without escaping into the atmosphere.

いう1でもなく、栓7の開閉操作と構造、カス溜め部4
の寸法とり2イオスタット1内液面との相対的位置関係
、特に栓7が液面上にある場合も含め、変形か雅々考え
らnるが、それにこだわるものではない。また、変化電
流の印加方法、変化磁界の印加方法、ガス溜め部4内の
液面を観測する手段も穐々考見られるか、それらにもこ
だわるものではない。殊に、液面の観測手段について述
べるなら、(1)フライオスフット1がガラス製である
場合、カス溜め部4に目盛をつけておけば、外部からの
目視またはレンズ等の手段で十分測定することかでさる
こと、(li)フライオスフット1か金属製であるとか
、ガラス製であっても試料室3やガス溜めs4に外部磁
界印加用の超電導磁石がかぶさっている場合には、栓の
部分に超音波素子を一般けるなどして液面を測定するこ
とも可能である。
Not 1, but the opening/closing operation and structure of the stopper 7, and the waste storage part 4.
The dimensions of 2 and the relative positional relationship with the liquid level in the Iostat 1, especially including the case where the plug 7 is above the liquid level, may be deformed, but this is not a matter of concern. In addition, the method of applying a changing current, the method of applying a changing magnetic field, and the means of observing the liquid level in the gas reservoir 4 may also be carefully considered, and the present invention is not limited to these. In particular, regarding the means for observing the liquid level, (1) If the fly-oss foot 1 is made of glass, if a scale is attached to the waste reservoir 4, measurements can be made sufficiently by visual observation from the outside or by means such as a lens. (li) Even if the Flyos foot 1 is made of metal or glass, if the sample chamber 3 or gas reservoir s4 is covered with a superconducting magnet for applying an external magnetic field, It is also possible to measure the liquid level by placing an ultrasonic device in the stopper.

ただし、その際熱発生を伴なわない素子とか手法を適用
し、試料室3内に熱入力を与えないよう配慮する必要が
ある。
However, in this case, it is necessary to apply an element or method that does not involve heat generation, and to take care not to apply heat input into the sample chamber 3.

本実施例では被測定体とし1超電導導体、もしくはそれ
からなる超゛道導装fiを例にとって説明してキ九が、
被測定体は常電導導体もしくはそれからなる装置にも適
用可能で、使用冷媒温度での熱損失が知シ九い場合には
極めて有効な測定装置となる。
In this example, the object to be measured is a superconducting conductor or a superconducting device fi made of the same.
The object to be measured can be a normal conducting conductor or a device made of the same, and it becomes an extremely effective measuring device when heat loss at the temperature of the refrigerant used is negligible.

第2図に本発明の他の実施例を示す。これは、1つのク
ライオスタット内に複数の被測定体を配置し、試料室3
を天井部と低部5に分離し、測定が終了する九びに、試
料室3の天井部(ガス溜め部4、栓7、操作vslll
t′一体で移動させ、次の被測定体にかふせることによ
シ効率良く測定が行なえるようにしたものである。すな
わち、この底部5には被測定体が固定さn1外部から気
化し九ヘリウムガスの気泡が流れ込まないよう周辺部に
塀を設け、この塀の内側でその高さよシ下に試料嵐3の
壁かくるように配置する。
FIG. 2 shows another embodiment of the invention. In this method, multiple objects to be measured are placed in one cryostat, and the sample chamber 3
The sample chamber 3 is separated into a ceiling part and a lower part 5, and at the end of the measurement, the ceiling part of the sample chamber 3 (gas reservoir part 4, plug 7, operation vsllll
By moving the probe t' together and covering it with the next object to be measured, efficient measurement can be carried out. That is, the object to be measured is fixed to this bottom part 5, and a wall is provided around the periphery to prevent vaporized helium gas bubbles from flowing in from the outside. Place it so that it is covered.

