JPH044982B2 - - Google Patents

Info

Publication number
JPH044982B2
JPH044982B2 JP6106184A JP6106184A JPH044982B2 JP H044982 B2 JPH044982 B2 JP H044982B2 JP 6106184 A JP6106184 A JP 6106184A JP 6106184 A JP6106184 A JP 6106184A JP H044982 B2 JPH044982 B2 JP H044982B2
Authority
JP
Japan
Prior art keywords
iodine
iodide
niobium
reaction system
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6106184A
Other languages
Japanese (ja)
Other versions
JPS60204619A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6106184A priority Critical patent/JPS60204619A/en
Publication of JPS60204619A publication Critical patent/JPS60204619A/en
Publication of JPH044982B2 publication Critical patent/JPH044982B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、沃化ニオブの連続製造法に関する。
更に詳しくは、金属粗ニオブを高温部に大過剰の
固体沃素を低温部に連続的に供給し、高温部で金
属ニオブと沃素ガスとを反応させ、高速度で連続
的に沃化物を生成させるとともに、捕集器の温度
制御により沃化ニオブと微量不純物沃化物の折出
温度差を利用し、精製分離し、さらに未反応沃素
は反応系に連結された蒸留塔内で同時に精製し、
不活性ガスにより急冷し、取扱いの容易な高純度
沃素粉体として回収し、これを再使用する沃素の
完全クローズド化を可能にした高純度沃化ニオブ
の連続高速製造装置に関するものである。 従来、一般に金属沃化物の製造法は流動方式も
しくは密閉方式で製造されていたが、以下述べる
様な欠点があつた。 流動方式、密閉方式ともバツチ式であるため
連続製造に適さない上に、生成速度が非常に遅
い(200g程度製造するのに10〜24時間程度必
要であつた)。 製造された沃化物をさらに高純度にするため
には精製工程が別に必要であつた。しかも、蒸
留精製では一般に沃化物は沃素雰囲気でない場
合は低温で分解し、不揮発性の低級沃化物とな
るため上記の精製工程は分解温度200℃以下の
低温もしくは減圧下で行う必要があつた。 通常の流動法では、高級沃化物が生成しにく
かつた。 未反応沃素を通常のトラツプで回収したので
は不純物を多く含み、さらにインゴツトとなる
ため非常に取扱いが困難である上に、沃素の精
製工程が別に必要であつた。 また、沃素は安全衛生面から完全にクローズ
ド化が必要であつた。 本発明は高純度金属を得る手段としての沃化物
熱分解法に使用される高純度沃化物を容易に得る
ことを目的としたもので、上記のような従来のこ
の種の製造法および製造装置の欠点を解消したも
のである。即ち、本発明は粗金属ニオブおよび沃
素をフイーダー(特に流動性の悪い沃素について
は、電磁式フイーダーを密閉室内にセツトしたも
のが好ましい)によつて、連続供給し反応させ、
生成した沃化物を捕集器内で折出温度の差によ
り、常圧、低温で直接精製するとともに未反応沃
素は反応系に連結された蒸留塔内で精製し、さら
に冷却不活性ガスによる急冷で取扱いの良好な高
純度粉末沃素として回収し、反応系に再使用する
ことより沃素の完全クローズド化を実現し、連続
的に高純度沃化ニオブを製造する方法を提供する
ものである。 本発明は従来問題とされていた諸要因を一挙に
解消した高純度沃化ニオブの高速・連続製造装置
を提供するものである。 次に本発明を添付図面および実施例によつて具
体的に説明する。 図−1は本発明を実施する装置の一例を示すも
のである。図において1は補充用の沃素ポツトで
あり、沃化物として消費された沃素を供給するも
のである。2は沃素溜ポツト3は密閉された沃素
フイーダー(例えば電磁フイーダー)であり、粉
体状の沃素を定量的に4の沃素気化器内に供給す
る。ここでガス状となつた沃素は反応器5に送ら
れ、金属粗ニオブ用ポツト6から定量的に供給さ
れ、7のメザラに落下する金属粗ニオブと反応し
沃化ニオブを生成する。生成した沃化ニオブは9
の沃化ニオブ精製塔内で折出し、精製沃化ニオブ
のみが8の沃化ニオブ用補集ポツト内に捕集さ
れ、未反応の沃素および不純物沃化物は11の沃
素蒸留塔に入り、不純物沃化物は10のポツト
に、そして精製沃素ガスは冷媒により冷却されて
いる沃素急冷トラツプ12内に入る。ここで沃素
ガスは冷却器13で冷却された不活性ガスにより
急冷され、粉末となり再び2の沃素溜ポツトにフ
イードバツクされ、連属的に高純度沃化ニオブを
製造するとともに、沃素も安全にクローズド化さ
れる。 更に具体的には、全系を10-2 tprr以下に排気し、
約300℃以上に加熱し、長時間保持することによ
り、脱気・脱水を行う。次に沃素を沸点以上に加
熱された沃素気化器に適量供給し、全系を沃素雰
囲気にする。さらに各部が所定の温度に達した
後、金属粗ニオブ提供し、沃素化する。 ところで反応温度であるが、金属粗ニオブの沃
素化反応は300℃以上で急激に速度が増すため、
300℃以上であれば特に制限はしないが、通常400
〜600℃が採用される。生成された沃化物は9の
精製塔にガス状で入つてくるが、この時過剰の沃
素ガスの分圧が非常に高いため、沃化物の分圧は
低くおさえられているので各沃化物の分圧で精製
塔9内の温度が析出温度以下の沃化物しか析出し
ない。大部分の微量不純物沃化物は、その分圧が
非常に低いため析出せず、ガス体のまま未反応沃
素とともに精製塔9の上部から出て行くことで精
製効果が生じる。この精製塔の各部温度は送入ガ
ス組成、沃化ニオブの希望純度、沃化ニオブの許
容損失率により決定される。 未反応沃素と不純物沃化物は、沃素蒸留塔11
に送入されるが、この場合、沃素は液体、ガス体
のどちらで送入しても良い。そして、沃素蒸留塔
11内では、未反応沃素と不純物沃化物は気液平
衡を保ちながら精製され、精製沃素はガス体とし
て、沃素急冷ポツト内に入る。 沃素蒸留塔内の各温度も組成により決定する。 精製された沃素ガスは、冷却された不活性ガス
により急冷され、粉体状にされ再使用される。沃
素急冷ポツトおよび不活性ガス冷却用の冷媒は、
一般の冷媒で良く、限定はしないが通常は−50℃
以下に冷却できる冷媒を使用することにより、よ
り良好な沃素粉末が製造できる。 次に実施例に示す。
The present invention relates to a method for continuous production of niobium iodide.
