JPH04502965A - capacitive humidity sensor - Google Patents

capacitive humidity sensor

Info

Publication number
JPH04502965A
JPH04502965A JP90502194A JP50219490A JPH04502965A JP H04502965 A JPH04502965 A JP H04502965A JP 90502194 A JP90502194 A JP 90502194A JP 50219490 A JP50219490 A JP 50219490A JP H04502965 A JPH04502965 A JP H04502965A
Authority
JP
Japan
Prior art keywords
layer
humidity sensor
dielectric
capacitive
moisture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP90502194A
Other languages
Japanese (ja)
Other versions
JP2846948B2 (en
Inventor
シユミツツ,ピーター・パウルス・ヨゼフ
Original Assignee
フルコン・ベー・ブイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フルコン・ベー・ブイ filed Critical フルコン・ベー・ブイ
Publication of JPH04502965A publication Critical patent/JPH04502965A/en
Application granted granted Critical
Publication of JP2846948B2 publication Critical patent/JP2846948B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/223Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance for determining moisture content, e.g. humidity
    • G01N27/225Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance for determining moisture content, e.g. humidity by using hygroscopic materials

Abstract

PCT No. PCT/NL89/00100 Sec. 371 Date Aug. 22, 1991 Sec. 102(e) Date Aug. 22, 1991 PCT Filed Dec. 28, 1989 PCT Pub. No. WO90/07708 PCT Pub. Date Jul. 12, 1990.Capacitive humidity sensor comprising a substrate, a moisture-impermeable conducting bottom layer as first capacitor plate, a dielectric layer, and a moisture-permeable conducting top layer as second capacitor plate, and connecting wires associated with the first and second capacitor plates, whereby the change in the dielectric constant, and therefore in the capacitance value, due to absorption of water molecules is measured. The substrate is a flexible copper laminate in which at least the conducting bottom layer is etched, and the conducting top layer comprises a solid printed layer having a conducting grid pattern, which is printed with conducting ink.

Description

【発明の詳細な説明】 静電容量式湿度センサー 本発明は、基層、第1の静電容量板としての非透湿性でかつ導電性の底層、誘電 層、及び第2の静電容量板としての透湿性でかつ導電性の最上層を具備し、前記 第1及び第2の静電容量板と組み合わせて線を接続し、誘電材料の水の分子の吸 収による誘電率の変化、従って静電容量値の変化が測定される。かかる湿度セン サーは、例えば、米国特許出願第4532016号に開示されている。[Detailed description of the invention] capacitive humidity sensor The present invention includes a base layer, a moisture-impermeable and conductive bottom layer as a first capacitive plate, a dielectric layer and a moisture permeable and electrically conductive top layer as a second capacitive plate; Connect the wires in combination with the first and second capacitive plates and absorb the water molecules of the dielectric material. The change in dielectric constant and therefore the capacitance value due to the change in capacitance is measured. Humidity sensor Ther is disclosed, for example, in US Patent Application No. 4,532,016.

事実上、静電容量より構成されるかかるセンサーにおいては、湿度は、誘電材料 の水の分子の吸収による誘電媒体の誘電率の変化、従って静電容量値の変化の測 定により決定される。例えば、乾燥誘電層の材料の誘電率が3.5であり、水の それが約80であるならば、吸湿による静電容量値の変化は認識しうろことが明 らかであろう。誘電層が湿気又は水を吸収するためには、最上層は水分を透過で きなければならない。In such sensors, which are essentially capacitive, the humidity is Measurement of the change in the dielectric constant of the dielectric medium due to the absorption of water molecules and hence the change in the capacitance value. determined by the For example, the dielectric constant of the material of the dry dielectric layer is 3.5, and the dielectric constant of the material of the dry dielectric layer is 3.5. If it is about 80, it is clear that the change in capacitance value due to moisture absorption is difficult to recognize. It will be clear. In order for the dielectric layer to absorb moisture or water, the top layer must be permeable to moisture. I have to come.

