JPH0449689A - Strain quantum well semiconductor laser - Google Patents

Strain quantum well semiconductor laser

Info

Publication number
JPH0449689A
JPH0449689A JP16010890A JP16010890A JPH0449689A JP H0449689 A JPH0449689 A JP H0449689A JP 16010890 A JP16010890 A JP 16010890A JP 16010890 A JP16010890 A JP 16010890A JP H0449689 A JPH0449689 A JP H0449689A
Authority
JP
Japan
Prior art keywords
well
quantum well
layer
lattice constant
grown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16010890A
Other languages
Japanese (ja)
Other versions
JP2712767B2 (en
Inventor
Hirohito Yamada
博仁 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2160108A priority Critical patent/JP2712767B2/en
Publication of JPH0449689A publication Critical patent/JPH0449689A/en
Application granted granted Critical
Publication of JP2712767B2 publication Critical patent/JP2712767B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the overflow of electrons, to execute a uniform carrier injection operation and to obtain a strain quantum well laser whose gain spectrum is sharp and whose threshold value is low by a method wherein the lattice constant of a semiconductor forming a well layer is made larger than the lattice constant of a substrate. CONSTITUTION:A strain quantum well semiconductor laser where a semiconductor forming a well layer is composed of InXGa1-XAsYP1-Y or InAsZP1-Z and its lattice constant is larger than the lattice constant of a substrate is formed. X, Y and Z are set as 0<=X,Y, and Z<=1. Its manufacturing method is as follows: an n-InP buffer layer 14 is grown in 0.1mum on an n-InP substrate 15 by an MOVPE method; then, an InGaAsP barrier 12 is grown in 1.3mum; and an In0.8 Ga0.2As0.6P0.4 well 13 is grown in 40Angstrom on it. The growth operation of the well and the barrier is repeated five times; and a five-layer multiple quantum well structure is manufactured. In addition, a p-InP clad layer 11 is grown in about 11mum on it. A strain quantum well wafer manufactured in this manner is buried in a DC-PBH structure. Lastly, a p-side electrode and an n-side electrode are vapor-deposited.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は歪量子井戸半導体レーザに関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a strained quantum well semiconductor laser.

(従来の技術) 量子井戸半導体レーザは、通常のバルクの活動層を有す
る半導体レーザに比べて利得スペクトルが急峻になるこ
とから、発振しきい値の低減や高速変調特性の改善が期
待され、光通信等における高性能光源として有望視され
ている。その性能をさらに高める方法として近年歪量子
井戸レーザが提案され、注目を集めている。この歪量子
井戸レーザは、ウェル部分に2軸性の圧縮応力をカワえ
てウェル内で価電子帯のバンド構造を変形(〜、より一
層の低しきい値化などの素子特性の改善を狙ったもので
ある。
(Prior art) Quantum well semiconductor lasers have steeper gain spectra than normal semiconductor lasers with a bulk active layer, so they are expected to reduce the oscillation threshold and improve high-speed modulation characteristics. It is seen as promising as a high-performance light source for communications, etc. In recent years, strained quantum well lasers have been proposed as a method to further improve this performance, and are attracting attention. This strained quantum well laser applies biaxial compressive stress to the well to deform the band structure of the valence band within the well (~, with the aim of improving device characteristics such as lowering the threshold even further). It is something.

従来の1.3〜1.6/im帯長波長歪量子井戸レーザ
ではウェルにIn Ga、xAs3元混晶が用いられて
いるが、この■nxGa1−xAsを用いる歪ウェルで
はIn組成Xを大きくすることにより大きな圧縮歪を加
えることができる。ところがInの組成を大きくすると
同時にウェルのエネルギー・ギャップも小さくなるので
、希望の発振波長を得るためにはウェル幅を/hす<シ
て行かなければならない。例えば1.55μm帯歪量子
井戸子弁ザで歪を約1.5%加える場合にはInの組成
Xはx=0.75となり、このときウェル幅は25人と
非常に小さくなる。この様にウェルの幅が非常に小さく
なると、ウェルとバリヤのへテロ界面での原子層ステッ
プの影響を顕著に受けるようになるため、ゲインスペク
トルが広がり、ピーク利得の低下を招いてしまう。
In conventional 1.3-1.6/im band long-wavelength strained quantum well lasers, a ternary mixed crystal of InGa and xAs is used in the well, but in this strained well using nxGa1-xAs, the In composition By doing so, a large compressive strain can be applied. However, as the In composition increases, the well energy gap also decreases, so in order to obtain the desired oscillation wavelength, the well width must be increased by /h. For example, when a strain of about 1.5% is applied using a 1.55 μm band strained quantum well valve, the In composition X becomes x=0.75, and the well width becomes very small at this time by 25 people. When the width of the well becomes extremely small in this way, the gain spectrum is broadened and the peak gain is reduced because the well is significantly influenced by the atomic layer step at the hetero interface between the well and the barrier.

