JPH044987A - Method and apparatus for producing extremely thin metal pipe with modulated output yag layer beam - Google Patents

Method and apparatus for producing extremely thin metal pipe with modulated output yag layer beam

Info

Publication number
JPH044987A
JPH044987A JP2103089A JP10308990A JPH044987A JP H044987 A JPH044987 A JP H044987A JP 2103089 A JP2103089 A JP 2103089A JP 10308990 A JP10308990 A JP 10308990A JP H044987 A JPH044987 A JP H044987A
Authority
JP
Japan
Prior art keywords
output
thin metal
ultra
laser
metal foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2103089A
Other languages
Japanese (ja)
Other versions
JPH0771757B2 (en
Inventor
Atsushi Sugibashi
敦史 杉橋
Katsuhiro Minamida
勝宏 南田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2103089A priority Critical patent/JPH0771757B2/en
Publication of JPH044987A publication Critical patent/JPH044987A/en
Publication of JPH0771757B2 publication Critical patent/JPH0771757B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate welding defect of melt-down and humping by welding an extremely thin metal pipe with YAG laser beam generating a modulated output superimposing pulse laser beam output to continuous laser beam output. CONSTITUTION:The extremely thin metal foil 1 is continuously formed to pipe- state and the faced butting end faces 2 are converged to wedge-shape and center of the laser beam is made to coincide with the point, which gap 3a, 3b at near the converged point 4 becomes 1-5 times the foil thickness, and irradiated to melt the range of 2-10 times the foil thickness from edge part and the molten end face is pushed just before solidifying and welded. By using the modulated output superimposing the pulse laser beam output to the continuous laser beam output, at the time of non-molten condition on surface of the metal foil 1, the high energy at the pulse part in a ripple output is radiated to instantaneously come to the molten condition. Successively, the output is lowered to the continuous output part to prevent over-melting. The welding is executed to the extremely thin pipe without developing welding defect.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、厚さ30〜150μ山の極薄金属箔のYAG
レーサ溶接によるパイプの製造方法とその装置に関する
ものである。
Detailed Description of the Invention [Industrial Field of Application] The present invention is directed to the production of YAG
This invention relates to a method for manufacturing pipes by laser welding and an apparatus therefor.

[従来の技術] 極薄金属箔を連続的に管状に成形して相対する突き合せ
端面を楔形状に収束させ、その集束点近傍をTIG等の
電気溶接で行うことは溶接点のパイプエツジ端面のエツ
ジのかえり、粗さ等の条件の正確な調節、−ギャップ及
びオフセット条件の正確な調節、突き合せの正確な調節
ならびに厳しい入熱制限が要求されるために極薄金属箔
の溶接には適さない。また熱影響層も大きいため溶接性
の点で問題があり、特に管の曲げ加工には適さない。さ
らに従来のレーザ溶接を行う方法に於いても上記のエツ
ジ、ギャップ、オフセット等の、突き合せ条件の正確な
調整、及び厳しい入熱制限のために、8i薄金属箔の溶
接においてはレーザの照射位置ならびにビーム径、パワ
ーを正確に限定する必要があり、技術的に困難である。
[Prior art] Continuously forming ultra-thin metal foil into a tubular shape, converging the opposing end faces into a wedge shape, and performing electric welding such as TIG in the vicinity of the convergence point is a method of welding the pipe edge end face at the welding point. It is not suitable for welding ultra-thin metal foils because it requires precise adjustment of conditions such as edge burrs and roughness, - precise adjustment of gap and offset conditions, accurate adjustment of butt, and strict heat input limits. do not have. Furthermore, since the heat-affected zone is large, there is a problem in weldability, making it particularly unsuitable for bending pipes. Furthermore, even in conventional laser welding methods, laser irradiation is required when welding 8i thin metal foil due to accurate adjustment of butt conditions such as edges, gaps, and offsets, and strict heat input limitations. It is technically difficult to accurately limit the position, beam diameter, and power.

また、特開昭60−96382号公報に見られるように
低密度集光YAGレーザ・で照射する溶接法は、上記の
ような厳しい突き合せ条件の緩和を図るとともに、極薄
金属箔表面での非溶融、溶融時のレーザの吸収率の比を
小さくし、溶は落ち、ハンピング等の溶接欠陥を防止す
るものである。しかし溶接欠陥の防止については、同公
開公報に書かれているように、YAGレーザの非溶融時
の吸収率α0、溶融時の吸収率αゆの変化比RyはR,
>2.5程度てあり、C02レーザの吸収率変化比Re
>IIに比べ十分小さいとは言え、非溶融時、溶融時に
おいて、レーザの投入エネルキーの吸収率か2倍以上変
化している事に変わりは無く、極薄金属箔のように、熱
容量の小さなものの溶接においては、わずかの溶接状態
の変化が溶接結果に大きく影響するので、溶接欠陥の防
止には十分とは言いがたい。
In addition, the welding method using a low-density focused YAG laser, as seen in Japanese Patent Application Laid-Open No. 60-96382, aims to alleviate the severe butt conditions mentioned above and also to weld the surface of ultra-thin metal foil. The ratio of the laser absorption rate during non-melting and melting is reduced, the melt falls off, and welding defects such as humping are prevented. However, regarding the prevention of welding defects, as stated in the same publication, the change ratio Ry of the absorption rate α0 in the non-melting state and the absorption rate αY in the melting state of the YAG laser is R,
>2.5, and the absorption rate change ratio Re of the C02 laser
>Although it is sufficiently small compared to II, the absorption rate of the laser input energy key changes by more than twice when it is not melted and when it is melted. When welding objects, even the slightest change in the welding condition greatly affects the welding result, so it cannot be said that this is sufficient to prevent welding defects.

