JPH0450512A - Heat pipe device - Google Patents

Heat pipe device

Info

Publication number
JPH0450512A
JPH0450512A JP2157018A JP15701890A JPH0450512A JP H0450512 A JPH0450512 A JP H0450512A JP 2157018 A JP2157018 A JP 2157018A JP 15701890 A JP15701890 A JP 15701890A JP H0450512 A JPH0450512 A JP H0450512A
Authority
JP
Japan
Prior art keywords
heat pipe
heat
spiral
pipe device
bearing segment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2157018A
Other languages
Japanese (ja)
Inventor
Shigehiro Kayukawa
粥川 滋広
Kensuke Komori
小森 健介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2157018A priority Critical patent/JPH0450512A/en
Publication of JPH0450512A publication Critical patent/JPH0450512A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C37/00Cooling of bearings
    • F16C37/002Cooling of bearings of fluid bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/06Sliding-contact bearings for exclusively rotary movement for axial load only with tiltably-supported segments, e.g. Michell bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mounting Of Bearings Or Others (AREA)

Abstract

PURPOSE:To provide a bottom heat-top cool heat pipe device capable of cooling a heating body by defining an axial gap of a spiral flexible part and average radius with predetermined dimensions to reduce fluid resistance and ensure flexibility. CONSTITUTION:A heat absorbing section at the lower side of a heat pipe 4 is embedded directly in a bearing segment 1, and a vertical spiral flexible part 4c capable of relative movement of fixed parts in all directions is provided vertically between the fixed parts of the lower side heat absorbing and the upper side radiating part. The axial gap P is set to at least 1.5 times heat pipe diameter d to reduce the fluid resistance of oil flow in an oil tank 2 and the average radius R is set to at least 4 times heat pipe diameter d to ensure the flexibility. Thus, the relative repetitive displacement between the fixed parts of the lower side heat absorbing part and the upper side radiating part is absorbed by the spiral flexible part 4c, and the lower side heat absorbing part can be embedded directly in the bearing segment 1 to provide a bottom heat-top cool heat pipe device capable of cooling a heating body.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はヒートパイプ装置に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a heat pipe device.

〔従来の技術〕[Conventional technology]

ヒートパイプは元来、吸熱部を下側、放熱部を上側とし
た所謂Bottom  heat−Topcool方式
で使用し、ヒートパイプの放熱部で冷却されたヒートパ
イプ内の吸熱部より上昇してきた蒸気の結露液を重力の
作用、または芯材の毛細管現象と重力との相乗作用で速
やかに吸熱部に戻し、再度吸熱蒸発させて吸熱部から放
熱部に熱量を効率よく輸送するための冷却装置である。
Heat pipes were originally used in the so-called Bottom heat-Topcool method, with the heat absorption part on the bottom and the heat radiation part on the top. This is a cooling device that quickly returns the liquid to the endothermic part by the action of gravity or the synergistic action of the capillary action of the core material and gravity, and then evaporates it again to efficiently transport heat from the endothermic part to the heat radiating part.

従って、この反対に吸熱部を上側とし、放熱部を下側に
取りつけるような使用方法は、この蒸気流と結露液との
重力による循環に逆らうものであり、成立しないか、ま
たは芯材による僅かな循環を期待したものとなり、ヒー
トパイプの有する最適使用条件における性能をほとんど
活用できないものとなる。
Therefore, on the contrary, a usage method in which the heat absorbing part is placed on the upper side and the heat radiating part is attached on the lower side goes against the circulation of the steam flow and condensation liquid by gravity, and may not be possible, or may not be possible due to the core material. Therefore, the performance of the heat pipe under the optimum usage conditions cannot be utilized.

特開昭55−129621号公報に記載されているもの
は可動的な加熱部にヒートパイプを直接埋込み、ヒート
パイプ装置全体の重量を加熱物体で支持するようにして
いる。この点ヒートパイプの長さが限定されるので、ヒ
ートパイプの途中に可撓部を設けてないが、使用方法に
おいてBottom  cool−Top  heat
の形となっており、例え放熱部の冷却材として冷風より
低温の冷却水を使っているとは云え、使用上の位置関係
が根本的にヒートパイプの使用方法に逆らっている。従
って、ヒートパイプの持つ能力が十分に活用されてない
In the device described in Japanese Unexamined Patent Publication No. 55-129621, a heat pipe is directly embedded in a movable heating section, so that the weight of the entire heat pipe device is supported by the heating object. In this point, since the length of the heat pipe is limited, a flexible part is not provided in the middle of the heat pipe, but in the usage method, Bottom cool-Top heat
Although it uses cooling water at a lower temperature than cold air as the cooling material for the heat dissipation part, the positional relationship in use is fundamentally contrary to the method of using heat pipes. Therefore, the capabilities of heat pipes are not fully utilized.