この公知のセンサーはガラス基層を有し、その上に第1の静電容量板としてタン タル板が置かれる。前記タンタル板は陽極化され、その結果、酸化タンタルより なる薄い絶縁層が得られる。前記絶縁層は、明らかに高い相対湿度において誘電 媒体を横切る抵抗損失を防止し、又は誘電媒体の構造に無関係に板間の短絡をも 防止する。電解の結果として分極ドリフトの生ずる直流の発生もまた防止される 。前述の誘電層は水分を吸収するに十分な多孔賀である。透湿性の最上層は、例 えば多孔性の金又はひび割れの入れられたクロームで構成される。クロームは、 誘電層上に蒸着されると、実際上、高い張力を有し、その結果、クローム及び誘 電体に小さなひび割れが作られる。しかし、欠点は、特に有効寿命の始めにおい て、ひび割れ作用が継続することであり、その結果として静電容量値が時間とと もに変化する。これに対抗するには後処理が必要である。This known sensor has a glass base layer on which a tantalum as a first capacitive plate is placed. A tar board is placed. The tantalum plate is anodized so that tantalum oxide is more A thin insulating layer is obtained. The insulating layer is clearly dielectric at high relative humidity. Prevents resistive losses across the medium or shorts between plates regardless of the structure of the dielectric medium. To prevent. The generation of direct currents resulting in polarization drift as a result of electrolysis is also prevented. . The aforementioned dielectric layer is sufficiently porous to absorb moisture. The moisture-permeable top layer is e.g. For example, it is composed of porous gold or cracked chrome. Chrome is When deposited on a dielectric layer, it actually has a high tensile strength, resulting in chromium and dielectric Small cracks are created in the electric body. However, the disadvantage is that especially at the beginning of the useful life As a result, the capacitance value decreases with time. It also changes. Post-processing is required to counter this.

前記センサーの製造にも問題が伴う。特に、処理できる薄いガラス基層の寸法が 限定され、その結果、生産速度が限定されかつ費用がかさむ。The manufacture of the sensor is also fraught with problems. In particular, the dimensions of the thin glass substrates that can be processed are limited, resulting in limited production rates and increased costs.

技術は複雑化し、仕上げられたセンサーは非常に繊細であり、更に製造の生産高 が比較的低い。多孔性の金は工業的な汚染物により影響され、またクロームひび 割れ処理は偶発的な事象に依存する。仕上げられたセンサーに関しては、測定精 度を調整するための別の用意がないという問題もある。Technology has become more complex, the finished sensors are extremely delicate, and manufacturing yields have increased. is relatively low. Porous gold is affected by industrial contaminants and chrome cracks. Cracking treatment depends on fortuitous events. For finished sensors, measurement precision Another problem is that there is no separate provision for adjusting the degree.

このセンサーのグループは、センサーの比較的高い価格を吸収でき、更にセンサ ー精度に広い許容度を与えるために電子回路を調整できかつ較正できる高価格な 装置に適している。This group of sensors can absorb the relatively high price of sensors and also – High-cost, adjustable and calibrated electronics to give wide tolerances to accuracy. suitable for the device.

本発明の目的は上述の問題点を無くすことであり、更により耐久性がありかつ相 互交換を可能とするために製作後に容易に較正できる安価なセンサーを提供する ことである。The aim of the invention is to eliminate the above-mentioned problems and to provide a more durable and compatible product. Provides an inexpensive sensor that can be easily calibrated after fabrication to allow for interchangeability That's true.

本発明に従って、基層が少なくも上述の導電性底層が腐刻された可撓性の銅積層 体であり、かつ前述の導電性の最上層が導電性の格子パターンを有する固相印刷 層を備えた透湿性の上述の形式の静電容量式湿度センサーにより、上述の目的は 達成される。According to the invention, a flexible copper laminate in which the base layer is etched with at least a conductive bottom layer as described above. solid phase printing in which the conductive top layer has a conductive lattice pattern; With a capacitive humidity sensor of the above-mentioned type, breathable with a layer, the above-mentioned objectives can be achieved. achieved.

本発明によるこの実施例において、消費者市場に対する特別に安価なセンサーが 得られ、これは工業用にも適している。本発明によるこのセンサーは、乾燥及び 湿潤の両方の大気条件下で簡単に較正できる。In this embodiment according to the invention, a particularly inexpensive sensor for the consumer market is obtained, which is also suitable for industrial use. This sensor according to the invention Easy to calibrate under both humid and atmospheric conditions.

本発明は図面を参照し例示の実施例に基づき更に詳細に説明されるであろう。図 面において、 図1は本発明によるセンサーの実施例の層状構造の斜視図を示す。そして、 図2は図1の実施例の第2の静電容量板として作用する最上部の板の平面図を示 す。The invention will be explained in more detail on the basis of exemplary embodiments with reference to the drawings. figure In terms of FIG. 1 shows a perspective view of the layered structure of an embodiment of a sensor according to the invention. and, FIG. 2 shows a plan view of the top plate acting as the second capacitive plate of the embodiment of FIG. vinegar.

