JPH0450060B2 - - Google Patents

Info

Publication number
JPH0450060B2
JPH0450060B2 JP60072780A JP7278085A JPH0450060B2 JP H0450060 B2 JPH0450060 B2 JP H0450060B2 JP 60072780 A JP60072780 A JP 60072780A JP 7278085 A JP7278085 A JP 7278085A JP H0450060 B2 JPH0450060 B2 JP H0450060B2
Authority
JP
Japan
Prior art keywords
catalyst
hydrogen
methanol
reaction
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60072780A
Other languages
Japanese (ja)
Other versions
JPS61234939A (en
Inventor
Kozo Iida
Tetsuya Imai
Shigeru Nojima
Akira Shirohana
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7278085A priority Critical patent/JPS61234939A/en
Publication of JPS61234939A publication Critical patent/JPS61234939A/en
Publication of JPH0450060B2 publication Critical patent/JPH0450060B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、水素富化ガス製造用触媒に関するも
のであり、更に詳しくは、メタノールと水の混合
物を反応させて、水素富化ガスを得る際に用いら
れる高活性、高選択性、長寿命の触媒に関するも
のである。 (従来の技術) 水素ガスは、アンモニア合成やメタノール合成
用原料等の水素工業、水素化脱硫、水素化分解等
の石油精製工業、(ベンゼンの水素化による)ナ
イロン原料であるシクロヘキサン製造等の有機化
学工業、さらに、治金工業、半導体工業用等の
種々の分野で利用されている。最近では、燃料電
池発電用燃料等の新しいエネルギー源として、水
素需要は益々増大している。 従来から広く行われている水素製造法として、
液化石油ガス(LPG)、液化天然ガス(LNG)、
およびナフサからのスチームリフオーミング法が
採用されているが、(i)石油系原料の高騰および供
給不安定、(ii)反応温度が高温(800℃〜1000℃)
であるため、中小規模の水素ガス製造には不適当
等の問題があるため、何らかの解決策が待ち望ま
れている。 これに対して、近年、メタノールは、石炭、天
然ガスなどから合成ガスを経由して大規模に製造
することができ、さらに、輸送が容易であること
から、メタノールと水蒸気を反応させて水素ガス
を製造する方法が注目されている。また、メタノ
ールの水蒸気改質反応は、ナフサよりはるかに低
温で水素含有量の多いガスに改質され、この改質
反応の熱源として、廃熱の利用も可能である。さ
らに、水素、二酸化炭素以外の副生物がほとんど
生じないことから、純水素を得るための分離工程
が簡単である優位性も有している。 上記メタノール水蒸気改質反応は、式(1)の通り
である。 CH3OH+H2O→CO2+3H2 ……(1) −△H25℃=−11.8Kcal/mol この反応は、メタノール合成原料への分解(2)
と、それによつて生成したCOの水性ガスシフト
反応(3)が同時に起こる結果であると考えられ、両
反応を促進する触媒の開発が急務となつている。 CH2OH→CO+2H2 ……(2) −△H25℃=−21.7Kacl/mol CO+H2O→CO2+H2 ……(3) −△H25℃=9.8Kcal/mol 反応(2)は、平衡が高温ほど右側に有利となる
が、反応(3)は、その逆に高温になるほど右側に不
利となる。反応(3)を促進させる必要条件は、水蒸
気の使用量を多くすることと、反応温度を低くし
得る触媒を使用することである。しかし、大過剰
の水の存在下でメタノールの水蒸気改質反応を行
うことは、蒸発に過剰の熱量を必要とするため、
経済的でなく、メタノールに対する水の比率(モ
ル比)は、できるだけ式(1)の化学量論比に近づけ
た状態で行なわれる方がよい。すなわち、反応温
度が低ければ、水蒸気使用量を少なくすることが
できるので、なるべく低温活性の大きい触媒を使
用することが必要である。 従来、メタノールの水蒸気改質反応により水素
含有量の高いガスを得るための触媒としては、
種々の触媒が提案されている。例えば、アルミナ
などの担体に銅、白金およびニツケルなどを担持
した含浸触媒が提案されているが、これらの触媒
は、メタンの生成する反応が起こりやすく、目的
成分である水素が生成する反応の選択性は悪い。
また、これらの触媒は低温活性および耐久性に乏
しいなど、現在までのところ多くの問題点を残し
ている。 一方、上記の含浸触媒に代わり、亜鉛、銅、ア
ルミニウム系の沈殿触媒が提案されているが、こ
の触媒は低温活性はよいが、副反応が起こりやす
いため、高純度水素を得るには問題であり、さら
に耐久性に乏しいという問題がある。 (発明が解決しようとする問題点) 本発明者らは、上記の問題を解決すべく、副生
成物であるジメチルエーテルやギ酸メチルの生成
を抑制し、耐久性を有する触媒の開発に着目し、
亜鉛、銅、アルミニウムに添加する成分について
検討を重ねた結果、ジルコニウムが適度な活性点
を持つことを見出し、上記目的にかなつているこ
とが明らかになり、本発明を完成するに至つた。 (問題点を解決するための手段) 本発明は、共沈法により生成させなる銅、亜
鉛、アルミニウムおよびジルコニウムの混合酸化
物で、組成を原子比で表示して銅100に対して亜
鉛が10〜200、アルミニウムおよびジルコニウム
の合計量が1〜150であることを特徴とするメタ
ノールと水の混合物からの水素富化ガス製造用触
媒である。 メタノールからできるだけ多くの水素を得るプ
ロセスとしては、第一段階として触媒を利用し、 CH3OH+H2O→CO2+3H2 なる反応により、炭酸ガスと水素に分解し、第二
段階として炭酸ガスを吸収液、吸収剤などを用い
て除去し、水素を製造する方法が最も有望であ
る。この場合、第一段階の反応において、水素と
炭酸ガスへの選択性が悪く、副生成物が生成する
と、第二段階の分離工程が複雑になり、ひいては
製造コストの上昇につながることから、第一段階
に使用する触媒の選択性が非常に重要になるので
ある。 本発明で用いる触媒の各有効成分含量比は、原
子比で銅100に対して、亜鉛は、10〜200、好まし
くは40〜150、アルミニウムおよびジルコニウム
の合計量は、1〜150、好ましくは2〜100であ
る。亜鉛が10未満になると、メタノール水蒸気反
応における重要な触媒活性点である銅の粒子が成
長しやすくなり、触媒の寿命が短くなる。アルミ
ニウムおよびジルコニウムの合計量が1未満にな
ると、亜鉛の場合と同様に触媒の寿命が短くな
る。また、亜鉛が200を越えると、銅の含有量が
相対的に低くなりすぎるため、メタノール水蒸気
反応の活性が低くなる。アルミニウムおよびジル
コニウムの合計量が150を越えると、亜鉛の場合
と同様にメタノール水蒸気反応の活性が低くな
る。なお、触媒は、銅酸化物、亜鉛酸化物、アル