本例以外の一般的な従来の推力軸受装置へのヒートパイ
プの実用例が第9図に示されている。これは加熱体であ
る軸受セグメント1から油槽2内の潤滑油3へ放熱され
るが、その潤滑油3中にヒートパイプ4の吸熱部を投入
する間接的なヒートパイプ冷却であり、放熱部は油槽外
の冷媒中に設置される。なお同図において4a、4bは
ヒートパイプ4の放熱フィン、5は回転軸、6は回転円
板である。
A practical example of a heat pipe for a general conventional thrust bearing device other than this example is shown in FIG. This is an indirect heat pipe cooling in which the heat absorbing part of the heat pipe 4 is thrown into the lubricating oil 3, and the heat dissipating part is Installed in the refrigerant outside the oil tank. In the figure, 4a and 4b are radiation fins of the heat pipe 4, 5 is a rotating shaft, and 6 is a rotating disk.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

推力軸受に直接ヒートパイプを取り付けると、吸熱部と
放熱部とに相対的な垂直方向の繰返し変位があり、この
ため従来の一体形ヒートパイプでは、その材料(一般的
に熱伝導のよい銅管)の疲労強度の制限より、加熱体の
冷却に適用できなかった・ 本発明は以上の点に鑑みなされたものであり、加熱体の
冷却を可能としたBottom  heat−Top 
 coolのヒートパイプ装置を提供することを目的と
するものである。
When a heat pipe is mounted directly on a thrust bearing, there is a relative vertical repetitive displacement between the heat absorbing and heat dissipating parts, which is why traditional integral heat pipes are not made of the material (generally copper tube with good thermal conductivity). ) could not be applied to the cooling of the heating element due to the limitation of fatigue strength of
The purpose is to provide a cool heat pipe device.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、ヒートパイプの下側の吸熱部を軸受セグメ
ントに直接埋込み、この下側の吸熱部と上側の放熱部と
の固定部の間に、固定部の総ての方向の相対動きを可能
とする上下方向に垂直なスパイラル状可撓部を設け、か
つこのスパイラル状可撓部の軸方向の間隙Pをヒートパ
イプ径dの1゜5倍以上として油槽内の油流の流体抵抗
を低減し、スパイラル状可撓部の平均半径Rをヒートパ
イプ径dの4倍以上として可撓性を確保することにより
、達成される。
The above purpose is to embed the lower heat absorbing part of the heat pipe directly into the bearing segment, and to allow relative movement of the fixed part in all directions between the lower heat absorbing part and the upper heat dissipating part. A spiral-shaped flexible part is provided perpendicular to the vertical direction, and the axial gap P of this spiral-shaped flexible part is set to 1.5 times or more the heat pipe diameter d to reduce the fluid resistance of the oil flow in the oil tank. However, this is achieved by ensuring flexibility by setting the average radius R of the spiral flexible portion to at least four times the heat pipe diameter d.

すなわちヒートパイプの最も性能の発揮される動作温度
(ヒートパイプの吸熱部の温度と放熱部の温度との平均
)をヒートパイプの熱輸送量効率曲線の極大値に近ずけ
るよう、ヒートパイプの吸熱部を直接温度の高い加熱物
体(軸受セグメント)に挿入し、一方、放熱部は最も温
度の低い冷却媒体に位置するように取り付ける。ヒート
パイプの両端間の垂直の相対的繰返し変位量をヒートパ
イプの両端の中間に設けたスパイラル状可撓部により吸
牧し、両側の金属製ヒートパイプの取付部分に疲労応力
が加わらないようにした。
In other words, the heat pipe is designed so that the operating temperature at which the heat pipe exhibits its best performance (the average of the temperature of the heat absorption part and the temperature of the heat radiation part) approaches the maximum value of the heat pipe's heat transport efficiency curve. The heat absorbing part is inserted directly into the heated object (bearing segment) with the highest temperature, while the heat dissipating part is installed so that it is located in the coolant medium with the lowest temperature. The vertical relative repetitive displacement between both ends of the heat pipe is absorbed by a spiral-shaped flexible section provided between both ends of the heat pipe, so that fatigue stress is not applied to the attachment parts of the metal heat pipes on both sides. did.