上述のように、本発明の目的は消費者用の安価なセンサーを提供することでる。As stated above, it is an object of the present invention to provide an inexpensive sensor for consumer use.

本発明により、それ自身が優秀な材料であるガラス基層材は、例えば印刷回路板 (P CB)にしばしば使用される銅の積層板に、事実上、置き換えられる。別 の実施例においては、前記銅積層板は、ポリシロキサンガラスの織物又は布で構 成することができる。非透湿性の底層は、これに次ぐ第2の薄い接触板が透湿性 の最上層用の接触板として作用する必要があれば、これを第1の静電容量板のよ うな積層板の銅表面に腐刻することができる。製造の後段で、前記底層と接触層 とに接続用の線が取り付けられる。According to the invention, the glass substrate material, which is itself an excellent material, can be used for example in printed circuit boards. It effectively replaces the copper laminates often used in (P CB). another In this embodiment, the copper laminate is constructed of polysiloxane glass fabric or cloth. can be achieved. The moisture-impermeable bottom layer is followed by a second thin contact plate that is moisture-permeable. If needed to act as a contact plate for the top layer of the It can be etched onto the copper surface of the laminate. At a later stage of production, the bottom layer and the contact layer A connecting wire is attached to the

このような薄く可撓性のPCB積層板の使用は、使用がPCB製造技術で行いつ る利点を有し、得られた結果もまた薄膜ガラス基層より製造されたものよりなお 丈夫なセンサーを生み出している。また、例えば、50X50=2500個のセ ンサーが得られるような大きな基層より開始することも可能である。絶縁ポリマ ーが非透湿性の底層上の絶縁層として置かれるようなある条件下では、実際上、 背中合わせに同時に2個の基層を処理することが可能であり、その結果、1処理 工程で5000個のセンサーを作ることが可能である。The use of such thin and flexible PCB laminates is important as the use is made in PCB manufacturing technology. The results obtained are also much better than those produced from thin glass substrates. Producing durable sensors. Also, for example, 50X50=2500 cells It is also possible to start with a large base layer where a sensor can be obtained. insulation polymer Under certain conditions, where the It is possible to treat two substrates at the same time back-to-back, so that one treatment It is possible to make 5000 sensors in one process.

図1は、本発明によるセンサーの構造を図解的に示す。FIG. 1 diagrammatically shows the structure of a sensor according to the invention.

1は薄いPCB銅積層よりなる基層を示し、これに2個の銅層2及び3が腐刻さ れる。左側に示された層2は第1の静電容量板として作用する非透湿層であり、 層3は、第2の静電容量板として作用する透湿性の最上層4と後の製造段階で接 触させられる接触板である。最終段階で基層が切り分けられ個々のセンサーに分 離されると、接続用の線5が層2と3とに取り付けられる。1 shows a base layer consisting of a thin PCB copper laminate onto which two copper layers 2 and 3 are etched. It will be done. Layer 2 shown on the left is a moisture-impermeable layer that acts as a first capacitive plate; Layer 3 is contacted at a later manufacturing stage with a moisture permeable top layer 4 which acts as a second capacitive plate. It is a contact plate that can be touched. In the final stage, the substrate is cut into individual sensors. Once separated, connecting wires 5 are attached to layers 2 and 3.

6は絶縁層として作用するポリマー被覆を示し、これは極めて薄いが活性の銅の 静電容量板2の表面を侵食と汚染とに対して保護する。層6はそれ自体が非透湿 性であるので、誘電媒体の構造に関係な(、説明された静電容量板間のいかなる 短絡も防止し、電解の結果としての分極ドリフトを生ずる直流の流れることが防 止される。この層は活性誘電体7のいわゆる「ピンホール」の発生の結果として 起こる故障を防止するであろう。ポリマー6は薄い銅の接触層3の上方には延び ていない。後者の場合は、不活性で反応しないピンホールなしの遮断ポリマーを 使用することが好ましい。6 shows a polymer coating that acts as an insulating layer, which is extremely thin but contains active copper. Protecting the surface of the capacitive plate 2 against erosion and contamination. Layer 6 is itself non-permeable Since it is related to the structure of the dielectric medium (, any capacitance between the described It also prevents short circuits and the flow of direct current that would cause polarization drift as a result of electrolysis. will be stopped. This layer is removed as a result of the creation of so-called "pinholes" in the active dielectric 7. This will prevent failures from occurring. The polymer 6 extends above the thin copper contact layer 3. Not yet. In the latter case, use an inert, unreactive, pinhole-free blocking polymer. It is preferable to use