[発明か解決しようとする課題] 本発明は、極薄金属箔を連続的に管状に成形して溶接に
よりパイプ化する際の電気溶接及び従来のレーザ溶接法
ては克服出来ない厳しいエツジ条件、オフセット条件、
突き合せ条件ならびに入熱条件の問題を克服し、溶融熱
影響層の少ない品質の良い極薄金属箔パイプが得られる
製造方法と装置を提供する事を目的としている。
[Problem to be solved by the invention] The present invention solves severe edge conditions that cannot be overcome by electric welding and conventional laser welding methods when ultra-thin metal foil is continuously formed into a tubular shape and welded into a pipe. offset condition,
The purpose of this invention is to overcome the problems of butt conditions and heat input conditions, and to provide a manufacturing method and apparatus that can produce high-quality ultra-thin metal foil pipes with less molten heat-affected layer.

[課題を解決するための手段] 本発明は、上記の目的を達成するためになさねたもので
あり、その要旨とするところは極薄金属箔を連続的に成
形して相対する突き合せ端面を楔形状に収束させ溶接す
る極薄金属箔パイプ製造装置に於いて、レーザの励起ラ
ンプに対してそれぞれ並列に接続されたランプ点火用ト
リガー回路及びシマー電源回路とかつ互いの干渉を抑制
するためにランプに並列に接続されたパルストランスを
介して結合されているパルス電流回路とを備え、連続レ
ーザ出力にパルスレーザ出力を重畳させた変調出力を発
するレーザ発振機と、極薄金属箔の収束部に形成する楔
形状部を低密度集光ビームで照射する光学系とを備えた
ことを特徴とするYAGレーザによる極薄金属箔パイプ
の製造装置と、 極薄金属箔を連続的に成形して相対する突き合せ端面を
楔形状に収束させ、該楔形状部にレーザを照射して溶接
する極薄金属箔パイプの製造方法において、端部のオフ
セットを極薄金属箔の板厚の30%以下に保持し成形さ
れた該楔形状部のギャップか極薄金属箔の板厚の1倍以
上5倍以下になる点に、連続出力にパルス出力を重畳さ
せた変調出力を発する低密度集光YAGレーザヒームの
中心を一致させて照射し、端面から板厚の2〜10倍の
領域を溶融し、溶融端面を凝固直前に押し付けて溶接を
完了させる方法である。
[Means for Solving the Problems] The present invention has been made to achieve the above object, and its gist is to continuously form ultra-thin metal foil and to form opposing butt end surfaces. In an ultra-thin metal foil pipe manufacturing device that converges and welds into a wedge shape, a lamp ignition trigger circuit and a simmer power supply circuit are connected in parallel to the laser excitation lamp, and in order to suppress mutual interference. A laser oscillator that emits a modulated output by superimposing the pulsed laser output on the continuous laser output, and a pulsed current circuit coupled to the lamp through a pulse transformer connected in parallel to the lamp, and a convergence of ultra-thin metal foil. An apparatus for manufacturing an ultra-thin metal foil pipe using a YAG laser, characterized in that it is equipped with an optical system that irradiates a wedge-shaped part formed in a section with a low-density focused beam; In the manufacturing method of an ultra-thin metal foil pipe, the opposing end faces are converged into a wedge shape, and the wedge-shaped portion is irradiated with a laser to weld. Low-density condensing light that emits a modulated output that is a continuous output and a pulsed output superimposed on the gap of the wedge-shaped part held and formed below or at a point that is 1 to 5 times the thickness of the ultra-thin metal foil. In this method, the centers of the YAG laser beams are aligned and irradiated to melt an area 2 to 10 times the thickness of the plate from the end face, and the molten end face is pressed just before solidification to complete welding.

[作用] (1)本発明のパイプ製造方法の成形加工は第1図に示
すように、極薄金属箔を連続的に成形して相対する突き
合せ端面を楔形状に収束させ、溶接箇所においてエツジ
端面のオフセットか板厚の30%以下に納まる成形方法
であればどのような方法にも適用できる。
[Function] (1) As shown in Fig. 1, the forming process of the pipe manufacturing method of the present invention involves continuously forming ultra-thin metal foil to converge the opposing butt end surfaces into a wedge shape, and Any forming method can be applied as long as the offset of the edge end face is within 30% of the plate thickness.

(2)第2.3図は連続出力にパルス出力を重畳させた
変調出力を発するYAGレーザ発振機を用いた低密度エ
ネルギービーム域ソフト溶接法の概念図である。YAG
レーザを極薄金属箔の開先のギャップか板厚の1倍以上
5倍以下に開いたところに照射し、照射ビーム径を極薄
金属箔の両端面を板厚の2〜10倍の巾にわたり溶融さ
せるように集光シ、溶は落ち、ハンピングのない溶接を
行う。
(2) Figures 2.3 are conceptual diagrams of a low-density energy beam area soft welding method using a YAG laser oscillator that emits a modulated output in which a pulsed output is superimposed on a continuous output. YAG
Irradiate the laser to the groove gap of the ultra-thin metal foil, which is between 1 and 5 times the plate thickness, and set the irradiation beam diameter to a width of 2 to 10 times the plate thickness on both end faces of the ultra-thin metal foil. The light is focused so that it melts over the area, the melt falls, and welding is performed without humping.