ミニウム酸化物、ジルコニウム酸化物で存在し、
各々、CuO,ZnO,Al2O3,ZrO2を共有してい
る。 本発明の触媒の製造は、触媒成分金属(銅と亜
鉛とアルミニウムとジルコニウム)の水溶性塩を
混合物として、あるいは同時添加によつて、アル
カリ金属の炭酸塩または炭酸水素塩あるいはアン
モニア水と混合することによつて好ましく行われ
る。すなわち、銅、亜鉛、アルミニウム、ジルコ
ニウムを水溶性塩として使用し、アルカリ金属の
炭酸塩や炭酸水素塩、あるいはアンモニア水の作
用により、銅、亜鉛、アルミニウム、ジルコニウ
ムを共沈殿させるものである。このとき、触媒毒
の導入を避けるために、この塩は、ハロゲン化物
または硫黄含有塩ではなく、硝酸塩として存在す
ることが好ましい。 共沈殿の温度は、好ましくは50℃〜100℃であ
り、PHの範囲は5〜9が好ましい。沈殿物は触媒
からアルカリ金属イオンおよび硝酸イオンを排除
するために、よく洗滌することが重要である。 (発明の効果) 本発明による触媒は、メタノールと水から水素
富化ガスを得る反応に対して、高活性でかつ選択
性が非常によく、さらに、耐久性においても優れ
ている。 以下、実施例により本発明触媒を具体的に説明
する。 実施例 蒸留水中に、アルミン酸ナトリウムを加えて溶
かす。次に、濃硝酸を滴下すると、水酸化アルミ
ニウムが沈殿するが、撹拌により再び溶解する。
さらに、Cu(NO32・3H2O,Zn(NO32・6H2O,
ZrO(NO32・2H2Oを所定組成比になるよう添加
する。この溶液を85℃に加熱し、炭酸ナトリウム
1モル溶液を徐々に添加し、共沈殿物を得る。こ
のようにして得られるスラリーを、85℃でPH=
7.0一定になるまで撹拌する。このスラリーを、
硝酸イオンが検知できなくなるまで洗浄過し、
一晩110℃で乾燥し、その後、300℃で3時間〓焼
する。以上により調製した6種触媒(No.1,No.
2,No.3,No.4,No.5,No.6)の活性評価を
H2O/CH3OH=1.5(モル比)溶液により、大気
圧下でLHSV=1.0h-1触媒量10gの条件下で実施
した。 各触媒組成及び反応結果を表1に示す。
(Industrial Application Field) The present invention relates to a catalyst for producing hydrogen-enriched gas, and more specifically, a highly active catalyst used when producing hydrogen-enriched gas by reacting a mixture of methanol and water. It concerns highly selective, long-life catalysts. (Prior art) Hydrogen gas is used in hydrogen industries such as raw materials for ammonia synthesis and methanol synthesis, in oil refining industries such as hydrodesulfurization and hydrocracking, and in organic industries such as the production of cyclohexane, which is a raw material for nylon (by hydrogenation of benzene). It is used in various fields such as chemical industry, metallurgical industry, and semiconductor industry. Recently, demand for hydrogen has been increasing as a new energy source such as fuel for fuel cell power generation. As a hydrogen production method that has traditionally been widely used,
Liquefied petroleum gas (LPG), liquefied natural gas (LNG),
The steam reforming method from naphtha and naphtha has been adopted, but (i) the price of petroleum-based raw materials is rising and the supply is unstable, and (ii) the reaction temperature is high (800°C to 1000°C).
Therefore, there are problems such as unsuitability for small and medium-scale hydrogen gas production, and some kind of solution is awaited. On the other hand, in recent years, methanol can be produced on a large scale from coal, natural gas, etc. via synthesis gas, and it is also easy to transport, so methanol can be reacted with water vapor to produce hydrogen gas. The method of manufacturing is attracting attention. Furthermore, in the steam reforming reaction of methanol, methanol is reformed into a gas with a high hydrogen content at a much lower temperature than naphtha, and waste heat can also be used as a heat source for this reforming reaction. Furthermore, since almost no by-products other than hydrogen and carbon dioxide are produced, it has the advantage that the separation process for obtaining pure hydrogen is simple. The methanol steam reforming reaction is as shown in formula (1). CH 3 OH+H 2 O→CO 2 +3H 2 ...(1) −△H 25 ℃=−11.8 Kcal/mol This reaction is the decomposition of methanol into raw material for synthesis (2)