誘電層7は、繊維になしうる活性ポリマーより作られ、スクリーン印刷の手段又 は別の方法で付着させることができ、従って湿度センサーの作動に必要な充分量 の孔を含むが極めて薄い層が作られる。この方法で、湿度の影響下で静電容量値 が確実に迅速に変化する誘電「スポンジ」が得られる。従って、大きな「吸入」 及び「吐出」の面が達成される。図は、層7が接触層3の上方に(るには充分に 延びていないことを示す。しかし、別の製造方法も考えることができる。The dielectric layer 7 is made of an active polymer that can be made into fibers and can be made by means of screen printing or can be deposited in other ways and thus in sufficient quantities for the operation of the humidity sensor. A very thin layer containing pores is created. In this way, the capacitance value under the influence of humidity The result is a dielectric "sponge" that changes reliably and rapidly. Therefore, a large "inhalation" and "discharge" aspects are achieved. The figure shows that layer 7 is well above contact layer 3. Indicates that it is not extended. However, other manufacturing methods are also conceivable.

4は全体の上に延びる第2の静電容量板としての透湿性最上層を示す。4 indicates a moisture permeable top layer as a second capacitive plate extending over the whole.

前記最上層のうちで誘電層7の上方を延びている部分は、導電性インキで誘電層 に印刷された格子形状を持つ。A portion of the top layer extending above the dielectric layer 7 is coated with conductive ink. It has a grid shape printed on it.

図2に示された平面図は、他のパターンも可能であるが大部分を長方形の格子パ ターンとした板7を示す。格子の開口は水分の移動を確実にする。格子10の形 状は重要である。(導電性)インキ面の部分を最大にすれば最大の静電容量値を 与えるが、水分移動面積が充分に大きくない限り、吸収及び吐出に長い時間を要 するであろう。例えば10m+a”のような比較的大きなセンサー面積で良い結 果が得られ、この場合は応答時間は一定範囲で逆の影響を受ける。The plan view shown in Figure 2 shows a mostly rectangular grid pattern, although other patterns are possible. A turned plate 7 is shown. The openings in the grate ensure the movement of moisture. Shape of grid 10 The status is important. (Conductive) Maximize the ink surface area to obtain the maximum capacitance value. However, unless the water transfer area is large enough, absorption and expulsion may take a long time. will. For example, a relatively large sensor area such as 10m+a” can give good results. In this case, the response time is adversely affected within a certain range.

11は、べたに印刷された形状、即ち最上板の少しも開口の無い部分を示し、こ れは基層1上の接触層3と接触するためのものである。11 indicates a solidly printed shape, that is, a part of the top plate with no openings; This is for contacting the contact layer 3 on the base layer 1.

12は、絶縁されて配置された小さな導電印刷領域の列を示す。コンデンサーの 構築のさい、小領域12の前記列は、遮断ポリマーの上方だけに設置され、活性 ポリマーの上方には設置されないようにされる。これにより形成される静電静電 容量の値は最小又は零である。12 shows a row of small electrically conductive printed areas arranged in an insulated manner. of the capacitor During construction, said rows of sub-regions 12 are placed only above the blocking polymer and the active It is avoided to be placed above the polymer. The electrostatic charge formed by this The value of capacitance is a minimum or zero.

製造においては、乾燥及び湿潤の両条件下とも(デルタ=0%から100%相対 湿度範囲)、センサーの静電容量値が正規の許容度の少し下にあるように設計さ れる。自動較正に対しては、乾燥基準環境の場合は、所要の一定の(乾燥)基準 静電容量値を得るために、導電性インキの小パッド手段により小領域12の幾つ かが主格子に接続される。In manufacturing, under both dry and wet conditions (delta = 0% to 100% relative Humidity range), the capacitance value of the sensor is designed to be slightly below the normal tolerance. It will be done. For automatic calibration, in a dry reference environment, the required constant (dry) reference To obtain the capacitance value, some of the small areas 12 are removed by means of small pads of conductive ink. is connected to the main grid.

13は、絶縁されて配置された小さな導電印刷領域の別の列を示す。13 shows another row of small conductive printed areas arranged insulated.