More specifically, crude niobium metal is continuously supplied to a high temperature section and a large excess of solid iodine is continuously supplied to a low temperature section, and the niobium metal and iodine gas are reacted in the high temperature section to continuously generate iodide at a high rate. At the same time, by controlling the temperature of the collector, niobium iodide and trace impurity iodide are purified and separated by utilizing the precipitation temperature difference, and unreacted iodine is simultaneously purified in a distillation column connected to the reaction system.
This invention relates to a continuous, high-speed production system for high-purity niobium iodide that enables completely closed production of iodine by quenching it with an inert gas, recovering it as high-purity iodine powder that is easy to handle, and reusing it. Conventionally, metal iodides have generally been produced by a fluidized method or a closed method, but these methods have had the following drawbacks. Both the flow method and the sealed method are batch methods, which are not suitable for continuous production, and the production rate is very slow (about 10 to 24 hours are required to produce about 200 g). A separate purification step was required to further improve the purity of the produced iodide. Moreover, in distillation purification, iodides generally decompose at low temperatures when not in an iodine atmosphere and become nonvolatile lower iodides, so the above purification steps had to be carried out at low temperatures below the decomposition temperature of 200°C or under reduced pressure. Higher iodides were difficult to produce using the normal fluidization method. If unreacted iodine were recovered using a conventional trap, it would contain many impurities and would become an ingot, which would be extremely difficult to handle, and would require a separate iodine purification step. In addition, it was necessary for iodine to be completely closed for safety and health reasons. The purpose of the present invention is to easily obtain high-purity iodide used in the iodide thermal decomposition method as a means of obtaining high-purity metals. This eliminates the drawbacks of That is, in the present invention, crude metal niobium and iodine are continuously fed through a feeder (especially for iodine with poor fluidity, an electromagnetic feeder set in a closed chamber is preferable) and reacted.
The generated iodide is purified directly in the collector at normal pressure and low temperature due to the difference in precipitation temperature, and unreacted iodine is purified in a distillation column connected to the reaction system, and then rapidly cooled with a cooling inert gas. The present invention provides a method for continuously producing high-purity niobium iodide by recovering it as high-purity powdered iodine that is easy to handle and reusing it in the reaction system, thereby achieving a completely closed iodine system. The present invention provides a high-speed, continuous production apparatus for high-purity niobium iodide that eliminates all of the conventional problems at once. Next, the present invention will be specifically explained with reference to the accompanying drawings and examples. FIG. 1 shows an example of an apparatus for implementing the present invention. In the figure, 1 is an iodine pot for replenishment, which supplies consumed iodine as iodide. The iodine reservoir 2 is a sealed iodine feeder (for example, an electromagnetic feeder), which quantitatively supplies powdered iodine into the iodine vaporizer 4. The gaseous iodine here is sent to the reactor 5, supplied quantitatively from the crude niobium metal pot 6, and reacts with the crude niobium metal falling into the mezzara 7 to produce niobium iodide. The produced niobium iodide is 9