〔作用〕[Effect]

上記手段を設けたので、ヒートパイプの下側の吸熱部と
、上側の放熱部との固定部間の相対的繰返し変位量はス
パイラル状可撓部で級数されるようになって、下側の吸
熱部の軸受セグメント(加熱体)への直接埋込みが可能
となる。
Since the above means is provided, the relative repetitive displacement between the lower heat absorption part and the fixed part of the upper heat dissipation part is scaled by the spiral flexible part, and the lower part of the heat pipe is Direct embedding of the heat absorbing part into the bearing segment (heating body) becomes possible.

すなわち垂直方向に相対変位差を級数できるヒートパイ
プで吸熱部と放熱部とを垂直位置関係を保ったまま、互
にヒートパイプの両端に力を加えずに、すなわち両側取
付部へ変位による応力を発生させることなく、ヒートパ
イプの最適使用位置で軸受セグメントの冷却が可能とな
る。
In other words, with a heat pipe that can scale the relative displacement difference in the vertical direction, the heat absorption part and the heat radiation part can be maintained in a vertical positional relationship without applying force to either end of the heat pipe, that is, by applying stress due to displacement to the mounting parts on both sides. It is possible to cool the bearing segment at the optimum position of use of the heat pipe without causing heat generation.

このため、基本的にはヒートパイプの両端部分および可
撓部分共に、毛細管現象を生しさせるためのヒートパイ
プ内部への芯材の取り付けは必ずしも必要ではなくなり
、重力の作用により吸熱部から上に蒸発して放熱部に達
し、冷却されて結露した液体は重力の作用で吸熱部に戻
ることになる。
For this reason, it is basically no longer necessary to attach a core material inside the heat pipe to generate capillary action at both ends and the flexible part of the heat pipe, and the heat absorbing part upwards due to the action of gravity. The liquid that evaporates and reaches the heat sink, is cooled and condenses, and returns to the heat sink due to the action of gravity.

スパイラル状可撓部はヒートパイプ自体をスパイラル状
にし、このスパイラル状可撓部の軸方向を垂直とするこ
とにより、放熱後の結露液はスパイラル部の傾斜に沿っ
て流下するように動作し、ヒートパイプの吸熱部からの
蒸気の上昇も聞書しない。
The spiral-shaped flexible part has the heat pipe itself in a spiral shape, and by making the axial direction of this spiral-shaped flexible part vertical, the condensed liquid after heat radiation flows down along the slope of the spiral part, There is also no rise of steam from the heat absorption part of the heat pipe.

〔実施例〕〔Example〕

以下、図示した実施例に基づいて本発明を説明する。第
1図および第2図には本発明の一実施例が示されている
。なお従来と同じ部品には同し符号を付したので説明を
省略する。本実施例ではヒートパイプ4の下側の吸熱部
を軸受セグメント1に直接埋込み、この下側の吸熱部と
上側の放熱部との固定部の間に、固定部の総ての方向の
相対動きを可能とする上下方向に垂直なスパイラル状可
撓部4cを設け、かつこのスパイラル状可撓部4Cの軸
方向の間IPをヒートパイプ径dの1.5倍以上として
油槽2内の油流の流体抵抗を低減し、スパイラル状可撓
部4cの平均半径Rをヒートパイプ径dの4倍以上とし
て可撓性を確保するようにした。このようにすることに
より下側の吸熱部と上側の放熱部との固定部間の相対的
繰返し変位量はスパイラル状可撓部4cで級数されるよ
うになって、下側の吸熱部の軸受セグメント1への直接
埋込みが可能となり、加熱体の冷却を可能としたBot
tom  heat−Top  coolのヒートパイ
プ装置を得ることができる。
The present invention will be explained below based on the illustrated embodiments. An embodiment of the invention is shown in FIGS. 1 and 2. FIG. Note that parts that are the same as those in the prior art are given the same reference numerals, and therefore their explanations will be omitted. In this embodiment, the lower heat absorbing part of the heat pipe 4 is directly embedded in the bearing segment 1, and the relative movement of the fixed part in all directions is controlled between the fixed part of the lower heat absorbing part and the upper heat dissipating part. A spiral flexible portion 4c vertical to the vertical direction is provided, and the IP between the spiral flexible portions 4C in the axial direction is set to be at least 1.5 times the heat pipe diameter d to control the oil flow in the oil tank 2. The average radius R of the spiral flexible portion 4c is set to four times or more the diameter d of the heat pipe to ensure flexibility. By doing this, the relative repetitive displacement between the fixed parts of the lower heat absorbing part and the upper heat radiating part is scaled by the spiral flexible part 4c, and the bearing of the lower heat absorbing part Bot that can be directly embedded in segment 1 and allows cooling of the heating element
A tom heat-Top cool heat pipe device can be obtained.

