JPH0449895B2 - - Google Patents

Info

Publication number
JPH0449895B2
JPH0449895B2 JP21278286A JP21278286A JPH0449895B2 JP H0449895 B2 JPH0449895 B2 JP H0449895B2 JP 21278286 A JP21278286 A JP 21278286A JP 21278286 A JP21278286 A JP 21278286A JP H0449895 B2 JPH0449895 B2 JP H0449895B2
Authority
JP
Japan
Prior art keywords
torsional vibration
output
rotating shaft
shaft system
divider
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21278286A
Other languages
Japanese (ja)
Other versions
JPS6370126A (en
Inventor
Yoshiaki Katsuyama
Yoshiaki Mitsuyama
Kazuo Kawamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Kansai Denryoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Kansai Denryoku KK filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP21278286A priority Critical patent/JPS6370126A/en
Publication of JPS6370126A publication Critical patent/JPS6370126A/en
Publication of JPH0449895B2 publication Critical patent/JPH0449895B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は回転軸系の捩り振動を捩り振動角速度
として検出し、モーダル分解、積分後、監視点応
力波形を合成して回転軸系各部の疲労寿命を監視
する回転軸系捩り振動監視装置に関するものであ
る。
Detailed Description of the Invention (Industrial Application Field) The present invention detects torsional vibration of a rotating shaft system as a torsional vibration angular velocity, and after modal decomposition and integration, monitor point stress waveforms are synthesized to detect each part of the rotating shaft system. This invention relates to a rotating shaft system torsional vibration monitoring device for monitoring fatigue life.

(従来の技術) 従来の回転軸系捩り振動監視装置をタービン発
電機軸系にとつて第4,5図により説明すると、
第4図に示すように高圧タービン01と低圧ター
ビン02と発電機03とこれらを結合する軸04
とにより構成された回転軸上に歯車05が設置さ
れている。また歯車05と対向する静止側には、
電磁ビツクアツプ06が設置され、この出力が捩
り振動角速度変動計07へ入力される。また同角
速度変動計07の出力が固有振動モードの数だけ
設置されたバンドパスフイルタ08a,08bへ
入力され、この出力が積分器09a,09bを通
して監視点の数だけ設置された応力演算器010
a〜010dへ入力される。応力演算器010a
〜010dの出力は疲労寿命演算器011へ入力
される。
(Prior Art) A conventional rotating shaft system torsional vibration monitoring device for a turbine generator shaft system will be explained with reference to FIGS. 4 and 5.
As shown in FIG. 4, a high pressure turbine 01, a low pressure turbine 02, a generator 03, and a shaft 04 connecting these
A gear 05 is installed on a rotating shaft constituted by. Also, on the stationary side facing gear 05,
An electromagnetic pickup 06 is installed, and its output is input to a torsional vibration angular velocity variation meter 07. Further, the output of the same angular velocity variation meter 07 is input to band pass filters 08a and 08b installed as many as the number of natural vibration modes, and this output is passed through integrators 09a and 09b to stress calculators 010 installed as many as the number of monitoring points.
It is input to a to 010d. Stress calculator 010a
The output of ~010d is input to the fatigue life calculator 011.