しかし、コンデンサーの構成においては、これらは活性ポリマーの上方に設置さ れる。これらの小さな領域も、湿潤基準環境における所要のデルタ容量値を調整 するために、主格子に接続される。However, in capacitor construction these are placed above the active polymer. It will be done. These small areas also adjust the required delta capacitance value in a humid reference environment connected to the main lattice in order to

以上においては、静電容量値を減らすよりは加える方が容易であると想定された 。しかし、かかる削減もレーザートリミングにより遂行することができる。In the above, it was assumed that it is easier to add rather than reduce the capacitance value. . However, such reduction can also be accomplished by laser trimming.

トリミング後に、導電インキのトラックが硬化される。この「印刷」方法の利点 は、正確な印刷形状を定めることができ偶発的な現象に依存することがない点で ある。トリミングは、一定値又はデルタ値の双方に対して行うことができる。も し印刷中に処理の誤りが生じたら、これらを「消去」することができ、基層のよ り高価な部分はそのまま遮断ポリマーで被覆される。After trimming, the conductive ink tracks are cured. Advantages of this "printing" method In that it can determine the exact printing shape and does not rely on accidental phenomena. be. Trimming can be done on both constant or delta values. too If processing errors occur during printing, these can be "erased" and The more expensive parts are simply coated with a blocking polymer.

トリミングした小領域は小さな正方形として示される。これらもまたより少数で かつ例えば二つの表面領域に続けて提供できることが明らかであろう。Cropped small regions are shown as small squares. These are also fewer in number And it will be clear that for example two surface areas can be provided one after the other.

製造中、要求された用途に応じて、寸法をより大きくし、その結果、より長いセ ンサーを得ることにより、改良された応答速度を有するセンサーを製造すること ができる。接触面は縁表面のかなりの部分を占めので、より細長い設計は、接触 面積に対して、これが大きな活性表面を減らすことを可能とするであろう。During manufacturing, depending on the required application, larger dimensions and, as a result, longer segments are produced. manufacturing sensors with improved response speed by obtaining Can be done. Since the contact surface occupies a significant portion of the edge surface, a more elongated design Relative to area, this would make it possible to reduce the large active surface.

遮断ポリマーは高価であるので、銅積層は一方の側だけを被覆することが好まし い。これは2個の基層板を背中合わせにして同時に処理することにより最もよく 達成できる。これを行うには、接触層をマスクし又は得られた遮断層を研ぎ出す ことが必要である。積層は両側で処理し得るので、遮断層で被覆されず従って容 易にはんだ付けできる他方の側の両接触層を設け、これらを、通り穴めっきの手 段又は特別に設計された「ナイフェツジ」接触端子の手段により接続させること が可能である。Since barrier polymers are expensive, copper laminates are preferably coated on only one side. stomach. This is best done by placing two substrates back to back and treating them at the same time. It can be achieved. To do this, mask the contact layer or polish the resulting barrier layer. It is necessary. The laminate can be treated on both sides, so it is not covered with a barrier layer and therefore has no capacitance. Provide both contact layers on the other side that can be easily soldered, and attach these to the through-hole plating method. connection by means of steps or specially designed "knifetsu" contact terminals; is possible.

遮断ポリマーで被覆されない非活性表面の総ては、PCB積層版の通常の保護方 法ではんだレジストで被覆することができる。All non-active surfaces that are not coated with a blocking polymer are protected by the usual protection method for PCB laminates. It can be coated with a solder resist by a method.

再現可能な方法で製造しつる上に特定された安価な湿度センサーは、自動車工業 における窓の曇り止めシステム、ブレーキ(シュー)システム用の空気処理シス テム、及び燃焼過程が相対湿度に強(影響される内燃機関のような多くの形式の 用途に使用可能である。An inexpensive humidity sensor manufactured in a reproducible manner and identified on the vine is used in the automotive industry. Window defogging systems, air handling systems for brake (shoe) systems, etc. many types of combustion engines, such as internal combustion engines, whose combustion processes are sensitive to relative humidity. Can be used for various purposes.