測定毎に試料室3をクライオスタット1から引き上げ九
シ、挿入し九9すると、そのたびに大量の液体ヘリウム
を消費することは同業者が周知するところである。本発
明では天井部のみを被測定体の高さ程度に持ち上げるだ
けで移動を行なうため液体ヘリウムの消費は極めて少な
い。このようにすると作業効率向上に極めて有効となる
Those skilled in the art are well aware that a large amount of liquid helium is consumed each time the sample chamber 3 is pulled out of the cryostat 1 and inserted for each measurement. In the present invention, the movement is performed by simply lifting only the ceiling to the height of the object to be measured, so the consumption of liquid helium is extremely small. This will be extremely effective in improving work efficiency.

〔発明の効果〕〔Effect of the invention〕

以上説明した本発明によれは、すでに述べた測定時間の
短靴と操作法の簡略化に伴なう高効率化、画定値の信頼
性と高感度化、液体ヘリウムの回収に伴なう経済性の向
上等の他に、装置そのものが単純でかつ安価に構成され
る点か最大の利点であシ、核融合用、エネルギー貯蔵用
、そして加速器用の超電導導体の開発に不可欠な評価装
置として使用でさ、その工業的効果は極めて大である。
The advantages of the present invention as described above include high efficiency due to the simplification of the measurement time and operation method, high reliability and high sensitivity of the defined value, and economical efficiency due to the recovery of liquid helium. In addition to improved performance, the biggest advantage is that the device itself is simple and inexpensive, and is used as an essential evaluation device for the development of superconducting conductors for nuclear fusion, energy storage, and accelerators. The industrial effect is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の熱損失測定装置の一実施例を示す概略
構成図、第2因は本発明の他の実施例を賛部のみについ
て示し友概略樽成図、第3図は従来の熱損失測定装fi
tを示す概略構成図である。
Fig. 1 is a schematic configuration diagram showing one embodiment of the heat loss measuring device of the present invention. heat loss measuring device fi
It is a schematic block diagram which shows t.

Claims (1)

【特許請求の範囲】 1、冷媒中におかれた被測定体の熱損失を測定する熱損
失測定装置において、前記被測定体の発熱による前記冷
媒の気化した気体で該冷媒を置換できるよう構成し、そ
の気体の体積を測定できるような手段を有することを特
徴とする熱損失測定装置。 2、前記被測定体を収納する容器を有し、該容器の底部
に、他の原因で気化した気体が侵入しないような開口部
を有すると共に、天井部には被測定体から発生する気体
が漏洩することのないような栓を有する開口部を設け、
該天井部に溜る気化した気体の体積、または冷媒と気体
の置換によつて生ずる液面の高さを測定できる手段を有
することを特徴とする特許請求の範囲第1項記載の熱損
失測定装置。 3、前記被測定体を収納する容器を、底部と天井部に分
離し、該底部を冷媒容器内に固定すると共に天井部を冷
媒容器から取りはずせるよう構成したことを特徴とする
特許請求の範囲第1項記載の熱損失測定装置。
[Scope of Claims] 1. A heat loss measuring device for measuring heat loss of a measured object placed in a refrigerant, configured so that the refrigerant can be replaced with vaporized gas of the refrigerant due to heat generated by the measured object. and a means for measuring the volume of the gas. 2. It has a container for storing the object to be measured, and has an opening at the bottom of the container to prevent gases vaporized from other causes from entering, and a ceiling part to prevent gases generated from the object to be measured from entering. Provide an opening with a stopper to prevent leakage;
The heat loss measuring device according to claim 1, characterized by having means capable of measuring the volume of vaporized gas accumulated in the ceiling portion or the height of the liquid level caused by replacing the refrigerant with the gas. . 3. Claims characterized in that the container for storing the object to be measured is separated into a bottom part and a ceiling part, the bottom part is fixed in the refrigerant container, and the ceiling part is detachable from the refrigerant container. The heat loss measuring device according to item 1.
JP60048325A 1985-03-13 1985-03-13 Heat loss measuring instrument Pending JPS61207957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60048325A JPS61207957A (en) 1985-03-13 1985-03-13 Heat loss measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60048325A JPS61207957A (en) 1985-03-13 1985-03-13 Heat loss measuring instrument