この時、極薄金属箔の両端溶融部の幅十両端部のギヤツ
ブ長g=YAGレーザのビーム径りとなっている。ビー
ム−径りはレンズの焦点距離f又は、焦点位置を鋼板の
上側にセットするデイフォーカス照射によって制御する
。レーザの照射位置を開先ギャップが板厚の値未満の位
置にすると、突き合せ点に照射するのと同様になり両端
部の溶融による寄り合いが少なくなり、端部のオフセッ
トを板厚の10%以下の精度にする必要がある。これは
極薄金属箔に対しては非常に高度な技術が要求され、実
行する事は困難である。また、板厚の5倍の埴を越える
位置では、両端部が離れすぎているために上手く突き合
せる事が出来ず良好な溶接が出来ない。また、端面から
の溶接領域が板厚の2倍未満では不十分な溶接となり、
それが10倍超では過剰な溶接となり溶は落ちが生じる
At this time, the width of the fused portions at both ends of the ultra-thin metal foil and the gear length g at both ends are equal to the beam radius of the YAG laser. The beam radius is controlled by the focal length f of the lens or by day focus irradiation, which sets the focal position above the steel plate. If the laser irradiation position is set to a position where the groove gap is less than the value of the plate thickness, it will be the same as irradiating the butt point, and there will be less clumping due to melting at both ends, and the edge offset will be reduced to 10% of the plate thickness. The accuracy must be as follows. This requires very advanced technology for ultra-thin metal foils and is difficult to implement. In addition, at a position beyond the 5 times the plate thickness, both ends are too far apart and cannot be butted together well, making it impossible to perform good welding. In addition, if the welding area from the end face is less than twice the plate thickness, the welding will be insufficient.
If it exceeds 10 times, excessive welding will occur and the melt will drop.

(3)YAGレーザを連続出力にパルス出力を重畳させ
た変調出力を発する事には以下の様な利点がある。金属
表面のレーザ光の吸収率は非溶融、溶融時において大き
く異なり、これにより入熱状態か変化し、極薄金属箔の
溶接においては溶接欠陥の原因になる。そのため特開昭
60−96382号公報に見られるようにYAGレーザ
をもちい、極薄金属箔表面での非溶融、溶融時のレーザ
の吸収率の比を小さくし、溶は落ち、ハンピング等の溶
接欠陥を防止する方法が開示されている。しかし溶接欠
陥の防止については、同公開公報に書かれているように
、YAGレーザの非溶融時の吸収率α。、溶融時の吸収
率α、の変化比R,はR,>2.5程度であり、Co2
レーザの吸収率変化比Re>11に比べ十分小さいとは
言え、非溶融時、溶融時において、レーザの投入エネル
ギーの吸収率が2倍以上変化している事に変わりは無く
、極薄金属箔のように、熱容量の小さなものの溶接にお
いては、わずかの溶接状態の変化が溶接結果に大きく影
響するので、レーザの投入エネルギーを最適条件に制御
する事はその制御範囲が狭く非常に困難であり、溶接欠
陥の防止には十分とは言いかたい。
(3) Using a YAG laser to emit a modulated output in which a pulsed output is superimposed on a continuous output has the following advantages. The absorption rate of laser light on the metal surface differs greatly between when it is not melted and when it is molten, which changes the heat input state and causes welding defects when welding ultra-thin metal foils. Therefore, as seen in Japanese Patent Application Laid-Open No. 60-96382, a YAG laser is used to reduce the ratio of the absorption rate of the laser during non-melting and melting on the surface of ultra-thin metal foil, so that the melt falls off and welding such as humping is reduced. A method for preventing defects is disclosed. However, regarding the prevention of welding defects, as written in the same publication, the absorption rate α of the YAG laser when not melting. , the change ratio R, of the absorption rate α during melting is about R,>2.5, and Co2
Although this is sufficiently small compared to the laser absorption rate change ratio Re > 11, there is no difference in the fact that the absorption rate of the laser input energy changes by more than twice when it is not melted and when it is melted. When welding materials with small heat capacity, such as small welding conditions, slight changes in welding conditions can greatly affect the welding result, so it is extremely difficult to control the laser input energy to the optimal conditions because the control range is narrow. It cannot be said that this is sufficient to prevent welding defects.