すなわち推力軸受では回転円板6と軸受セグメント1と
の間のすへり面に、潤滑油3が回転円板6と軸受セグメ
ント1との相対すべりによりくさび状となったくさび状
油膜が形成される結果、軸受セグメント1は第3図およ
び第4図に示されているように、すべり方向の入口側で
h工、8口側でh2だけ、始動停止の都度動きを生ずる
。この油膜形成作用により軸受セグメント1は図中点線
表示の静止状態より、回転時は軸受セグメント1の傾き
により垂直変位差りだけ垂直方向に固定部に対し相対的
に変位する。一方油膜に作用する粘性せん断応力によっ
てすべり面に損失が発生し、それは油膜の温度上昇に費
される結果、油膜からの熱伝達により軸受セグメント1
は周囲の潤滑油温度よりも、特にすべり面において、ま
たより油膜厚さが薄く、かつすべり速度の大きい所で、
より高い温度上昇を生ずる。
That is, in a thrust bearing, a wedge-shaped oil film is formed on the edge surface between the rotating disk 6 and the bearing segment 1 by the relative sliding of the lubricating oil 3 between the rotating disk 6 and the bearing segment 1. As a result, as shown in FIGS. 3 and 4, the bearing segment 1 moves by h on the inlet side in the sliding direction and by h2 on the 8th port side each time it starts and stops. Due to this oil film formation effect, the bearing segment 1 is vertically displaced relative to the fixed portion by the vertical displacement difference due to the inclination of the bearing segment 1 during rotation from the stationary state indicated by the dotted line in the figure. On the other hand, loss occurs on the sliding surface due to viscous shear stress acting on the oil film, which increases the temperature of the oil film, resulting in heat transfer from the oil film to the bearing segment 1.
is higher than the surrounding lubricating oil temperature, especially on sliding surfaces, where the oil film thickness is thinner and the sliding speed is higher.
resulting in higher temperature rise.

この温度分布を径方向断面で極大となる断面を第3図の
a−b−c−dで、周方向断面で極大となる断面を同図
のA−B−C−Dで示す。この温度分布の値の大小を矢
印状の長さでa−b−c−d断面について示したのが第
5図であり、同しくA−B−C−D断面について示した
のが第6図である。これら両図から軸受セグメント1の
温度が最も高くなるのは、第3図のa−b−c−d断面
とA−B−C−D断面との交差位置で、かっすへり面に
近い程温度は高い。
The cross-section where this temperature distribution reaches its maximum in the radial direction is shown by a-b-c-d in FIG. 3, and the cross-section where the temperature distribution reaches its maximum in the circumferential direction is shown by a-b-c-d in the figure. Figure 5 shows the magnitude of the temperature distribution values for the a-b-c-d cross section using arrow-like lengths, and Figure 6 shows the same for the A-B-C-D cross section. It is a diagram. From these two figures, the temperature of the bearing segment 1 is highest at the intersection of the a-b-c-d cross section and the A-B-C-D cross section in Fig. 3, and the closer it is to the edge surface, the higher the temperature is. The temperature is high.

また、ヒートパイプの動作温度(吸熱部の温度と放熱部
の温度との平均値)に対する熱輸送量の効率曲線を代表
例について測定したものを第7図に示す。ヒートパイプ
はある直径を有するので、それを軸受セグメントに挿入
するには、ヒートパイプがすべり面に露出しないように
挿入する必要があり、第3図から求められる最高温度点
であるa−b−c−dとA−B−C−Dとの交差断面の
すべり面より若干下側にヒートパイプを挿入せざるを得
す、実用上は第8図のような軸受セグメント1の周方向
断面と径方向断面との交叉するヒートパイプ4が挿入可
能な位置で、かつ温度が最も高くなる軸受セグメント1
のすべり方向側の所定位置に挿入する。なお、回転機が
可逆回転の場合は同図の位置(イ)と、周方向中心対称
の位置(ロ)にもヒートパイプ4を挿入して、可逆のい
ずれの回転方向でも同一の冷却効果を持たせることにす
る。
Further, FIG. 7 shows the efficiency curve of the amount of heat transported against the operating temperature of the heat pipe (the average value of the temperature of the heat absorption part and the temperature of the heat radiation part) for a typical example. Since the heat pipe has a certain diameter, in order to insert it into the bearing segment, it is necessary to insert it so that the heat pipe is not exposed to the sliding surface, and the highest temperature point a-b- found from Fig. 3 is reached. It is necessary to insert the heat pipe slightly below the sliding surface of the intersection cross section of c-d and A-B-C-D.In practice, it is necessary to insert the heat pipe slightly below the sliding surface of the intersection cross section of bearing segment 1 as shown in Fig. 8. Bearing segment 1 that intersects with the radial cross section and is the position where the heat pipe 4 can be inserted and where the temperature is the highest
Insert it into the specified position on the sliding direction side. If the rotating machine is reversible, insert the heat pipe 4 in the position (a) in the figure and also in the circumferential center-symmetrical position (b) to achieve the same cooling effect in either reversible rotation direction. I decide to have it.