Publications (1)

Publication Number Publication Date
JPS61207957A true JPS61207957A (en) 1986-09-16

Family

ID=12800259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60048325A Pending JPS61207957A (en) 1985-03-13 1985-03-13 Heat loss measuring instrument

Country Status (1)

Country Link
JP (1) JPS61207957A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006017656A (en) * 2004-07-05 2006-01-19 Furukawa Electric Co Ltd:The Ac loss measuring instrument and ac loss measurement method
CN101839943A (en) * 2010-05-19 2010-09-22 中国科学院电工研究所 Resistance measurement device of conduction cooling type superconduction adapter
CN112665762A (en) * 2020-12-16 2021-04-16 广东电网有限责任公司电力科学研究院 Calorimetric test device and method for alternating current magnetization loss of non-insulated coil

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006017656A (en) * 2004-07-05 2006-01-19 Furukawa Electric Co Ltd:The Ac loss measuring instrument and ac loss measurement method
JP4514532B2 (en) * 2004-07-05 2010-07-28 古河電気工業株式会社 AC loss measuring apparatus and measuring method
CN101839943A (en) * 2010-05-19 2010-09-22 中国科学院电工研究所 Resistance measurement device of conduction cooling type superconduction adapter
CN112665762A (en) * 2020-12-16 2021-04-16 广东电网有限责任公司电力科学研究院 Calorimetric test device and method for alternating current magnetization loss of non-insulated coil

Similar Documents

Publication Publication Date Title
Focardi et al. Large excess heat production in Ni-H systems
JP5894644B2 (en) Apparatus and method for measuring residual power dissipated from karyotype charge
JP2009186321A (en) Level gage, low-temperature thermostat equipped with level gage, and superconducting magnet equipped with level gage
JPS61207957A (en) Heat loss measuring instrument
CN103885009B (en) A kind of permanent magnet temperature coefficient open circuit measurement apparatus and measuring method
Earnshaw et al. The effective thermal conductivity of a bed of 1.2-mm-diam lithium zirconate spheres in helium
CN116256590A (en) High-temperature superconducting cable and coil alternating current loss testing device and testing method
Jones et al. The specific heat of crystalline quartz between 2 K and 4 K
Murphy et al. Subcooled flow boiling of fluorocarbons
Garcia Boiling in liquid hydrogen under gravity compensated with a magnetic field
CN104457358A (en) High temperature heat pipe cavity real-time pressure measurement system based on a u-shaped pipe
Rawlings et al. New experimental results on the static and the transient anomalous Kapitza conductance of clean copper to 4 He interfaces
Kolba et al. OXYGEN--HYDROGEN METER MODULE FOR LMFBR's: DESIGN AND OPERATION.
Lapin et al. Study of nitrogen and neon pool boiling on a short vertical pipe
Duncombe et al. Some analytical and process instruments for measurements in sodium
Davis LIQUID METAL IN-LINE IMPURITY MEASURING INSTRUMENTS (SODIUM) STATE-OF-THE-ART STUDY.
AMBLER et al. Continuously Operating He³ Refrigerator for Producing Temperatures down to K
Seidel et al. Continuously Operating He³ Refrigerator for Producing Temperatures down to 1 K E. AMBLER AND RB DOVE
JPS60181619A (en) Liquid helium levelmeter
CN118362951A (en) Superconducting line critical current testing device and testing method
Pilla et al. A modified dual-slope method for heat capacity measurements of condensable gases
Johnson et al. A Versatile Low Temperature Calorimeter
Dundon et al. Internal sublattice fields of antiferromagnetic O 2 as determined by the nuclear heat capacity of O 17
Ashworth Determination of Specific Heats at Low Temperatures
Welander et al. A new small nano-Kelvin resolution thermometer for low temperature experiments