This is thought to be the result of the simultaneous occurrence of the water gas shift reaction (3) of the CO produced thereby, and there is an urgent need to develop a catalyst that promotes both reactions. CH 2 OH→CO+2H 2 ……(2) −△H 25 ℃=−21.7Kacl/mol CO+H 2 O→CO 2 +H 2 ……(3) −△H 25 ℃=9.8Kcal/mol Reaction (2) is , the higher the temperature of the equilibrium, the more advantageous the right side becomes, but in reaction (3), conversely, the higher the temperature, the more disadvantageous the right side becomes. The necessary conditions for promoting reaction (3) are increasing the amount of steam used and using a catalyst that can lower the reaction temperature. However, carrying out the steam reforming reaction of methanol in the presence of a large excess of water requires an excessive amount of heat for evaporation.
It is not economical, and it is better to keep the ratio (molar ratio) of water to methanol as close to the stoichiometric ratio of formula (1) as possible. That is, if the reaction temperature is low, the amount of steam used can be reduced, so it is necessary to use a catalyst with as much low-temperature activity as possible. Conventionally, catalysts used to obtain gas with high hydrogen content through the steam reforming reaction of methanol are:
Various catalysts have been proposed. For example, impregnated catalysts in which copper, platinum, nickel, etc. are supported on a support such as alumina have been proposed, but these catalysts tend to cause reactions that produce methane, and it is difficult to select a reaction that produces the target component, hydrogen. Sex is bad.
Furthermore, these catalysts still have many problems to date, such as poor low-temperature activity and durability. On the other hand, zinc, copper, and aluminum-based precipitated catalysts have been proposed in place of the above-mentioned impregnated catalysts, but although these catalysts have good low-temperature activity, they tend to cause side reactions, making them problematic for obtaining high-purity hydrogen. Furthermore, there is a problem of poor durability. (Problems to be Solved by the Invention) In order to solve the above problems, the present inventors focused on the development of a durable catalyst that suppresses the production of by-products dimethyl ether and methyl formate.
As a result of repeated studies on the components to be added to zinc, copper, and aluminum, it was discovered that zirconium has appropriate active sites, and it became clear that it met the above objectives, leading to the completion of the present invention. (Means for Solving the Problems) The present invention is a mixed oxide of copper, zinc, aluminum and zirconium produced by a coprecipitation method. 200, the total amount of aluminum and zirconium is 1 to 150, a catalyst for producing hydrogen-enriched gas from a mixture of methanol and water. The process of obtaining as much hydrogen as possible from methanol uses a catalyst in the first step to decompose it into carbon dioxide and hydrogen through the reaction CH 3 OH + H 2 O → CO 2 + 3H 2 , and in the second step, carbon dioxide is decomposed into hydrogen. The most promising method is to remove hydrogen using an absorbing liquid or absorbent to produce hydrogen. In this case, the selectivity to hydrogen and carbon dioxide gas is poor in the first stage reaction, and by-products are produced, which complicates the second stage