補正音の写しく翻訳文)提出書 (特許法第184条の8)平成3年6月27日Copy and translation of amended sound) Submission (Article 184-8 of the Patent Law) June 27, 1991

Claims (10)

【特許請求の範囲】[Claims] 1.基層、第1の静電容量板としての非透湿性でかつ導電性の底層、誘電層、及 び第2の静電容量板としての透湿性でかつ導電性の最上層を具備し、前記第1及 び第2の静電容量板と組み合わせて線を接続し、水の分子の吸収による誘電率の 変化、従って静電容量値の変化が測定される静電容量式湿度センサーにして、基 層は少なくも前述の導電性の底層が腐刻された可撓性の銅積層体であり、更に前 述の導電性の最上層が導電性の格子パターンを有する固相の印刷層を備えること を特徴とする静電容量式湿度センサー。1. a base layer, a moisture-impermeable and conductive bottom layer as a first capacitive plate, a dielectric layer, and and a moisture-permeable and conductive top layer as a second capacitive plate; and a second capacitance plate to connect the wires and increase the dielectric constant due to absorption of water molecules. A capacitive humidity sensor in which the change in capacitance value is measured and therefore the change in capacitance value is The layers are flexible copper laminates etched with at least the aforementioned conductive bottom layer, and further wherein said conductive top layer comprises a solid printed layer having a conductive grid pattern; A capacitive humidity sensor featuring: 2.前述の最上層の格子パターンが導電性インキで印刷されることを特徴とする 請求範囲1による静電容量式湿度センサー。2. characterized in that the aforementioned top layer grid pattern is printed with conductive ink; A capacitive humidity sensor according to claim 1. 3.前述の底層及び透湿性最上層と接触する接触層が基層上で長手方向に互いに 平行に置かれ、非透湿性の絶縁層が少なくも前述の底層と誘電層との間にあり、 更に前述の最上層は誘電層の上方と接触層の上方の双方に延びていて、絶縁層が 不活性で無孔性の絶縁ポリマーであり、誘電層が適切な多孔度のある極めて薄い 層が作られるように置かれた誘電性ポリマーであり、更に前述の最上層は、適切 な静電容量値が得られかつ短時間での吸収と吐出が可能なように導電性インキ面 の領域と透湿面の領域とが適合するような格子形状を有することを特徴とする請 求範囲1による静電容量式湿度センサー。3. Contact layers in contact with the aforementioned bottom layer and the moisture permeable top layer are longitudinally connected to each other on the base layer. a parallel, moisture-impermeable insulating layer between at least said bottom layer and the dielectric layer; Furthermore, the aforementioned top layer extends both above the dielectric layer and above the contact layer, and the insulating layer extends both above the dielectric layer and above the contact layer. Inert, non-porous insulating polymer with extremely thin dielectric layer with suitable porosity a dielectric polymer deposited to create a layer, further said top layer being a suitable A conductive ink surface is used to obtain a high capacitance value and to enable absorption and ejection in a short time. The claim is characterized in that it has a lattice shape such that the area of the moisture permeable surface matches the area of the moisture permeable surface. Capacitance type humidity sensor with required range 1. 4.接触層が銅の積層体に腐刻されることを特徴とする請求範囲3による静電容 量式湿度センサー。4. Capacitor according to claim 3, characterized in that the contact layer is etched into the copper laminate. Quantitative humidity sensor. 5.銅の積層体がポリシロキサン織物材料で構成されることを特徴とする請求範 囲3による静電容量式湿度センサー。5. Claims characterized in that the copper laminate is composed of a polysiloxane woven material. Capacitive humidity sensor according to enclosure 3. 6.絶縁ポリマーが遮断ポリマーであることを特徴とする請求範囲3による静電 容量式湿度センサー。6. Electrostatic according to claim 3, characterized in that the insulating polymer is a blocking polymer. Capacitive humidity sensor. 7.最上層が格子パターンの少なくも一方の側に小さなインキ領域の列を持つこ とを特徴とする請求範囲3による静電容量式湿度センサー。7. The top layer has a row of small ink areas on at least one side of the grid pattern. A capacitive humidity sensor according to claim 3, characterized in that: 8.小さなインキ領域(12)の列の下方には誘電ポリマーが設置されず絶縁ポ リマーがあり、従って、乾燥雰囲気内での静電容量値の事前較正中に、必要であ れば、小さなインキ領域を格子パターンに接続できるように仕上がりセンサーの 小さなインキ領域(12)の列が設置されることを特徴とする請求範囲7による 静電容量式温度センサー。8. Below the rows of small ink areas (12) no dielectric polymer is placed and an insulating point is placed. There is a reamer and therefore, during pre-calibration of capacitance values in a dry atmosphere, it is necessary to The finish sensor can be used to connect small areas of ink into a grid pattern. According to claim 7, characterized in that a row of small ink areas (12) is provided. Capacitive temperature sensor. 9.小さなインキ領域(13)の列の下方には誘電ポリマーが設置され絶縁ポリ マーがなく、従って、湿潤雰囲気内での静電容量値の事前較正中に、必要であれ は、小さなインキ領域を格子パターンに接続できるように仕上がりセンサーの小 さなインキ領域(13)の列が設置されることを特徴とする請求範囲7による静 電容量式湿度センサー。9. Below the rows of small ink areas (13) a dielectric polymer is placed and an insulating poly Therefore, during pre-calibration of capacitance values in a humid atmosphere, there is no need to The small ink area of the finish sensor allows you to connect small areas of ink into a grid pattern. A still according to claim 7, characterized in that a row of small ink areas (13) is provided. Capacitive humidity sensor. 10.格子パターンが静電容量値の事前較正中にレーザー照射により調整される ことを特徴とする請求範囲3による静電容量式湿度センサー。10. The grating pattern is adjusted by laser irradiation during pre-calibration of capacitance values. A capacitive humidity sensor according to claim 3, characterized in that:
JP2502194A 1988-12-30 1989-12-28 Capacitive humidity sensor Expired - Lifetime JP2846948B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NL8803223 1988-12-30
NL8803223A NL8803223A (en) 1988-12-30 1988-12-30 CAPACITIVE MOISTURE SENSOR.
PCT/NL1989/000100 WO1990007708A2 (en) 1988-12-30 1989-12-28 Capacitive humidity sensor