これに対し、本発明の連続出力にパルス出力を重畳させ
たリップル出力のYAGレーザを使用する事で上記の様
なレーザの投入エネルギーの最適制御の条件を緩和する
事か出来る。第4図に本発明の変調YAGレーザの概略
を示す。Ppは変調出力のパルス部分のピーク出力値を
、PCは変調出力の連続発振部の出力値を、p avは
変調出力の時間平均値を示す。その作用は以下のとおり
である。金属箔表面の非溶融状態時に、リップル出力の
パルス部分の高いエネルギーを照射し、金属箔表面を瞬
時に溶融状態に至らしめる。しかる後、溶融状態になり
レーザビームの吸収率が0.9以上の効率になったとこ
ろで吸収率の変化に従ってリップル発振のレーザ出力を
リップル出力のパルス部ピーク値Ppから連続出力部の
P。へと変化低下させることにより極薄金属箔の過溶融
を防ぎ溶融状態を維持する。さらに極薄金属箔の表面か
凝固しはじめレーザビームの吸収率か低下したところで
再びリップル出力のパルス部分の高いエネルギーを投入
し、極薄金属箔表面を溶融状態に保つ。パルス部分のエ
ネルギー密度は高く、表面の溶融の核を常に形成するが
、それによる入熱量は少なく、加入熱になる事はない。
On the other hand, by using a YAG laser with ripple output in which pulse output is superimposed on continuous output according to the present invention, the conditions for optimal control of the laser input energy as described above can be relaxed. FIG. 4 schematically shows the modulated YAG laser of the present invention. Pp indicates the peak output value of the pulse portion of the modulated output, PC indicates the output value of the continuous oscillation section of the modulated output, and pav indicates the time average value of the modulated output. Its action is as follows. When the metal foil surface is in a non-molten state, the high energy of the pulse portion of the ripple output is irradiated to instantly bring the metal foil surface into a molten state. Thereafter, when the molten state is reached and the absorption rate of the laser beam reaches an efficiency of 0.9 or more, the laser output of ripple oscillation is changed from the peak value Pp of the pulse part of the ripple output to P of the continuous output part according to the change in the absorption rate. By reducing the change to Furthermore, when the surface of the ultra-thin metal foil begins to solidify and the absorption rate of the laser beam decreases, the high energy of the pulse portion of the ripple output is applied again to keep the surface of the ultra-thin metal foil in a molten state. The energy density of the pulse portion is high and always forms a melting nucleus on the surface, but the amount of heat input by this is small and does not become heat input.

上記の任な溶融凝固を高速で綬り返す事により、極薄金
属箔対して溶は落ち、ハンピング等の溶接欠陥の無い溶
接を安定して行う事を可能とする。こうしてレーザの投
入エネルギーの制御範囲も広くなり容易に極薄金属箔に
対して溶接を行う事を可能とする。
By repeating the above-mentioned molten solidification at a high speed, the molten metal falls onto the ultra-thin metal foil, making it possible to perform stable welding without welding defects such as humping. In this way, the control range of laser input energy is widened, making it possible to easily weld ultra-thin metal foil.

(4)低密度エネルギー密度ムによる面熱源的溶接法に
よる成形条件の緩和は以下のような理由による。
(4) The relaxation of the forming conditions by the surface heat source welding method using a low density energy density system is due to the following reasons.

■第2図のギャップgが板厚の2倍程度あるところにレ
ーザを照射することで、突き合せ点で極薄金属箔を溶融
させる場合に比べつき合う範囲か広くなるので(第5図
)、オフセットの条件(板厚の10%以下)が緩和され
る。
■ By irradiating the laser at the gap g in Figure 2, which is about twice the thickness of the plate, the contact area will be wider than when melting ultra-thin metal foil at the butting point (Figure 5). The offset condition (10% or less of the plate thickness) is relaxed.

■突き合せ点の状態(極薄金属箔の両端部の重なり具合
)が微妙に変化しても、そのために起こる熱容量の微妙
な変化には左右されず熱の投入が行えるため、へンピン
ク・溶は落ちのない溶接を行える。この方法によりギャ
ップ及びオフセットの許容値(板厚の10%以下)が大
幅(2〜3倍)に拡大出来る。
■ Even if the condition of the butt point (overlapping condition of both ends of the ultra-thin metal foil) changes slightly, heat can be input without being affected by the subtle change in heat capacity, resulting in no pinking or melting. can perform welding without welding. By this method, the allowable values for gaps and offsets (10% or less of the plate thickness) can be greatly expanded (2 to 3 times).

(5)第10図に本発明によるレーザ発振機の励起用ラ
ンプ電源回路のブロックダイアダラムを示す。
(5) FIG. 10 shows a block diagram of an excitation lamp power supply circuit for a laser oscillator according to the present invention.

ランプには点火用トリカー発生回路、シマー電源回路、
パルス電流回路が並列に接続されている。
The lamp includes an ignition trigger generation circuit, a simmer power supply circuit,
Pulse current circuits are connected in parallel.

以下に各部ロックの機能を示す。The functions of each part lock are shown below.

・SCR*J御回路定電流制御部】8 ランプにシマー電流を供−給する。これによりランプの
導通状態を維持し、かつYAGロッドをレーザ発振閾値
付近以上に励起する。
・SCR*J control circuit constant current control section】8 Supplies simmer current to the lamp. This maintains the conductive state of the lamp and excites the YAG rod to a level near or above the laser oscillation threshold.

・トリガー発生回路19 ランプ点灯開始時に、ランプに放電経路を形成させるた
めの高圧トリガーを発生する。
- Trigger generation circuit 19 Generates a high-voltage trigger to form a discharge path in the lamp at the start of lamp lighting.

・ブースト電圧発生回路20 トリガーにより形成したランプ内の放電経路を、シマー
電源か立ち上がるまでの間維持するブースト電圧を供給
する。
- Boost voltage generation circuit 20 This circuit supplies a boost voltage that maintains the discharge path in the lamp formed by the trigger until the simmer power supply is turned on.

・パルスR1部21、FET22及びパルストランス2
3(PT) ランプに供給するパルス電流を制御する。パルス電流は
FET22により制御し、パルストランス23(PT)
を経てランプに供給される。
・Pulse R1 section 21, FET 22 and pulse transformer 2
3 (PT) Controls the pulse current supplied to the lamp. Pulse current is controlled by FET22, and pulse transformer 23 (PT)
It is supplied to the lamp through the

・逆電流防止用タイオード(DI、D2)シマー電流の
放電によるランプインピータンス変動に対し、シマー電
流を安定化する。
・Reverse current prevention diode (DI, D2) Stabilizes the simmer current against lamp impedance fluctuations due to simmer current discharge.