separation process and leads to an increase in production costs. The selectivity of the catalyst used in one step is very important. The content ratio of each active component in the catalyst used in the present invention is such that the atomic ratio of copper to 100, zinc is 10 to 200, preferably 40 to 150, and the total amount of aluminum and zirconium is 1 to 150, preferably 2. ~100. When the zinc content is less than 10, copper particles, which are important catalytic active sites in the methanol steam reaction, tend to grow, shortening the life of the catalyst. If the total amount of aluminum and zirconium is less than 1, the life of the catalyst will be shortened, as in the case of zinc. Furthermore, when the zinc content exceeds 200, the copper content becomes relatively too low and the activity of the methanol steam reaction becomes low. When the total amount of aluminum and zirconium exceeds 150, the activity of the methanol steam reaction decreases as in the case of zinc. In addition, the catalyst exists as copper oxide, zinc oxide, aluminum oxide, zirconium oxide,
Each shares CuO, ZnO, Al 2 O 3 and ZrO 2 . The catalyst of the present invention is produced by mixing water-soluble salts of the catalyst component metals (copper, zinc, aluminum, and zirconium) as a mixture or by simultaneous addition with carbonates or hydrogen carbonates of alkali metals or aqueous ammonia. This is preferably done in some cases. That is, copper, zinc, aluminum, and zirconium are used as water-soluble salts, and the copper, zinc, aluminum, and zirconium are co-precipitated by the action of an alkali metal carbonate, hydrogen carbonate, or aqueous ammonia. In this case, the salt is preferably present as a nitrate rather than a halide or sulfur-containing salt in order to avoid introducing catalyst poisons. The temperature of coprecipitation is preferably 50°C to 100°C, and the pH range is preferably 5 to 9. It is important that the precipitate be thoroughly washed to remove alkali metal ions and nitrate ions from the catalyst. (Effects of the Invention) The catalyst according to the present invention has high activity and very good selectivity for the reaction of producing hydrogen-enriched gas from methanol and water, and is also excellent in durability. Hereinafter, the catalyst of the present invention will be specifically explained with reference to Examples. Example Sodium aluminate is added and dissolved in distilled water. Next, when concentrated nitric acid is added dropwise, aluminum hydroxide precipitates, but is dissolved again by stirring.
Furthermore, Cu(NO 3 ) 2・3H 2 O, Zn(NO 3 ) 2・6H 2 O,
ZrO(NO 3 ) 2.2H 2 O is added to a predetermined composition ratio. This solution is heated to 85° C. and a 1 molar solution of sodium carbonate is gradually added to obtain a coprecipitate. The slurry thus obtained was heated to 85°C with pH=
7. Stir until constant. This slurry
Wash until nitrate ions can no longer be detected,
Dry at 110℃ overnight, then bake at 300℃ for 3 hours. Six types of catalysts (No. 1, No.
2, No. 3, No. 4, No. 5, No. 6) activity evaluation.
The test was carried out using a solution of H 2 O/CH 3 OH=1.5 (molar ratio) under atmospheric pressure and LHSV=1.0 h −1 and a catalyst amount of 10 g. Table 1 shows each catalyst composition and reaction results.