第5図は捩り振動モードの例であり、第4図に
示すように3個のロータからなる回転軸系の場
合、軸が捩れる主軸系のモードは、主に一次モー
ドA及び二次モードBとして表われる。タービン
発電機稼働中に送電系統に落雷などにより系統事
故が発生すると、発電機03に衝撃が加わつて、
回転軸系に捩り振動が発生する。回転軸系の捩り
振動は、回転軸表面では、微小な回転速度むらと
なつて表われるため、回転軸系上に設置した歯車
05とこれに対向設置した静止例の電磁ピツクア
ツプ06とにより回転パルスを検出し、捩り振動
角速度計07により回転速度むらを正確に測定す
ることにより、捩り振動を検出する。またこのと
きの検出された捩り振動角速度を、中心周波数を
捩り固有振動数に合わせたバンドパスフイルタ0
8a,08bに通すことにより、各モード毎に分
離する。また捩り振動応力は、捩り振動角変位に
比例するので、上記捩り振動角速度を捩り振動角
変位に変換するために積分器09a,09bに通
す。予め実測や計算により第5図A,Bに示すよ
うな捩り振動モードを求めて、応力的に厳しい数
点を監視点a〜dとして選定しており、積分器0
9a,09bにより角変位に変換された各固有モ
ード毎の波形に検出点pと監視点a〜dの固有モ
ード比を乗ずると、各監視点a〜dの角変位が得
られる。これを固有モードの数だけ監視点毎a〜
dに加算合成すると、各監視点a〜dの捩り振動
角変位が得られる。この捩り振動角変位は、捩り
振動応力に比例するため、応力変換係数を乗ずる
と、応力に変換できる。これらの処理を各監視点
毎の応力演算器010a〜010dで行なう。ま
た疲労寿命演算器011は、各監視点毎に公知の
レンジペア法などにより疲労寿命の推定、積算を
行なうようになつている。
Figure 5 is an example of torsional vibration mode. In the case of a rotating shaft system consisting of three rotors as shown in Figure 4, the modes of the main shaft system in which the shaft is twisted are mainly primary mode A and secondary mode. It appears as B. If a grid fault occurs in the power transmission system due to a lightning strike while the turbine generator is in operation, a shock is applied to the generator 03.
Torsional vibration occurs in the rotating shaft system. The torsional vibration of the rotating shaft system appears as minute rotational speed unevenness on the rotating shaft surface, so the rotational pulse is generated by the gear 05 installed on the rotating shaft system and the stationary electromagnetic pick-up 06 installed opposite the gear 05. The torsional vibration is detected by accurately measuring rotational speed unevenness using a torsional vibration angular velocity meter 07. In addition, the detected torsional vibration angular velocity at this time is filtered through a bandpass filter 0 whose center frequency is adjusted to the torsional natural frequency.
By passing it through 8a and 08b, it is separated into each mode. Further, since the torsional vibration stress is proportional to the torsional vibration angular displacement, the torsional vibration angular velocity is passed through integrators 09a and 09b to convert it into a torsional vibration angular displacement. The torsional vibration modes shown in Figure 5 A and B are determined in advance through actual measurements and calculations, and several points with severe stress are selected as monitoring points a to d, and the integrator 0
When the waveform of each eigenmode converted into an angular displacement by 9a and 09b is multiplied by the eigenmode ratio of the detection point p and the monitoring points a to d, the angular displacement of each of the monitoring points a to d is obtained. This is done for each monitoring point a~ by the number of eigenmodes.
By adding and combining with d, the torsional vibration angular displacement of each monitoring point a to d is obtained. Since this torsional vibration angular displacement is proportional to the torsional vibration stress, it can be converted into stress by multiplying it by a stress conversion coefficient. These processes are performed by stress calculators 010a to 010d for each monitoring point. Further, the fatigue life calculator 011 estimates and integrates the fatigue life for each monitoring point using the known range pair method.

(発明が解決しようとする問題点) 前記第4,5図に示す従来の回転軸系捩り振動
監視装置では、連続した長時間角速度信号を積分
して角変位信号に変換するとき、角速度信号をア
ナログ量として検出して、アナログ積分を行なう
と、アナログ系の零点ドリフトやS/N特性によ
り固有モードに関係ない低周波成分が非常に拡大
される。またデイジタル量に変換して数値積分を
行なうと、最下位ビツトの切り捨て誤差の影響な
どにより発散する不具合があり積分器により完全
積分を行なうことが難しいという問題があつた。
(Problems to be Solved by the Invention) In the conventional rotating shaft system torsional vibration monitoring device shown in FIGS. 4 and 5, when integrating a continuous long-time angular velocity signal and converting it into an angular displacement signal, When detected as an analog quantity and subjected to analog integration, low frequency components unrelated to the eigenmode are greatly expanded due to the zero point drift and S/N characteristics of the analog system. Furthermore, when converting to a digital quantity and performing numerical integration, there is a problem that divergence occurs due to the effect of truncation error of the least significant bit, making it difficult to perform complete integration using an integrator.