・真空リレー(RYI) ランプ点灯時にトリガーパルス及びブースト電圧に対し
、パルス電源部をシマー電源部から遮断、保護する。
・Vacuum relay (RYI) Cuts off and protects the pulse power supply from the simmer power supply against the trigger pulse and boost voltage when the lamp is lit.

次に本発明によるレーザのパルス発振原理について説明
する。パルス発振の基本原理そのものはノーマルパルス
方式と類似であるか、本発明においてはYAGロットは
予めシマー電流によってレーザ発振閾値付近以上にまで
励起されている。このため本発明では、従来のノーマル
パルス方式に比べ低いパルス電流値を重畳する事により
、パルス発振を達成出来る。更にランプ内には常に放電
経路か形成されており、低インピータンス状態て発光可
能のため、ランプ印加電圧も同時に低くする事が出来る
。即ち、パルス出力と周波数を一定と考えた場合、ラン
プに人力されるエネルギーの平均値は減少する。従フて
本発明によれば、ランプの入力制限内において、パルス
電流の繰り返し周波数を上げる事が可能となる。
Next, the principle of pulse oscillation of the laser according to the present invention will be explained. The basic principle of pulse oscillation itself is similar to the normal pulse method, or in the present invention, the YAG lot is excited in advance by a simmer current to a level near the laser oscillation threshold or higher. Therefore, in the present invention, pulse oscillation can be achieved by superimposing a lower pulse current value than in the conventional normal pulse method. Furthermore, since a discharge path is always formed within the lamp and light can be emitted in a low impedance state, the voltage applied to the lamp can also be lowered at the same time. That is, if the pulse output and frequency are considered constant, the average value of the energy applied to the lamp decreases. Therefore, according to the present invention, it is possible to increase the repetition frequency of the pulse current within the input limit of the lamp.

また第10図では、1本のランプにシマー電流とパルス
電流を重畳して供給する場合を示したが、更に第11図
に示すように、これらのシマー電流とパルス電流を重畳
して供給される2本のランプによってYAGロット;を
励起した場合には、ランプ1本の場合よりも励起人力が
増加し、その結果高いレーザ出力か得られる。
In addition, although Fig. 10 shows the case in which a single lamp is supplied with a simmer current and a pulse current in a superimposed manner, as shown in Fig. 11, the simmer current and pulse current are also supplied in a superimposed manner. When a YAG lot is excited with two lamps, the excitation power is increased compared to when one lamp is used, and as a result, a higher laser output can be obtained.

[実施例] (1)第6図に示すような装置を用いて厚さ30〜15
0μmの金属箱を端部のオフセットを極薄金属箔の板厚
の30%以下、端部の突き合せ角度0.3°〜5°とな
るようにパイプ状に成形し、連続レーザ出力にパルスレ
ーザ出力を重畳させた変調出力を発するYAGレーザを
使って溶接を行った。
[Example] (1) Using an apparatus as shown in FIG.
A 0 μm metal box is formed into a pipe shape with an edge offset of less than 30% of the thickness of the ultra-thin metal foil and a butting angle of 0.3° to 5°, and pulsed with continuous laser output. Welding was performed using a YAG laser that emits a modulated output that is superimposed with laser output.

上記実施例における疲労試験の手順は以下のとおりであ
る。第7図に示す様に溶接した極薄金属箔パイプをその
溶接ビートを含む様にW : ]0++unX: 40
mmの短冊状に切りとり、第8図に示す様に角の曲率R
が0.5 mmである二枚の鋼板の角に溶接ビードが倣
う様に挟み込み、前後に90度ずつの縁り返し曲げを行
う。リファレンスとして、極薄金属箔の母材に対しても
同じ実験を行う。
The procedure of the fatigue test in the above example is as follows. As shown in Fig. 7, welded ultra-thin metal foil pipes are welded so that the welded bead is included W: ]0++unX: 40
Cut it into a rectangular shape of mm, and adjust the corner curvature R as shown in Figure 8.
The weld bead follows the corner of two steel plates with a diameter of 0.5 mm, and the edges are bent 90 degrees in front and back. As a reference, the same experiment will be performed on a base material of ultra-thin metal foil.

i)ステンレス鋼板5US304 (板厚0.IOmm
)を連続レーザ出力にパルスレーザ出力を重畳させた変
調出力を発するYAGレーザを板の表面でのビーム径1
 ffImφ、パルス部ピーク出力200W、連続出力
部出力80W、平均出力100Wで、パイプの突き合せ
ギャップか0.2 mrnのところに照射し溶接を実施
したところ、溶は蕗ち欠陥の無い溶接が溶接速度3.0
m/minで得られた。また、ビートの厚みは母材厚の
120%以下であり、パイプ溶接部をサンプルとして切
り出し縁り返し曲げによる疲労破壊テストを行ったとこ
ろ50回以上と良好な結果が得られた。
i) Stainless steel plate 5US304 (plate thickness 0.IOmm
) is a YAG laser that emits a modulated output that is a continuous laser output superimposed with a pulsed laser output.
ffImφ, pulse part peak output 200W, continuous output part output 80W, average output 100W, when welding was carried out by irradiating the butt gap of the pipe at 0.2 mrn, the weld was welded without any welding defects. Speed 3.0
m/min. In addition, the thickness of the bead is 120% or less of the base metal thickness, and when a pipe welded part was cut out as a sample and a fatigue fracture test was performed by bending the welded pipe over 50 times, good results were obtained.