【表】【table】

【表】 *:ただし、メタノール、水は除く。
表1に示すように、触媒No.1〜6のジルコニウ
ム含有触媒は、低温活性がよく、さらに副反応が
起こりにくいために、高純度水素が得られるとい
う効果があることが判明した。 また、上記触媒No.1〜No.6を反応管に10c.c.充填
し、H2O/CH3OH=1.5(モル比)の混合液を用
い、大気圧下、LHSV=1.0h-1で連続供給し、
1000時間の耐久性試験を行つた。この結果、6種
触媒ともメタノール反応率、生成ガス組成とも初
期と殆んど変化がなく、触媒表面へのカーボン析
出もないことを確認した。 上記の実施例においては、粒状触媒について記
述してあるが、触媒の形状を特に限定するもので
なく、ハニカム状などの触媒形状を用いても良い
ことは言うまでもない。 比較例 銅、亜鉛を共沈殿によりアルミナに導入した従
来の触媒(触媒No.7)を調製し、実施例と同じ条
件で活性評価を実施した結果を表2に示す。
[Table] *: However, methanol and water are excluded.
As shown in Table 1, it was found that the zirconium-containing catalysts of Catalyst Nos. 1 to 6 have good low-temperature activity and are less likely to cause side reactions, so they are effective in producing highly pure hydrogen. In addition, 10 c.c. of the above catalysts No. 1 to No. 6 were filled in a reaction tube, and using a mixed solution of H 2 O / CH 3 OH = 1.5 (molar ratio), LHSV = 1.0 h - under atmospheric pressure. Continuous supply with 1 ,
A 1000 hour durability test was conducted. As a result, it was confirmed that there was almost no change in methanol reaction rate and produced gas composition from the initial stage for all six types of catalysts, and there was no carbon precipitation on the catalyst surface. In the above examples, a granular catalyst is described, but the shape of the catalyst is not particularly limited, and it goes without saying that a catalyst shape such as a honeycomb shape may be used. Comparative Example A conventional catalyst (catalyst No. 7) in which copper and zinc were introduced into alumina by co-precipitation was prepared, and the activity was evaluated under the same conditions as in the example. Table 2 shows the results.

【表】【table】

【表】 表2に示すように、ジルコニウムを添加してい
ない触媒No.7では、活性は触媒No.1〜6とあまり
変わらないが、副生成物が生成し、水素生成の選
択率が悪くなることが判明した。 以上の実施例および比較例から、本発明触媒
は、従来の触媒に比し、メタノールと水と反応さ
せて、水素富化ガスを得る反応に対し、低温で高
活性、高選択性かつ長寿命の触媒であることが明
らかである。
[Table] As shown in Table 2, the activity of catalyst No. 7 to which zirconium is not added is not much different from that of catalysts Nos. 1 to 6, but by-products are produced and the selectivity for hydrogen production is poor. It turned out to be. From the above Examples and Comparative Examples, the catalyst of the present invention has high activity, high selectivity, and long life at low temperature for the reaction of methanol and water to obtain hydrogen-enriched gas, compared to conventional catalysts. It is clear that it is a catalyst for