(問題点を解決するための手段) 本発明は前記の問題点に対処するものね、回転
軸系の捩り振動を捩り振動角速度として検出し、
モーダル分解、積分後、監視点応力波形を合成し
て回転軸系各部の疲労寿命を監視する回転軸系捩
り振動監視装置において、振り振動角速度信号と
三角関数発生器からの関数とを乗算する乗算器と
同乗算器出力と後記減算器出力とを加算する加算
器と同加算器出力を定数で割る割算器と前記加算
器出力と同割算器出力との差を求める減算器と前
記割算器出力を定数で割つて得た値に前記三角関
数発生器からの関数を乗算する乗除算器とをそれ
ぞれが有する2つのフーリエ変換系統と、同各系
統の出力の差を求める減算合成器とを具えている
ことを特徴とした回転軸系捩り振動監視装置に係
り、その目的とする処は、アナオグ積分による低
周波成分の拡大やデイジタル数値積分による発散
の不具合を防止できる。また捩り振動角速度とし
て検出し、さらにモーダル分解、積分後の波形を
監視点応力として合成することができる回転軸係
捩り振動監視装置を供する点にある。
(Means for Solving the Problems) The present invention addresses the above problems by detecting torsional vibration of a rotating shaft system as a torsional vibration angular velocity,
In a rotating shaft system torsional vibration monitoring device that monitors the fatigue life of each part of a rotating shaft system by synthesizing monitoring point stress waveforms after modal decomposition and integration, multiplication is performed to multiply the swing vibration angular velocity signal by the function from the trigonometric function generator. an adder that adds the output of the multiplier and the output of the subtracter described later; a divider that divides the output of the adder by a constant; a subtracter that calculates the difference between the output of the adder and the output of the divider; two Fourier transform systems each having a multiplier/divider that multiplies the value obtained by dividing the output of the multiplier by a constant by a function from the trigonometric function generator; and a subtractive synthesizer that calculates the difference between the outputs of the respective systems. The purpose of the present invention is to prevent problems such as expansion of low frequency components due to analog integration and divergence due to digital numerical integration. Another object of the present invention is to provide a rotating shaft-related torsional vibration monitoring device that can detect torsional vibration as an angular velocity, and further synthesize a waveform after modal decomposition and integration as monitoring point stress.

(作用) 本発明の回転軸系捩り振動監視装置は前記のよ
うに構成されており、捩り振動角速度信号と三角
関数発生器からの関数とを乗算し、この乗算結果
と減算器出力とを加算し、この加算結果を定数で
割り、その結果と前記加算結果との差を前記減算
器により求め、前記割算結果を設定周波数ωで割
つて得た値に前記三角関数発生器からの関数を乗
算するフーリエ変換を2系統で行ない。同各系統
の出力の差を求める逆にフーリエ変換を減算合成
器で行なう。
(Function) The rotating shaft system torsional vibration monitoring device of the present invention is configured as described above, and multiplies the torsional vibration angular velocity signal by the function from the trigonometric function generator, and adds this multiplication result and the subtracter output. Then, this addition result is divided by a constant, the difference between the result and the addition result is obtained by the subtracter, and the function from the trigonometric function generator is added to the value obtained by dividing the division result by the set frequency ω. Fourier transform for multiplication is performed in two systems. To find the difference between the outputs of each system, Fourier transform is performed using a subtractive synthesizer.