ii)上記と四棟ステンレス鋼板5IJS304 (板
厚0.05mm)を連続レーザ出力にバルスレーサ出力
を重畳させた変調出力を発するYAGレーザを板の表面
てのビーム径i nunφ、パルス部ピーク出力150
W、連続出力部出力40W、平均出力50Wで、パイプ
の突き合せギャップが0.2 +nmのところに照射し
溶接を実施したところ、溶は落ち欠陥の無い溶接か溶接
速度2.5m/minで得られた。また、と−ドの厚み
は母材厚の120%以下であり、パイプ溶接部をサンプ
ルとして切り出し絞り返し曲げによる疲労破壊テストを
行ったところ50回以上と良好な結果か得られた。
ii) A YAG laser that emits a modulated output by superimposing the pulsed laser output on the continuous laser output is applied to the above and the four-building stainless steel plate 5IJS304 (plate thickness 0.05 mm) with a beam diameter i nunφ at the plate surface and a pulse part peak output of 150 mm.
W, continuous output part output 40W, average output 50W, when welding was carried out by irradiating the butt gap of the pipes at 0.2 + nm, welding fell and there was no defect or welding at a welding speed of 2.5m/min. Obtained. In addition, the thickness of the cord is 120% or less of the base metal thickness, and when a pipe welded part was cut out as a sample and subjected to a fatigue fracture test by drawing back and bending it over 50 times, good results were obtained.

1ii)従来法との溶接性比較のため、板厚100μm
の5US304平板材をTIG溶接により突き合せ溶接
しくTIG溶接では板厚100 um、501.Imの
極薄金属箔パイプの溶接は不可能であった為)、同杜の
縁り返し曲げ疲労試験を行ったところ、母材部は破断回
数70回、TIG溶接部破断回数35回てありTIG溶
接法に比へ、レーザ溶接法か溶接性において優れている
事かわかった。
1ii) For weldability comparison with the conventional method, the plate thickness was 100 μm.
5 US304 flat plate material was butt welded by TIG welding.The plate thickness was 100 um, 501. As it was impossible to weld the ultra-thin metal foil pipe of Im), when we conducted a fatigue test on bending the edges of the same mori, the base metal part fractured 70 times and the TIG weld part fractured 35 times. It was found that laser welding is superior to TIG welding in terms of weldability.

iv)上記実施例において溶接のビート幅を測定したと
ころ、板厚+00 umの5LIS104平板材をTI
G溶接により突き合せ溶接したビート幅は約400μm
てあったが、本発明によるYAGレーザを用いた方法に
よるとと一ド幅は約100μmと4分の1になった。
iv) In the above example, when the welding beat width was measured, the 5LIS104 flat plate material with a plate thickness of +00 um was TI
The bead width when butt welded using G welding is approximately 400μm.
However, according to the method using a YAG laser according to the present invention, the width of one dot was reduced to one-fourth of that, to about 100 μm.

(2)板厚50gI+lのS[l5304箔に対し、レ
ーザビーム径1.0 mmφ、YAGレーザ出力30W
の条件で、本発明の変調出力YAGレーザと連続出力Y
AGレーザによりビードオンテストを行りた。変調出力
YAGレーザでは良好なビードを得られる範囲が2.5
m/min〜3 、1m/minてあったのに対し、連
続出力YAGレーザては同範囲か2.9m/min〜3
.]m/minとなり、本発明の変調出力YAGレーザ
によるヒートオンテストが連続出力YAGレーザによる
ビートオンテストに対して2倍以上の広範囲にわたり良
好なビードを得ることが出来た(第9図)。この事は、
連続出力YAGレーザては溶は落ち、ハンピングか起き
てしまう溶接条件下においても変調出力YAGレーザを
用いる事によりそれを防ぐ事が出来る事を意味している
(2) Laser beam diameter 1.0 mmφ, YAG laser output 30 W for S [l5304 foil with plate thickness 50 g I + l
Under the conditions of the modulated output YAG laser of the present invention and the continuous output Y
A bead-on test was performed using an AG laser. The range in which a good bead can be obtained with a modulated output YAG laser is 2.5
m/min~3 and 1m/min, whereas continuous output YAG laser has the same range or 2.9m/min~3
.. ] m/min, and the heat-on test using the modulated output YAG laser of the present invention was able to obtain good beads over a wider range more than twice that of the beat-on test using the continuous output YAG laser (FIG. 9). This thing is
This means that even under welding conditions where a continuous output YAG laser would cause melt drop and humping to occur, using a modulated output YAG laser can prevent this.

[発明の効果] 本発明の方法及び装置により以下のような効果を得る事
が出来る。
[Effects of the Invention] The following effects can be obtained by the method and apparatus of the present invention.

■変調出力YAGレーザを極薄金属箔の両端部の開先が
開いたところに低密度集光ビームで照射することで、従
来のTIG溶接法、レーザ溶接法では出来なかった板厚
150μm以下の極薄金属箔の突き合せ溶接を溶は落ち
、ハンピング等の溶接欠陥なく行うことが出来る。
■ By irradiating a modulated output YAG laser with a low-density focused beam to the open grooves at both ends of ultra-thin metal foil, welding with a thickness of 150 μm or less, which was not possible with conventional TIG welding or laser welding. Butt welding of ultra-thin metal foils can be performed without melting and welding defects such as humping.