このようにヒートパイプ4の吸熱部を直接軸受セグメン
ト1にあけた孔に密着挿入して、軸受セグメント1の高
温部からのヒートパイプ4への伝熱をよくする一方、第
1図に示されているように、ヒートパイプ4の放熱部は
油槽2の外の冷媒が流れている外部に呂し、放熱フィン
4aをつけて冷却能力を増したものを、油槽2の上部に
強固に固定し、ヒートパイプ4の中間部分にスパイラル
状可撓部4cを設けたヒートパイプ回路とする。軸受セ
グメント1の油槽2に対する垂直変位差h(第4図参照
)による相対変位は、ヒートパイプ4の中間に設けた全
方向に可撓性を持つヒートパイプ4の一部をなすスパイ
ラル状可撓部4Cで級数するので、ヒートパイプ4の軸
受セグメント1側の取付部および油槽2側の取付部のい
ずれにも繰返し引張り応力や繰返し曲げ応力が加わらず
、従ってヒートパイプ取付部の金属的疲労破断を防止で
きる。
As shown in FIG. As shown in the diagram, the heat dissipation part of the heat pipe 4 is connected to the outside of the oil tank 2 where the refrigerant is flowing, and the heat pipe 4 is attached with heat dissipation fins 4a to increase the cooling capacity and is firmly fixed to the upper part of the oil tank 2. , a heat pipe circuit in which a spiral flexible portion 4c is provided in the middle portion of the heat pipe 4. The relative displacement due to the vertical displacement difference h (see FIG. 4) of the bearing segment 1 with respect to the oil tank 2 is determined by the spiral-shaped flexible part of the heat pipe 4 that is provided in the middle of the heat pipe 4 and is flexible in all directions. Since the series is carried out at part 4C, repeated tensile stress and repeated bending stress are not applied to either the mounting part on the bearing segment 1 side or the mounting part on the oil tank 2 side of the heat pipe 4, and therefore metal fatigue rupture of the heat pipe mounting part is prevented. can be prevented.

このようにヒートパイプの吸熱部を軸受セグメント1の
高温部に直接挿入し、放熱部を離れてはいるが、低温の
冷媒通路に位置させ、両者をヒートパイプ4の最適位置
関係であるBottomheat−Top  cool
で使用できるようにする。因みに回転電機の推力軸受セ
グメントの冷却をこのようにすると、動作温度は(吸熱
部温度約り0℃十放熱部温度約30’C)/2=600
Cとなり、第7図(a)に示す垂直ボトムヒートの場合
の極大位置85℃に近くなり、その分だけ一定容量のヒ
ートパイプで多くの熱量輸送が可能となり、その結果、
ヒートパイプ装置の高性能化→小型化により経済的利益
を得ることができる。
In this way, the heat absorbing part of the heat pipe is inserted directly into the high temperature part of the bearing segment 1, and is located in the low temperature refrigerant passage, although it is away from the heat dissipating part, and both are placed in the Bottomheat- Top cool
Make it available for use. Incidentally, if the thrust bearing segment of a rotating electrical machine is cooled in this way, the operating temperature will be (heat absorption part temperature approximately 0°C + heat radiation part temperature approximately 30'C)/2 = 600
C, which is close to the maximum position of 85°C in the case of vertical bottom heating shown in Fig. 7 (a), and it becomes possible to transport a large amount of heat with a heat pipe of a constant capacity, and as a result,
Economic benefits can be obtained by improving the performance of heat pipe devices and reducing their size.