Claims (1)

【特許請求の範囲】[Claims] 1 共沈法により生成させてなる銅、亜鉛、アル
ミニウムおよびジルコニウムの混合酸化物で、組
成を原子比で表示して銅100に対して亜鉛が100〜
200、アルミニウムおよびジルコニウムの合計量
が1〜150であることを特徴とするメタノールと
水の混合物からの水素富化ガス製造用触媒。
1 A mixed oxide of copper, zinc, aluminum and zirconium produced by a coprecipitation method, with a composition expressed in atomic ratio of 100% copper to 100% zinc.
200, a catalyst for producing hydrogen-enriched gas from a mixture of methanol and water, characterized in that the total amount of aluminum and zirconium is 1 to 150.
JP7278085A 1985-04-08 1985-04-08 Catalyst for producing h2-enriched gas Granted JPS61234939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7278085A JPS61234939A (en) 1985-04-08 1985-04-08 Catalyst for producing h2-enriched gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7278085A JPS61234939A (en) 1985-04-08 1985-04-08 Catalyst for producing h2-enriched gas

Publications (2)

Publication Number Publication Date
JPS61234939A JPS61234939A (en) 1986-10-20
JPH0450060B2 true JPH0450060B2 (en) 1992-08-13

Family

ID=13499241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7278085A Granted JPS61234939A (en) 1985-04-08 1985-04-08 Catalyst for producing h2-enriched gas

Country Status (1)

Country Link
JP (1) JPS61234939A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07115841B2 (en) * 1987-06-29 1995-12-13 日本酸素株式会社 Steam reforming method for methanol
JP2003088762A (en) * 2001-09-18 2003-03-25 Mitsubishi Heavy Ind Ltd Method for producing honeycomb type methanol reforming catalyst
KR100845710B1 (en) 2007-01-05 2008-07-10 김재수 Process for the preparation of hydrogen gas

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56147633A (en) * 1980-04-17 1981-11-16 Mitsubishi Heavy Ind Ltd Methanol reforming catalyst

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56147633A (en) * 1980-04-17 1981-11-16 Mitsubishi Heavy Ind Ltd Methanol reforming catalyst

Also Published As

Publication number Publication date
JPS61234939A (en) 1986-10-20

Similar Documents

Publication Publication Date Title
JP5421770B2 (en) Catalyst precursor material and catalyst using the same
US5614163A (en) Catalyzed vapor phase process for making synthesis gas
US7771702B2 (en) Sulfur-tolerant catalysts and related precursors and processes
US7375051B2 (en) Method for making hydrogen using a gold containing water-gas shift catalyst
JP2003511328A (en) Production of synthesis gas using hydrotalcite-derived nickel catalyst
JP4724973B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
JP2005066516A (en) Catalyst for reforming dimethyl ether and synthesizing method therefor
JP3328845B2 (en) Hydrogen production method and catalyst used for it
JPH0450060B2 (en)
KR100847443B1 (en) Cr-free catalysts for high temperature water gas shift reaction to remove carbon monoxide
JPS58193738A (en) Catalyst for production of gas enriched with hydrogen
JP2535760B2 (en) Method for producing catalyst for steam reforming of methanol
JP4202087B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
US5622790A (en) Fuel cell and catalyst for use therein
JP2634247B2 (en) Preparation method of methanol steam reforming catalyst
JPS61234942A (en) Catalyst for producing h2-enriched gas
JPS63256136A (en) Methanol reforming catalyst
JPS61234941A (en) Catalyst for producing h2-enriched gas
JPS60110337A (en) Catalyst for preparing hydrogen rich gas
JP3349167B2 (en) Preparation method of methanol steam reforming catalyst
JPS61234940A (en) Catalyst for producing h2-enriched gas
JPH01111445A (en) Catalyst for steam reforming of methanol
JP4168230B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
JPH0371174B2 (en)
JPS6246482B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term