■変調出力YAGレーザを極薄金属箔の両端部の開先が
開いたところに低密度集光ビームで照射することで、突
き合せ点て極薄金属箔を溶融させる場合に比へつき合う
範囲か広くなるのでオフセットの条件(従来は板厚の1
0%以下)を緩和することが出来る。
■ By irradiating the modulated output YAG laser with a low-density focused beam to the open grooves at both ends of the ultra-thin metal foil, it is possible to achieve a ratio of contact range when melting the ultra-thin metal foil at the butting point. Since it becomes wider, the offset conditions (conventionally, 1 of the board thickness)
0% or less).

■変調出力YAGレーザにより従来のレーザ溶接法ては
溶は落ち、ハンピング等が起きる溶接条件の下でも、そ
れらを起こす事無く溶接を行う事か出来る。
- Modulated output YAG laser allows welding to be carried out without causing humping, etc., even under welding conditions where the melt drops and humping occurs in conventional laser welding methods.

以上、本発明によって従来は得られなかった様な極薄の
金属箔のパイプの溶接が溶は落ち、溶接欠陥を発生させ
ることなく安定して得られた。
As described above, according to the present invention, welding of extremely thin metal foil pipes, which could not be achieved conventionally, was achieved stably without melting and without causing any welding defects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は極薄金属箔の鋼管への成形の概念図である。第
2図はYAGレーザビームの集光状態、照射法の概念を
示した斜視図である。第3図は第2図の平面図である。 第4図は本発明の変調出力YAGレーザの出力特性の概
念図である。第5図は本発明による極薄金属箔のパイプ
への成形・溶接時の成形条件の緩和を示す模式図である
。第6図は本発明の実施に用いた装置例の概略図である
。第7図(a) (b)は実施例で用いた試験編の側面
図と正面図である。第8図は本発明実施例の実験の態様
の正面図である。第9図は本発明実施例のビードオンテ
ストの結果を示すグラフである。 第10図は本発明による変調出力YAGレーザ発振機の
励起用ランプ電源回路のプロツクタイアグラムである。 第11図は本発明実施例に用いた2本のランプを用いた
レーサ構造を示す模式図である。 1・・・極薄金属箔、2・・・端部、3・・・端面、4
・・・変凋出力YAGレーサ照射位置、5・・・変調出
力YAGレーザビーム−16・・・レンズ、7・・・低
密度集光変調出力YAGレーザビーム、8・・・変更出
力YAGレーザビームスポット、9・・・溶接位置、1
0・・・溶融状態部、11−・・溶接ビート、18・・
・SCR制御回路定電流制御部、19・・・トリガー発
生回路、20・・・ブースト電圧発生回路、21・・・
パルス発振部、22・−F ET、23−・・パルスト
ランス、24・・・YAGロッド、25・・・アークラ
ンプ、26・・・楕円集光器、27・・・共振器リアミ
ラー 28−・・共振器出力ミラー 29・・・定電流
ランプ電源、D・・・照射スポット径、d・・・溶融幅
、g・・・開先ギャップ、PC・・・変調出力連続全振
部出力値、Pp・・・変調出力パルス部ピーク出力値、
p a。 ・・・変調出力平均出力値。
FIG. 1 is a conceptual diagram of forming an ultra-thin metal foil into a steel pipe. FIG. 2 is a perspective view showing the convergence state of the YAG laser beam and the concept of the irradiation method. FIG. 3 is a plan view of FIG. 2. FIG. 4 is a conceptual diagram of the output characteristics of the modulated output YAG laser of the present invention. FIG. 5 is a schematic diagram showing relaxation of the forming conditions when forming and welding an ultra-thin metal foil into a pipe according to the present invention. FIG. 6 is a schematic diagram of an example of equipment used to implement the present invention. FIGS. 7(a) and 7(b) are a side view and a front view of the test section used in the example. FIG. 8 is a front view of an experimental mode of an embodiment of the present invention. FIG. 9 is a graph showing the results of a bead-on test of an example of the present invention. FIG. 10 is a block diagram of a pumping lamp power supply circuit for a modulated output YAG laser oscillator according to the present invention. FIG. 11 is a schematic diagram showing a laser structure using two lamps used in an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Ultra-thin metal foil, 2... End part, 3... End surface, 4
...Variable output YAG laser irradiation position, 5...Modulated output YAG laser beam -16...Lens, 7...Low density focused modulated output YAG laser beam, 8...Change output YAG laser beam Spot, 9...Welding position, 1
0... Molten state part, 11-... Welding beat, 18...
- SCR control circuit constant current control section, 19... trigger generation circuit, 20... boost voltage generation circuit, 21...
Pulse oscillation unit, 22--FET, 23-- Pulse transformer, 24-- YAG rod, 25-- Arc lamp, 26-- Elliptical condenser, 27-- Resonator rear mirror 28--・Resonator output mirror 29...constant current lamp power supply, D...irradiation spot diameter, d...melting width, g...groove gap, PC...modulation output continuous full oscillation part output value, Pp...Modulation output pulse part peak output value,
p a. ...Modulation output average output value.