Publications (2)

Publication Number Publication Date
JPH04502965A true JPH04502965A (en) 1992-05-28
JP2846948B2 JP2846948B2 (en) 1999-01-13

Family

ID=19853464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2502194A Expired - Lifetime JP2846948B2 (en) 1988-12-30 1989-12-28 Capacitive humidity sensor

Country Status (12)

Country Link
US (1) US5283711A (en)
EP (1) EP0451183B1 (en)
JP (1) JP2846948B2 (en)
AT (1) ATE102708T1 (en)
CA (1) CA2006948A1 (en)
DE (1) DE68913764T2 (en)
DK (1) DK125891A (en)
ES (1) ES2050428T3 (en)
FI (1) FI94084C (en)
NL (1) NL8803223A (en)
NO (1) NO303092B1 (en)
WO (1) WO1990007708A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06307802A (en) * 1993-04-26 1994-11-04 Mitsutoyo Corp Calipers

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI84862C (en) * 1989-08-11 1992-01-27 Vaisala Oy Capacitive humidifier construction and method of making it
US5402075A (en) * 1992-09-29 1995-03-28 Prospects Corporation Capacitive moisture sensor
US5824889A (en) * 1997-03-06 1998-10-20 Kavlico Corporation Capacitive oil deterioration and contamination sensor
US5929754A (en) * 1997-12-03 1999-07-27 Kavlico Corporation High-sensitivity capacitive oil deterioration and level sensor
US6114863A (en) * 1998-04-29 2000-09-05 General Electric Company Method for determining the presence of water in materials
US6323659B1 (en) 1998-04-29 2001-11-27 General Electric Company Material for improved sensitivity of stray field electrodes
SG115469A1 (en) * 2002-04-26 2005-10-28 Sony Corp Moisture detection methods and devices
US6724612B2 (en) 2002-07-09 2004-04-20 Honeywell International Inc. Relative humidity sensor with integrated signal conditioning
DE10318956A1 (en) * 2003-04-26 2004-11-11 Kanesho Soil Treatment Bvba Method and device for the detection of volatile analytes in air samples
NO327090B1 (en) * 2007-06-28 2009-04-20 Asle Ingmar Johnsen detector System
EP2259712A1 (en) * 2008-03-03 2010-12-15 Geisert Square Gmbh Intervertebral disc analysis system and method
KR20130101984A (en) 2010-05-10 2013-09-16 퓨어 이메지네이션 엘엘씨 One sided thin film capacitive touch sensors
CA2802549A1 (en) * 2010-06-17 2011-12-22 Pure Imagination Llc Musical instrument with one sided thin film capacitive touch sensors
US9092096B2 (en) 2010-07-26 2015-07-28 Pure Imagination, LLC Low-cost mass-produced touch sensors
US8378203B2 (en) 2010-07-27 2013-02-19 Pure Imagination, LLC Simulated percussion instrument
EP3586114A1 (en) * 2017-02-21 2020-01-01 Invisense AB Sensor device, measuring system and measuring method for detecting presence of liquid and/or humidity
RU190945U1 (en) * 2018-11-29 2019-07-16 Общество с ограниченной ответственностью "Газпром трансгаз Ухта" SORPTION-CAPACITIVE SENSITIVE ELEMENT OF GAS MOISTURE
US11385083B2 (en) * 2018-12-07 2022-07-12 Mohammad Kabany Method for measuring and/or processing measured pressure and/or humidity values
CN109916971B (en) * 2019-04-25 2022-05-17 云南中烟工业有限责任公司 Rapid nondestructive testing method for fresh tobacco moisture based on capacitor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2545354A1 (en) * 1975-10-09 1977-04-21 Linde Ag DEVICE FOR DETECTION OF LIQUID COMPONENTS IN GASES
FR2486656A1 (en) * 1980-07-09 1982-01-15 Commissariat Energie Atomique CAPACITIVE HYGROMETER
DE3203990A1 (en) * 1982-02-05 1983-08-18 Siemens AG, 1000 Berlin und 8000 München Method of setting the capacitance of moisture sensors
FR2526949B1 (en) * 1982-05-11 1989-05-12 Ministere Transports Direct Me METHOD FOR MANUFACTURING A TEMPERATURE OR HUMIDITY SENSOR OF THE THIN FILM TYPE AND SENSORS OBTAINED
FR2554593B1 (en) * 1983-11-08 1986-09-19 Comp Generale Electricite ELECTROCHEMICAL DOSING HEAD WITH SCREENED ELECTRODES
SU1223117A1 (en) * 1984-04-28 1986-04-07 Ленинградский Ордена Октябрьской Революции И Ордена Трудового Красного Знамени Технологический Институт Им.Ленсовета Converter of gas moisture content
JPS60239657A (en) * 1984-05-15 1985-11-28 Sharp Corp Moisture-sensitive element and manufacture thereof
US4564882A (en) * 1984-08-16 1986-01-14 General Signal Corporation Humidity sensing element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06307802A (en) * 1993-04-26 1994-11-04 Mitsutoyo Corp Calipers