例えば本実施例のような垂直ボトムヒートでなく、第7
図(b)の水平使用で、上記と同じく動作温度60’C
の場合の熱輸送量を比較すると、動作温度60℃の垂直
ボトムヒートの場合の熱輸送量は約2800(、W)(
第7図(a)参照)、水平使用の場合の熱輸送量は約4
00(W)なので、2800/400〜7となる。この
ように垂直ボトムヒートの場合は水平使用の場合の7倍
も熱輸送量が多く、垂直ボトムヒートの使用が如何に同
一ヒートパイプの性能を有効に活用できるかが判る。
For example, instead of the vertical bottom heat as in this embodiment,
When used horizontally as shown in Figure (b), the operating temperature is 60'C as above.
Comparing the heat transport amount in the case of , the heat transport amount in the case of vertical bottom heat with an operating temperature of 60 °C is approximately 2800 (, W) (
(see Figure 7(a)), the amount of heat transport when used horizontally is approximately 4
Since it is 00 (W), it becomes 2800/400~7. In this way, in the case of vertical bottom heat, the heat transport amount is seven times greater than in the case of horizontal use, which shows how the use of vertical bottom heat can effectively utilize the performance of the same heat pipe.

このヒートパイプのスパイラル状可撓部の成形状態が第
2図に示されている。油槽内には回転円板の回転により
、円周方向の撹拌油流を発生する。
FIG. 2 shows how the spirally shaped flexible portion of this heat pipe is formed. A stirring oil flow in the circumferential direction is generated in the oil tank by the rotation of a rotating disk.

この油流によるヒートパイプ4の受ける流体抵抗力を小
さくするため、スパイラル軸方向に油流を阻害しないよ
うに間隙Pを設ける。また、同図には主として銅で製作
されるヒートパイプ4の製造上の限界曲げ半径と、必要
な可撓性を得るために平均半径Rを適正に定める上での
条件が示されている。すなわちR≧4d、P≧1.5d
とすることにより必要な可撓性が得られる。また、P≧
1゜5dとすることにより、油流抵抗を小さくして潤滑
油が円滑に流れるようになると共に、Pを大きくすると
、潤滑油が円滑に流れるのみならず、結露液が吸熱部に
戻り易くなる。また、R≧4dとすることにより可撓性
が得られるのみならず、製作が容易である。
In order to reduce the fluid resistance force that the heat pipe 4 receives due to this oil flow, a gap P is provided in the direction of the spiral axis so as not to impede the oil flow. The figure also shows the manufacturing limit bending radius of the heat pipe 4, which is mainly made of copper, and the conditions for appropriately determining the average radius R in order to obtain the necessary flexibility. That is, R≧4d, P≧1.5d
This provides the necessary flexibility. Also, P≧
By setting it to 1°5d, the oil flow resistance is reduced and the lubricating oil flows smoothly, and by increasing P, not only does the lubricating oil flow smoothly, but also the condensed liquid easily returns to the heat absorption part. . Further, by setting R≧4d, not only flexibility can be obtained but also manufacturing is easy.

このように本実施例によれば、ヒートパイプの中間部に
垂直方向のスパイラル可撓部を持たせることにより、ヒ
ートパイプの吸熱部側と放熱部側との相対的繰返し変位
差がある場合でも、ヒートパイプの両側を被冷却体(加
熱体)と冷却媒体通路とに別々に固定して、Botto
m  heat−Top  coolのヒートパイプと
して最良の状態で使用できる。また、Bottom  
heat=Top  coolとしたので、動作温度を
ヒートパイプの動作温度〜熱輸送効率曲線上の極大点付
近に近ずけることができる。更に吸熱部と放熱部との温
度差を大きくできるので、この温度差と動作温度に係る
効率との積である全伝熱量を大とすることができ、従来
例よりも高い冷却能力を得ることができる。
In this way, according to this embodiment, by providing the vertical spiral flexible part in the middle part of the heat pipe, even when there is a relative repetitive displacement difference between the heat absorption part side and the heat radiation part side of the heat pipe. , by separately fixing both sides of the heat pipe to the object to be cooled (heating object) and the cooling medium passage,
It can be used in the best condition as a heat pipe for heat-top cool. Also, Bottom
Since heat=Top cool, the operating temperature can be brought close to the maximum point on the heat pipe operating temperature-heat transport efficiency curve. Furthermore, since the temperature difference between the heat absorption part and the heat radiation part can be increased, the total amount of heat transfer, which is the product of this temperature difference and the efficiency related to the operating temperature, can be increased, and a higher cooling capacity than the conventional example can be obtained. I can do it.