(実施例) 次に本発明の回転軸系捩り振動監視装置を第1
図に示す一実施例により説明すると、20が入力
データ、21がタイマー、22が三角関数発生
器、23a,23bが振り振動角速度信号と三角
関数発生器22からの関数とを乗算する乗算器、
24a,24bが同乗算器23a,23bの出力
と後記減算器26a,26bの出力とを加算する
加算器、25a,25bが同加算器24a,24
bの出力を定数で割る割算器、26a,26bが
上記加算器24a,24bの出力と同割算器25
a,25bの出力との差を求める減算器、27
a,27bが上記割算器25a,25bの出力を
定数で割つて得た値に上記三角関数発生器22か
らの関数を乗算する乗除算器、28が同乗除算器
27a,27bの出力の差を求める減算合成器、
29が同減算合成器28からの出力である。
(Example) Next, the rotating shaft system torsional vibration monitoring device of the present invention was
To explain with one embodiment shown in the figure, 20 is input data, 21 is a timer, 22 is a trigonometric function generator, 23a, 23b is a multiplier that multiplies the swing vibration angular velocity signal and the function from the trigonometric function generator 22;
24a and 24b are adders that add the outputs of the multipliers 23a and 23b and the outputs of the subtracters 26a and 26b described later, and 25a and 25b are the adders 24a and 24.
A divider 26a, 26b which divides the output of b by a constant is the same divider 25 as the output of the adders 24a, 24b.
a subtracter for calculating the difference between the outputs of a and 25b, 27
a and 27b are multipliers and dividers that multiply the value obtained by dividing the outputs of the dividers 25a and 25b by a constant by the function from the trigonometric function generator 22, and 28 is the difference between the outputs of the same multipliers and dividers 27a and 27b. A subtractive synthesizer that finds
29 is the output from the subtractive synthesizer 28.

次に前記第1図に示す回転軸系捩り振動監視装
置の作用を具体的に説明する。タイマー21によ
り制御された三角関数発生器22からの余弦関数
と入力データx20とを乗算器23aで、タイマ
ー21により制御された関数発生器22からの正
弦関数と入力データx20とを乗算器23bで、
それぞれ乗じる。この乗算器23a,23bの出
力は、加算器24a,24bへ入力されて、減算
器26a,26bの出力と加算される。また同加
算器24a,24bの出力は、減算器26a,2
6bへ入力されるとともに、割算器25a,25
bへ入力され、割算器25a,25bで定数Nに
より割算する。また同割算器25a,25bの出
力は、減算器26a,26bへ入力されて、上記
加算器24a,24bの出力との差を求め、これ
が次のタイミングの加算器入力として加算器24
a,24bへ入力されるとともに、乗除算器27
a,27bへも入力される。乗助算器27a,2
7bでは、着目した振動数ωで割算した後、先の
正弦、余弦関数を乗じ、その結果を減算合成器2
8で合成した後、出力データX29として出力す
る。
Next, the operation of the rotating shaft system torsional vibration monitoring device shown in FIG. 1 will be specifically explained. A multiplier 23a uses a cosine function from a trigonometric function generator 22 controlled by a timer 21 and input data x20, and a multiplier 23b uses a sine function from a function generator 22 controlled by a timer 21 and input data x20. ,
Multiply each. The outputs of the multipliers 23a, 23b are input to adders 24a, 24b, and added to the outputs of the subtracters 26a, 26b. Further, the outputs of the adders 24a and 24b are the same as those of the subtracters 26a and 2
6b, and the dividers 25a, 25
b, and is divided by a constant N by dividers 25a and 25b. The outputs of the dividers 25a and 25b are input to subtracters 26a and 26b, and the difference between the outputs and the outputs of the adders 24a and 24b is calculated, and this is used as the adder input at the next timing.
a, 24b, and the multiplier/divider 27
It is also input to a and 27b. Multiplier 27a, 2
In 7b, after dividing by the focused frequency ω, multiplying by the previous sine and cosine functions, and applying the result to the subtraction synthesizer 2
After combining in step 8, the output data is output as output data X29.

時間間隔Δtでサンプリングされた有限区間T
の単一周波数ω成分のフーリエ変換は次式で示さ
れる。
Finite interval T sampled at time interval Δt
The Fourier transform of a single frequency ω component of is given by the following equation.

ここで区間Tを荷重区間NΔtにおきかえると、
荷重区間の連続したフーリエ変換が次式により可
能になる。
Here, if we replace section T with load section NΔt, we get
A continuous Fourier transformation of the load interval is made possible by the following equation.

実数部 XRω(t)=2.Xγω(t)/N またフーリエ逆変換は、 Xω(t)=XRω(t)・cosωt +XIω(t)・sinωt …… 積分を含むフーリエ逆変換は、 Yω(t)=XRω(t)/ω・sinωt=XIω(t)/
ω・cosωt…… で表わされる。
Real part X R ω(t)=2.Xγω(t)/N In addition, the inverse Fourier transform is :・sinωt=X (t)/
It is expressed as ω・cosωt...