Only purified niobium iodide is collected in the collection pot for niobium iodide (No. 8), and unreacted iodine and impurity iodide enter the iodine distillation tower (No. 11) to collect impurities. Iodide enters pot 10 and purified iodine gas enters iodine quench trap 12 which is cooled by a refrigerant. Here, the iodine gas is rapidly cooled by an inert gas cooled by the cooler 13, turned into powder, and fed back to the iodine reservoir pot 2. High-purity niobium iodide is produced in conjunction, and the iodine is also safely closed. be converted into More specifically, the entire system is evacuated to 10 -2 tprr or less,
Deaeration and dehydration are performed by heating to approximately 300℃ or higher and holding it for a long time. Next, an appropriate amount of iodine is supplied to an iodine vaporizer heated above its boiling point to create an iodine atmosphere in the entire system. Furthermore, after each part reaches a predetermined temperature, crude niobium metal is provided and iodinated. By the way, regarding the reaction temperature, the iodination reaction of crude niobium metal increases rapidly at temperatures above 300°C.
There is no particular restriction as long as it is above 300℃, but usually 400℃
~600℃ is adopted. The produced iodide enters the purification column 9 in gaseous form, but at this time, the partial pressure of excess iodine gas is extremely high, so the partial pressure of iodide is kept low, so that each iodide is Only iodides whose temperature in the purification column 9 is below the precipitation temperature are precipitated by partial pressure. Most of the trace impurity iodide does not precipitate because its partial pressure is very low, and leaves from the upper part of the purification column 9 along with unreacted iodine as a gas, thereby producing a purification effect. The temperature of each part of this purification column is determined by the composition of the fed gas, the desired purity of niobium iodide, and the allowable loss rate of niobium iodide. Unreacted iodine and impurity iodide are transferred to the iodine distillation column 11.
In this case, iodine may be introduced in either liquid or gas form. In the iodine distillation column 11, unreacted iodine and impurity iodide are purified while maintaining vapor-liquid equilibrium, and the purified iodine enters the iodine quenching pot as a gas. Each temperature within the iodine distillation column is also determined by the composition. The purified iodine gas is rapidly cooled with a cooled inert gas, pulverized, and reused. The refrigerant for iodine quench pot and inert gas cooling is
Any general refrigerant may be used, although there are no limitations, usually -50℃
By using a refrigerant that can be cooled below, better iodine powder can be produced. Examples are shown below.