〔発明の効果〕〔Effect of the invention〕

上述のように本発明は加熱体の冷却を可能としたBot
tom  heat−Top  coolのヒートパイ
プ装置が得られるようになって、加熱体の冷却を可能と
したBottom  heat−Top  coolの
ヒートパイプ装置を得ることができる。
As mentioned above, the present invention provides a Bot that enables cooling of a heating element.
Now that a bottom heat-top cool heat pipe device can be obtained, a bottom heat-top cool heat pipe device that can cool a heating element can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のヒートパイプ装置の一実施例による推
力軸受装置の縦断側面図、第2図は同じく一実施例のス
パイラル状可撓部を示す説明図、第3図は軸受装置の軸
受セグメントの斜視図、第4図は第3図のQ矢視図、第
5図は軸受装置の軸受セグメントの稼動時の径方向温度
分布を示す正面図、第6図は同じく軸受装置の軸受セグ
メントの稼動時の周方向温度分布を示す正面図、第7図
(a)、(b)はヒートパイプの特性を示すもので(a
)は垂直ボトムヒートの場合、(b)は水子使用の場合
の動作温度と最大熱輸送量との関係を示す特性図、第8
図は本発明のヒートパイプ装置の一実施例のピーl−パ
イプの軸受セグメントへの挿入状態を示す斜視図、第9
図は従来のヒートパイプ装置による推力軸受装置の縦断
側面図である。 1・・・軸受セグメント、2・・油槽、4・・・ヒート
パイプ、4C・・スパイラル状可撓部
FIG. 1 is a vertical cross-sectional side view of a thrust bearing device according to an embodiment of the heat pipe device of the present invention, FIG. 2 is an explanatory diagram showing a spiral-shaped flexible portion of the same embodiment, and FIG. 3 is a bearing of the bearing device. FIG. 4 is a perspective view of the segment; FIG. 4 is a view from the Q arrow in FIG. 3; FIG. 5 is a front view showing the radial temperature distribution during operation of the bearing segment of the bearing device; FIG. 6 is the bearing segment of the bearing device as well. Figure 7 (a) and (b) are front views showing the circumferential temperature distribution during operation of the heat pipe.
) is for vertical bottom heat, and (b) is a characteristic diagram showing the relationship between operating temperature and maximum heat transport amount when using water.
FIG. 9 is a perspective view showing a state in which a peel L-pipe of an embodiment of the heat pipe device of the present invention is inserted into a bearing segment;
The figure is a vertical side view of a thrust bearing device using a conventional heat pipe device. 1...Bearing segment, 2...Oil tank, 4...Heat pipe, 4C...Spiral-shaped flexible part

Claims (1)

【特許請求の範囲】 1、回転機の油槽内に設置される軸受装置の軸受セグメ
ントを冷却するヒートパイプを備え、前記ヒートパイプ
は下側の吸熱部と前記油槽外の冷媒通路に設置される上
側の放熱部とを有しているヒートパイプ装置において、
前記ヒートパイプの下側の吸熱部を前記軸受セグメント
に直接埋込み、この下側の吸熱部と前記上側の放熱部と
の固定部の間に、前記固定部の総ての方向の相対動きを
可能とする上下方向に垂直なスパイラル状可撓部を設け
、かつこのスパイラル状可撓部の軸方向の間隙Pをヒー
トパイプ径dの1.5倍以上として前記油槽内の油流の
流体抵抗を低減し、スパイラル状可撓部の平均半径Rを
ヒートパイプ径dの4倍以上として可撓性を確保するよ
うにしたことを特徴とするヒートパイプ装置2、前記ヒ
ートパイプの吸熱部が、前記軸受セグメントの周方向断
面と径方向断面との交叉するヒートパイプが挿入可能な
位置で、かつ温度が最も高くなる軸受セグメントのすべ
り方向側の所定位置に挿入されたものである請求項1記
載のヒートパイプ装置 3、前記ヒートパイプが、内周側の全周にわたり長手方
向に伸びた芯材が挿入されたものである請求項1記載の
ヒートパイプ装置 4、前記スパイラル状可撓部が、前記下側の吸熱部と上
側の放熱部とが互に垂直方向に可撓性を持つように形成
されたものである請求項1記載のヒートパイプ装置 5、前記ヒートパイプの吸熱部と放熱部とが、その位置
関係を重力に対して吸熱部を下、放熱部を上とされたも
のである請求項1記載のヒートパイプ装置 6、前記スパイラル状可撓部が、前記吸熱部および放熱
部側の材質と同一材質で、かつスパイラル・スプリング
に形成されたものである請求項1記載のヒートパイプ装
置 7、前記スパイラル状可撓部が、スチールワイヤで補強
されたプラスチックまたはゴムチューブで形成されたも
のである請求項1記載のヒートパイプ装置
[Claims] 1. A heat pipe is provided for cooling a bearing segment of a bearing device installed in an oil tank of a rotating machine, and the heat pipe is installed in a lower heat absorption part and a refrigerant passage outside the oil tank. In a heat pipe device having an upper heat dissipation part,
The lower heat absorbing part of the heat pipe is directly embedded in the bearing segment, allowing relative movement of the fixed part in all directions between the lower heat absorbing part and the upper heat dissipating part. A spiral-shaped flexible part is provided vertically in the vertical direction, and the axial gap P of this spiral-shaped flexible part is set to be 1.5 times or more the heat pipe diameter d to reduce the fluid resistance of the oil flow in the oil tank. The heat pipe device 2 is characterized in that the average radius R of the spiral flexible portion is set to four times or more the diameter d of the heat pipe to ensure flexibility; 2. The heat pipe according to claim 1, wherein the heat pipe is inserted at a position where the circumferential cross section and the radial cross section of the bearing segment intersect, and at a predetermined position on the sliding direction side of the bearing segment where the temperature is highest. 2. The heat pipe device 4 according to claim 1, wherein the heat pipe has a core member inserted therein that extends in the longitudinal direction over the entire inner circumference of the heat pipe, and the spiral flexible portion The heat pipe device 5 according to claim 1, wherein the lower heat absorbing part and the upper heat radiating part are formed to have flexibility in a direction perpendicular to each other. 2. The heat pipe device 6 according to claim 1, wherein the heat absorbing part is at the bottom and the heat dissipating part is at the top with respect to gravity. 2. The heat pipe device 7 according to claim 1, wherein the heat pipe device 7 is made of the same material as the material and formed into a spiral spring, and the spiral flexible portion is formed of a plastic or rubber tube reinforced with steel wire. The heat pipe device according to claim 1, which is
JP2157018A 1990-06-15 1990-06-15 Heat pipe device Pending JPH0450512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2157018A JPH0450512A (en) 1990-06-15 1990-06-15 Heat pipe device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2157018A JPH0450512A (en) 1990-06-15 1990-06-15 Heat pipe device