Also Published As

Publication number Publication date
NO912492D0 (en) 1991-06-25
NO303092B1 (en) 1998-05-25
NO912492L (en) 1991-06-25
EP0451183B1 (en) 1994-03-09
ATE102708T1 (en) 1994-03-15
DK125891D0 (en) 1991-06-26
WO1990007708A3 (en) 1990-09-07
ES2050428T3 (en) 1994-05-16
FI913165A0 (en) 1991-06-28
DE68913764D1 (en) 1994-04-14
DK125891A (en) 1991-06-26
CA2006948A1 (en) 1990-06-30
JP2846948B2 (en) 1999-01-13
FI94084B (en) 1995-03-31
US5283711A (en) 1994-02-01
FI94084C (en) 1995-07-10
NL8803223A (en) 1990-07-16
DE68913764T2 (en) 1994-06-23
WO1990007708A2 (en) 1990-07-12
EP0451183A1 (en) 1991-10-16

Similar Documents

Publication Publication Date Title
JPH04502965A (en) capacitive humidity sensor
US4164868A (en) Capacitive humidity transducer
US4532016A (en) Capacitive hygrometer and its production process
JPH0434808B2 (en)
FR2653588B1 (en) ELECTRIC RESISTANCE IN THE FORM OF A CHIP WITH SURFACE MOUNT AND MANUFACTURING METHOD THEREOF.
GB2149922A (en) Capacitive moisture sensor and process for producing same
JPS6367329B2 (en)
JPH10289803A (en) Resistor and manufacture thereof
KR101628355B1 (en) Embedded capacitor and method for fabricating the same
KR100236718B1 (en) Process for manufacturing components on a metal film base
JPH1050502A (en) Resistor and production thereof
KR970009770B1 (en) Thermistor intended primarily for temperature measurement & procedure for manufacture of a thermistor
JPH0963805A (en) Square chip resistor
JP2020201091A (en) Sulfurization detection sensor
JP7359714B2 (en) Sulfide detection sensor
JP2000299203A (en) Resistor and manufacture thereof
JP2003297670A (en) Chip type composite part
CA1171932A (en) Capacitive hygrometer and a process for producing same
JP2021012067A (en) Sulfuration detection sensor
JPH01264289A (en) Functional trimming of hybrid integrated circuit
JPS6390103A (en) Control of resistance value of carbon pattern
JP2003107114A (en) Resistance value measuring method of resistor
JPH0148648B2 (en)
JPH09148184A (en) Composite electronic component and manufacture thereof
JPH03257955A (en) Laser trimming protective member