及び式を回路で構成したものが第1図であ
る。三角関数発生器22では、タイミング〔t〕
21と設定された周波数〔ω〕とにより決まる余
弦関数〔cosωt〕及び正弦関数〔sinωt〕を求め
る。乗算器23a,23bでは、入力データ〔x
(t)〕20に上記余弦、正弦関数を乗じて、〔x
(t)・cosωt〕及び〔x(t)・sinωt〕を求める。加
算器24a,24bでは、乗算器23a,23b
の出力と減算器26a,26bの出力を加算し
て、〔Xγω(t)〕及び〔Xiω(t)〕を求める。割算器
25a,25bでは、加算器24a,24b出力
を定数〔N〕により割つて、〔Xγω(t)/N〕及び
〔Xiω(t)/N〕を求める。
FIG. 1 shows a circuit configuration of the equations and. In the trigonometric function generator 22, the timing [t]
21 and the set frequency [ω], a cosine function [cosωt] and a sine function [sinωt] are determined. In the multipliers 23a and 23b, input data [x
(t)] 20 multiplied by the above cosine and sine functions, [x
(t)・cosωt] and [x(t)・sinωt]. In the adders 24a and 24b, multipliers 23a and 23b
, and the outputs of the subtractors 26a and 26b to obtain [Xγω(t)] and [Xiω(t)]. The dividers 25a and 25b divide the outputs of the adders 24a and 24b by a constant [N] to obtain [Xγω(t)/N] and [Xiω(t)/N].

減算器26a,26bでは、加算器24a,2
4b出力と割算器25a,25bの減算を行な
い、〔Xγω(t)−Xγω(t)/N〕及び〔Xiω(t)−Xiω
(t)/N〕を求めて、次のタイミング(t−Δt)
の加算器出力として加算器24a,24bへ出力
する。一方、割算器25a,25bの出力〔XR
ω(t)/Z〕及び〔XIω(t)/Z〕は、乗除算器2
7a,27bへも入力され、〔XRω(t)/ω〕及び
〔XIω(t)/ω〕の割算及び〔sinωt〕及び
〔cosωt〕の乗算を行ない、減算合成器28では、
〔XRω(t)/ω・sinωt〕−〔Xiω(t)/ω・cosωt〕の
減算により積分後の波形Xω(t)を合成して、出力
29する。
In the subtracters 26a and 26b, adders 24a and 2
4b output and the dividers 25a and 25b, [Xγω(t)−Xγω(t)/N] and [Xiω(t)−Xiω
(t)/N] and the next timing (t-Δt)
It is output to the adders 24a and 24b as the adder output. On the other hand, the outputs of the dividers 25a and 25b [X R
ω(t)/Z] and [X I ω(t)/Z] are multiplier/divider 2
7a and 27b, and divides [X R ω(t)/ω] and [X I ω(t)/ω] and multiplies [sinωt] and [cosωt]. ,
The integrated waveform Xω(t) is synthesized by subtraction of [X R ω(t)/ω·sinωt]−[Xiω(t)/ω·cosωt] and output 29.

第2図A,B,Cに、固有振動数2個を含む過
度応答波形の解析例を示し、そのうち、第2図A
は、原波形であり、時間t0で衝撃が加わつたとき
の応答波形を、第4図Bは、本発明装置によりバ
ンドパスフイルタをかけて周波数の低い方の成分
を分離した例を、それぞれなしている。また第2
図Cは、本発明装置により同様にバンドパスフイ
ルタをかけて積分した後、波形を変換した例をな
している。また第3図A,Bは、第2図と同様に
バンドパスフイルタをかけているが、入力データ
を一旦記憶し、時間経過方向を逆にして、処理し
た例を示し、そのうち、第3図Aは、第2図と同
様の原波形で時間軸を逆にして、時間幅を縮めた
ものであり、第3図Bは、そのバンドパスフイル
タ例である。このようにすることにより、過度直
後の振幅をより正確に求めることができる。
Figures 2A, B, and C show analysis examples of transient response waveforms that include two natural frequencies.
is the original waveform, and FIG. 4B is the response waveform when an impact is applied at time t 0. FIG. I am doing it. Also the second
FIG. C shows an example in which the waveform is converted after being similarly integrated using a band-pass filter using the apparatus of the present invention. 3A and 3B show an example in which a bandpass filter is applied in the same way as in FIG. 2, but the input data is once stored and processed with the time elapsed direction reversed. A is the same original waveform as in FIG. 2, but the time axis is reversed and the time width is shortened, and FIG. 3B is an example of the bandpass filter. By doing so, the amplitude immediately after the transient can be determined more accurately.