Publications (1)

Publication Number Publication Date
JPH0450512A true JPH0450512A (en) 1992-02-19

Family

ID=15640386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2157018A Pending JPH0450512A (en) 1990-06-15 1990-06-15 Heat pipe device

Country Status (1)

Country Link
JP (1) JPH0450512A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5915843A (en) * 1996-07-12 1999-06-29 The Torrington Company Fluid-cooled bearing housing
US6830096B1 (en) * 2002-05-14 2004-12-14 Torque-Traction Technologies, Inc. Heat pipe for differential assembly
CN101793293A (en) * 2010-03-30 2010-08-04 上海申科滑动轴承有限公司 Cooling structure of sliding bearing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5915843A (en) * 1996-07-12 1999-06-29 The Torrington Company Fluid-cooled bearing housing
US6830096B1 (en) * 2002-05-14 2004-12-14 Torque-Traction Technologies, Inc. Heat pipe for differential assembly
CN101793293A (en) * 2010-03-30 2010-08-04 上海申科滑动轴承有限公司 Cooling structure of sliding bearing

Similar Documents

Publication Publication Date Title
US6714413B1 (en) Compact thermosiphon with enhanced condenser for electronics cooling
EP1780789A1 (en) Heat pipe heat sink
US20010027855A1 (en) Heatsink with integrated blower for improved heat transfer
JP4027353B2 (en) Cooling structure
US7292438B2 (en) Liquid-cooling heat dissipation module
CN112740517A (en) Heat sink for electric motor, and method of cooling electric motor
KR20160137292A (en) The Cooling Fan cooled by Cooling Effect of its Surface of the Spindle Fan Blade
JPH0450512A (en) Heat pipe device
CN116581094B (en) Liquid metal heat abstractor
CN100467995C (en) Hot pipe
US7290598B2 (en) Heat exchange device
CN116031219A (en) Chip cooling system and control method thereof
JP2000074581A (en) Flat heat pipe and manufacture thereof
CN201130662Y (en) Semiconductor device radiator
TWM633696U (en) Compressed tube water cooling plate structure
JPH07189684A (en) Heat exchanger
JP2008256329A (en) Underground heat exchanger
KR20040050326A (en) Passive cooling type cooling apparatus having multiple cooling pin structure using phase change materials and passive cooling system thereof
KR100565505B1 (en) Heat exchanger of air conditioner
JPH0345896A (en) Heat exchanger
CN117542811B (en) Novel chip cooling platform based on micro-nano structure
RU179655U1 (en) BIMETALLIC RADIATOR SECTION
KR100364391B1 (en) Heat exchanger
CN106020401A (en) Heat sink
CN212838044U (en) Cooling system of internal combustion engine, radiator, cylinder of internal combustion engine and internal combustion engine for strengthening heat transfer by using memory alloy