Claims (1)

【特許請求の範囲】 1、極薄金属箔を連続的に成形して相対する突き合せ端
面を楔形状に収束させ、収束部近傍にレーザビームを照
射して突き合せ部を溶接するYAGレーザによる極薄金
属箔パイプの製造方法において、連続レーザ出力にパル
スレーザ出力を重畳させた変調出力を発するYAGレー
ザにて溶接する事を特徴とする変調出力YAGレーザに
よる極薄金属パイプ製造方法。 2、楔形状部のギャップが極薄金属箔の板厚の1倍以上
5倍以下になる点に低密度集光YAGレーザビームの中
心を一致させて照射し、端部から板厚の2〜10倍の領
域を溶融し、溶融端面を凝固直前に押し付けて溶接する
請求項1に記載の変調出力YAGレーザによる極薄金属
パイプの製造方法。 3、極薄金属箔を連続的に成形して相対する突き合せ端
面を楔形状に収束させる成形装置と、該楔形状部にレー
ザを照射する溶接装置からなる極薄金属箔パイプの製造
装置において、ランプに対してそれぞれ並列に接続され
たランプ点火用トリガー回路及びシマー電源回路と、か
つ互いの干渉を抑制するためにランプに並列に接続され
たパルストランスを介して結合されているパルス電流回
路とを備え、連続レーザ出力にパルスレーザ出力を重畳
させた変調出力を発するレーザ発振機と、極薄金属箔の
収束部に形成する楔形状部を低密度集光YAGレーザビ
ームで照射する光学系とを備えたことを特徴とするYA
Gレーザによる極薄金属パイプの製造装置。
[Claims] 1. Using a YAG laser that continuously forms ultra-thin metal foil, converges the opposing abutting end surfaces into a wedge shape, and irradiates a laser beam near the convergent portion to weld the abutting portions. A method for manufacturing an ultra-thin metal foil pipe using a modulated output YAG laser, characterized in that welding is performed using a YAG laser that emits a modulated output in which a pulsed laser output is superimposed on a continuous laser output. 2. Align the center of the low-density focused YAG laser beam to the point where the gap of the wedge-shaped part is between 1 and 5 times the thickness of the ultra-thin metal foil, and irradiate it from the edge to the point where the gap is between 2 and 5 times the thickness of the ultra-thin metal foil. 2. The method for manufacturing an ultra-thin metal pipe using a modulated output YAG laser according to claim 1, wherein an area 10 times larger is melted and the molten end face is pressed and welded immediately before solidification. 3. An ultra-thin metal foil pipe manufacturing device comprising a forming device that continuously shapes ultra-thin metal foil and converges opposing butt end surfaces into a wedge shape, and a welding device that irradiates the wedge-shaped portion with a laser. , a lamp ignition trigger circuit and a simmer power supply circuit each connected in parallel to the lamp, and a pulse current circuit connected via a pulse transformer connected in parallel to the lamp in order to suppress mutual interference. a laser oscillator that emits a modulated output in which pulsed laser output is superimposed on continuous laser output, and an optical system that irradiates a wedge-shaped part formed at the convergence part of the ultra-thin metal foil with a low-density focused YAG laser beam. YA characterized by having
Equipment for manufacturing ultra-thin metal pipes using G laser.
JP2103089A 1990-04-20 1990-04-20 Method and apparatus for manufacturing ultra-thin metal pipe using modulated output YAG laser Expired - Lifetime JPH0771757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2103089A JPH0771757B2 (en) 1990-04-20 1990-04-20 Method and apparatus for manufacturing ultra-thin metal pipe using modulated output YAG laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2103089A JPH0771757B2 (en) 1990-04-20 1990-04-20 Method and apparatus for manufacturing ultra-thin metal pipe using modulated output YAG laser

Publications (2)

Publication Number Publication Date
JPH044987A true JPH044987A (en) 1992-01-09
JPH0771757B2 JPH0771757B2 (en) 1995-08-02

Family

ID=14344912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2103089A Expired - Lifetime JPH0771757B2 (en) 1990-04-20 1990-04-20 Method and apparatus for manufacturing ultra-thin metal pipe using modulated output YAG laser

Country Status (1)

Country Link
JP (1) JPH0771757B2 (en)

Also Published As

Publication number Publication date
JPH0771757B2 (en) 1995-08-02

Similar Documents

Publication Publication Date Title
JP3762676B2 (en) Work welding method
JP5105944B2 (en) Laser equipment
US7807939B2 (en) Laser welding method and laser welding apparatus
US20120024828A1 (en) Method of hybrid welding and hybrid welding apparatus
JP2005527383A (en) Laser welding by beam oscillation
RU2547987C1 (en) Laser welding method
JP4352143B2 (en) Method and apparatus for preventing or repairing hole defects in laser spot welding
JP2009262182A (en) Laser arc hybrid welding head
JP2002144064A (en) Method and equipment for welding metallic member
JP3631936B2 (en) Welding method and welding apparatus
JPH044987A (en) Method and apparatus for producing extremely thin metal pipe with modulated output yag layer beam
JP2003001453A (en) Combined heat source welding method
JPH06198472A (en) High-speed laser beam welding method
JP2880061B2 (en) Laser processing
JPH10225782A (en) Combined welding method by laser and arc
JP2699707B2 (en) Laser welding method for plating materials
JPS59191577A (en) Electric resistance welding method using energy beam in combination
JP2012187590A (en) Method for producing laser-welded steel pipe
JP2004255435A (en) Laser welding machine and method
JP2004058140A (en) Laser spot welding method and laser spot welding equipment
JPS60221185A (en) Welding method of thin steel sheet by laser beam
JP2501594B2 (en) Focus position adjustment method of laser processing machine
JPH01185987A (en) Oscillation of pulse laser and apparatus therefor
JP2002144065A (en) Method for laser welding and equipment therefor
JP2023135275A (en) Laser/arc hybrid welding device