(発明の効果) 本発明の回転時系捩り振動監視装置は前記のよ
うに構成されており、捩り振動信号をフーリエ変
換により周波数領域に変換して、周波数領域で積
分した後、フーリエ逆変換により各モード毎のモ
ーダル変位応答に変換するので、アナログ積分に
よる低周波成分の拡大やデイジタル数値積分によ
る発散の不具合を防止できる。またアナログバン
ドパスフイルタと同様の効果により周波数成分の
分離を行なうとともに、分離波形の完全積分を行
なうので、捩り振動角速度として検出してモーダ
ル分解、積分後の波形を監視点応力として合成す
ることができる効果がある。
(Effects of the Invention) The rotational time-based torsional vibration monitoring device of the present invention is configured as described above, and after converting the torsional vibration signal into the frequency domain by Fourier transform and integrating it in the frequency domain, Since it is converted into a modal displacement response for each mode, problems such as expansion of low frequency components caused by analog integration and divergence caused by digital numerical integration can be prevented. In addition, it separates frequency components with the same effect as an analog bandpass filter, and also performs complete integration of the separated waveform, so it is possible to detect the torsional vibration angular velocity, modally decompose it, and synthesize the integrated waveform as the monitoring point stress. There is an effect that can be done.

以上本発明を実施例について説明したが、勿論
本発明はこのような実施例にだけ局限されるもの
ではなく、本発明の精神を逸脱しない範囲内で
種々の設計の改変を施しうるものである。
Although the present invention has been described above with reference to embodiments, it goes without saying that the present invention is not limited to such embodiments, and that various design modifications can be made without departing from the spirit of the present invention. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る回転軸系捩り振動監視装
置の一実施例を示す系統図、第2,3図は波形例
を示す説明図、第4図は従来の回転軸系捩り振動
監視装置を示す系統図、第5図はその振動モード
例を示す説明図である。 22……三角関数発生器、23a,23b……
乗算器、24a,24b……加算器、26a,2
6b……減算器、25a,25b……割算器、2
7a,27b……乗除算器、28……減算合成
器。
Fig. 1 is a system diagram showing an embodiment of a rotating shaft system torsional vibration monitoring device according to the present invention, Figs. 2 and 3 are explanatory diagrams showing waveform examples, and Fig. 4 is a conventional rotating shaft system torsional vibration monitoring device. FIG. 5 is an explanatory diagram showing an example of the vibration mode. 22... Trigonometric function generator, 23a, 23b...
Multiplier, 24a, 24b... Adder, 26a, 2
6b...Subtractor, 25a, 25b...Divider, 2
7a, 27b...Multiplication/divider, 28...Subtraction synthesizer.

Claims (1)