【表】 上記した条件のもとで製造した沃化ニオブおよ
び沃素の精製効果を以下に示す。
[Table] The purification effects of niobium iodide and iodine produced under the above conditions are shown below.

【表】 また生成した沃化ニオブの沃素結合度を以下に
示す。
[Table] The iodine bonding degree of the produced niobium iodide is shown below.

【表】 以上のように本発明の利点は、 高純度沃化物を連続で製造できる。 生成沃化物を同時蒸留でき、得られた沃化物
は非常に高級沃化物である。 未反応沃素も同時蒸留でき、粉体となつて回
収、フイードバツクされることで完全クローズ
ド化された。 などであり、これらにより沃化物生成速度は飛躍
的に向上し、沃素Lossも最小限となり、生産
性・経済性ともに大きく改善された。
[Table] As described above, the advantages of the present invention are that high purity iodide can be produced continuously. The iodide produced can be co-distilled and the iodide obtained is a very high iodide. Unreacted iodine can also be distilled at the same time, and the process is completely closed as it is recovered as a powder and fed back. As a result, the iodide production rate was dramatically improved, iodine loss was minimized, and both productivity and economic efficiency were greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

図−1は、本発明を実施する装置の一実施態様
を示す図で、図中1は補充用沃素ダメ、2は沃素
ダメ、3は沃素仕込器、4は沃素気化器、5は目
皿、6は反応器、7は金属ニオブポツト、8は沃
化ニオブ捕集ポツト、9は沃化ニオブ精製塔、1
0は不純物沃化物捕集ポツト、11は沃素蒸留
塔、12は沃素冷却器、13は不活性ガス冷却器
を夫々示す。
Figure 1 is a diagram showing one embodiment of the apparatus for implementing the present invention, in which 1 is a supplementary iodine tank, 2 is an iodine tank, 3 is an iodine charger, 4 is an iodine vaporizer, and 5 is a perforated plate. , 6 is a reactor, 7 is a metal niobium pot, 8 is a niobium iodide collection pot, 9 is a niobium iodide purification tower, 1
0 is an impurity iodide collection pot, 11 is an iodine distillation column, 12 is an iodine cooler, and 13 is an inert gas cooler.

Claims (1)

【特許請求の範囲】[Claims] 1 金属粗ニオブと過剰沃素を連続的に反応系に
供給して沃化ニオブとし、生成した沃化ニオブは
捕集器の温度制御により不純物沃化物と沃化ニオ
ブとに分離し、さらに反応系より排出した未反応
沃素ガスは反応系に連結された蒸留塔により蒸留
し、精製沃素ガスは断熱膨張及び/又は冷却ガス
と接触させることより粉化し、反応系で再使用
し、連続的に高純度沃化ニオブを製造することを
特徴とする高純度沃化ニオブの製造方法。
1 Metallic crude niobium and excess iodine are continuously supplied to the reaction system to produce niobium iodide, and the generated niobium iodide is separated into impurity iodide and niobium iodide by temperature control in a collector, and then further added to the reaction system. The unreacted iodine gas discharged from the reactor is distilled in a distillation column connected to the reaction system, and the purified iodine gas is pulverized by adiabatic expansion and/or contact with cooling gas, and reused in the reaction system to continuously increase the A method for producing high-purity niobium iodide, characterized by producing high-purity niobium iodide.
JP6106184A 1984-03-30 1984-03-30 Continuous production of high-purity niobium iodide Granted JPS60204619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6106184A JPS60204619A (en) 1984-03-30 1984-03-30 Continuous production of high-purity niobium iodide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6106184A JPS60204619A (en) 1984-03-30 1984-03-30 Continuous production of high-purity niobium iodide

Publications (2)

Publication Number Publication Date
JPS60204619A JPS60204619A (en) 1985-10-16
JPH044982B2 true JPH044982B2 (en) 1992-01-30

Family

ID=13160274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6106184A Granted JPS60204619A (en) 1984-03-30 1984-03-30 Continuous production of high-purity niobium iodide

Country Status (1)

Country Link
JP (1) JPS60204619A (en)

Also Published As

Publication number Publication date
JPS60204619A (en) 1985-10-16

Similar Documents

Publication Publication Date Title
US3825415A (en) Method and apparatus for the production of liquid titanium from the reaction of vaporized titanium tetrachloride and a reducing metal
CA1099321A (en) Arc heater production of silicon involving alkali or alkaline-earth metals
US2670270A (en) Production of pure dihalides
JPS6259051B2 (en)
CN101263235B (en) Process for the production of germanium by reduction of GeCl4 in a liquid metal
KR101430412B1 (en) Production process for high purity silicon
US4525334A (en) Process for the production of silicon
US3020129A (en) Production of silicon of improved purity
JP2004002138A (en) Method for manufacturing silicon
US4446120A (en) Method of preparing silicon from sodium fluosilicate
CN101628719B (en) Method for removing phosphorus impurities in silicon by vacuum induction melting
CA1276072C (en) Process for producing niobium metal of an ultrahigh purity
US2807574A (en) Treatment of unreacted ammonia in the manufacture of urea
Zong et al. One-step synthesis of high-purity Li2BeF4 molten salt
US4290804A (en) Method for producing magnesium
JPH05262512A (en) Purification of silicon
JPH044982B2 (en)
JPH0480331A (en) Manufacture of nb-zr alloy
US3484440A (en) Process for producing high purity melamine
US2830894A (en) Production of uranium
US2927853A (en) Method and apparatus for producing spectrally pure gallium
JPH10139415A (en) Solidification and purification of molten silicon
US2956872A (en) Preparation of refractory metals
US3856511A (en) Purification of crude aluminum
JPH0526726B2 (en)