【特許請求の範囲】[Claims] 1 回転軸系の捩り振動を捩り振動角速度として
検出し、モーダル分解、積分後、監視点応力波形
を合成して回転軸系各部の疲労寿命を監視する回
転軸系捩り振動監視装置において、捩り振動角速
度信号と三角関数発生器からの関数とを乗算する
乗算器と同乗算器出力と後記減算器出力とを加算
する加算器と同加算器出力を定数で割る割算器と
前記加算器出力と同割算器出力との差を求める減
算器と前記割算器出力を定数で割つて得た値に前
記三角関数発生器からの関数を乗算する乗除算器
とをそれぞれが有する2つのフーリエ変換系統
と、同各系統の出力の差を求める減算合成器とを
具えていることを特徴とした回転軸系捩り振動監
視装置。
1 In a rotating shaft system torsional vibration monitoring device that detects torsional vibration of a rotating shaft system as a torsional vibration angular velocity, and after modal decomposition and integration, monitors stress waveforms at monitoring points and monitors the fatigue life of each part of the rotating shaft system, torsional vibration A multiplier that multiplies the angular velocity signal and the function from the trigonometric function generator, an adder that adds the output of the multiplier and the output of the subtracter described later, a divider that divides the output of the adder by a constant, and the output of the adder. Two Fourier transforms each having a subtracter that calculates the difference from the output of the divider, and a multiplier/divider that multiplies the value obtained by dividing the output of the divider by a constant by the function from the trigonometric function generator. A system for monitoring torsional vibration of a rotating shaft system, comprising a system and a subtractive synthesizer for determining the difference between the outputs of each system.
JP21278286A 1986-09-11 1986-09-11 Apparatus for monitoring torsional vibration of rotary shaft system Granted JPS6370126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21278286A JPS6370126A (en) 1986-09-11 1986-09-11 Apparatus for monitoring torsional vibration of rotary shaft system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21278286A JPS6370126A (en) 1986-09-11 1986-09-11 Apparatus for monitoring torsional vibration of rotary shaft system

Publications (2)

Publication Number Publication Date
JPS6370126A JPS6370126A (en) 1988-03-30
JPH0449895B2 true JPH0449895B2 (en) 1992-08-12

Family

ID=16628297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21278286A Granted JPS6370126A (en) 1986-09-11 1986-09-11 Apparatus for monitoring torsional vibration of rotary shaft system

Country Status (1)

Country Link
JP (1) JPS6370126A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108318129B (en) * 2018-02-01 2020-07-07 石家庄铁道大学 Method for discriminating true and false of modal parameter of bridge structure and terminal equipment

Also Published As

Publication number Publication date
JPS6370126A (en) 1988-03-30

Similar Documents

Publication Publication Date Title
US4675614A (en) Phase difference measurement system
Rodopoulos et al. A parametric approach for the estimation of the instantaneous speed of rotating machinery
US20200333201A1 (en) Method For Estimating An Internal Effective Torque Of A Torque Generator
US20040085096A1 (en) Efficient digital method of and system for determining the instantaneous phase and amplitude of a vibratory accelerometer and other sensors
CN100428747C (en) Generating method for linear digital frequency modulation signal
CN103904693B (en) Based on the synchronized method that frequency self adaptation Virtual shipyard is estimated
Sunder et al. A new procedure for processing strong-motion earthquake signals
US20200319021A1 (en) Frequency identifying device
Bai et al. Adaptive order tracking technique using recursive least-square algorithm
JP6197923B1 (en) Control system
US20200412341A1 (en) Method For Filtering A Periodic, Noisy Measurement Signal Having A Fundamental Frequency And Harmonic Oscillation Components
JPH0449895B2 (en)
CN106153029A (en) Two frequency machine shaking laser gyroscope shaking signal cancellation devices
JPH02227701A (en) Fourier transformation band pass filter type controller
KR20060040354A (en) Waveform synthesis methods for shock response spectrum over a short time interval, a digital recursive filter for a shock response history and its applications
CN103544134A (en) Transfer function estimation apparatus, method and program
CN113029553B (en) Method, system and device for extracting rotating speed information of gearbox shaft and storage medium
US4654836A (en) Seismic vibrator source having improved phase detector
CN108226607B (en) Harmonic current detection method applied to APF (active power filter) in static coordinate system
CN109960843B (en) Doppler frequency shift numerical simulation method based on orthogonal principle
CN115855170B (en) Inclination angle and vibration characteristic measurement system based on fusion model algorithm
Pelletier et al. Multichannel simultaneous digital tracking filters for swept-sine vibration control
JPH08152375A (en) Unbalance measuring apparatus
Budkina et al. A Technique for Increasing the Accuracy of Frequency Measurement When Using a Method Based on Phase Increment Analysis
KR20060012313A (en) Phase measurement device, method, program, and recording medium