また従来の歪InGaAsウェル/InGaAsPバリ
ヤの歪量子井戸レーザでは、電子に対する閉じ込めポテ
ンシャルAEcがホールに対する閉じ込めポテンシャル
ΔEvよりも小さく、高注入時において電子がウェルの
外に漏れる(オーバーフロー)問題と、逆にホールの閉
じ込めが強すぎて異なるウェル間でのホールの注入が不
均一となる問題が生じている。第3図(a)のバンド図
参照。
In addition, in conventional strained quantum well lasers with strained InGaAs wells/InGaAsP barriers, the confinement potential AEc for electrons is smaller than the confinement potential ΔEv for holes, resulting in the problem of electrons leaking out of the well (overflow) during high injection. A problem has arisen in which hole confinement is too strong and hole injection becomes non-uniform between different wells. See the band diagram in FIG. 3(a).

(発明が解決しようとする課題) 本発明の目的はこのような従来型の歪量子井戸半導体レ
ーザの欠点を除去せしめて、ゲインスペクトルがシャー
プで、電子のオーバーフローが少なく、なおかつ均一な
キャリヤの注入状態が実現できる歪量子井戸半導体レー
ザを提供することにある。
(Problems to be Solved by the Invention) The purpose of the present invention is to eliminate the drawbacks of the conventional strained quantum well semiconductor laser, and to provide a laser with a sharp gain spectrum, less electron overflow, and uniform carrier injection. The object of the present invention is to provide a strained quantum well semiconductor laser that can realize the following states.

(課題を解決するための手段) 本発明によるInPを基板、InGaAsPをバリヤ層
として用いる歪量子井戸半導体レーザにおいて、ウェル
層を形成する半導体がIn、Ga、−XAs、Pニー、
あるいはInAs P  からなり、その格子定数が基
板の格子  1−z 定数よりも大きいことを特徴とする歪量子井戸半導体レ
ーザによって上記の課題を解決できる。X。
(Means for Solving the Problems) In a strained quantum well semiconductor laser according to the present invention using InP as a substrate and InGaAsP as a barrier layer, the semiconductor forming the well layer may be In, Ga, -XAs, Pne,
Alternatively, the above problem can be solved by a strained quantum well semiconductor laser made of InAs P and characterized in that its lattice constant is larger than the lattice 1-z constant of the substrate. X.

Y、Zは0≦X、Y、z≦1である。Y and Z are 0≦X, Y, z≦1.

(作用) 第2図および第3図(aXb)を用いて本発明の詳細な
説明する。第2図は格子定数とバンドギャップの関係を
示す図で、第3図(aXb)はそれぞれ、従来例と本発
明のバンド図である。
(Function) The present invention will be explained in detail using FIG. 2 and FIG. 3 (aXb). FIG. 2 is a diagram showing the relationship between lattice constant and band gap, and FIG. 3 (aXb) is a band diagram of the conventional example and the present invention, respectively.

本発明による構造では、以下に述べる効果によって素子
特性の改善が期待できる。
The structure according to the present invention can be expected to improve device characteristics due to the effects described below.

1つには、従来のInGaAs歪ウェルにPを加えてI
nGaAsPあるいはInAsPにすると、第2図から
分かるように、同程度の大きさの歪を有する歪InGa
Asよりもエネルギー・ギャップを大きくとることがで
きる。従って2%程度の大きな歪を加える場合でも、I
no7゜Gao28Aso6Po4バリヤでInAso
6P、4ウエルの組成を用いれば、50人程度と大きな
ウェル幅でも1.55□m帯に利得ピークを得る事がで
きる。このようにウェル幅が50人程度と厚ければ、先
にのべた原子層ステップによるゲインスペクトルのブロ
ードニングは無視できる程度となる。
One is to add P to a conventional InGaAs strained well to
When nGaAsP or InAsP is used, as can be seen from Fig. 2, it becomes strained InGa with a similar amount of strain.
It can have a larger energy gap than As. Therefore, even when applying a large strain of about 2%, I
no7゜Gao28Aso6Po4 Barrier InAso
If a 6P, 4-well composition is used, a gain peak can be obtained in the 1.55 □m band even with a large well width of about 50 people. If the well width is as thick as about 50, the broadening of the gain spectrum due to the atomic layer step described above becomes negligible.

さらにInAsPあるいはInGaAsPをウェルに用
いる場合は、ウェルとバリヤ間のエネルギー・ギャップ
の違いは、V族元素であるAsやPといった軽元素より
もむしろIII族InとGaによる組成の違いによって
生じることになる。III + V族化合物半導体はこ
れらの元素がSP混成軌道により共有結合することによ
って結晶が形成されているが、この内III族元素は主
にS軌道を、またV族の元素は主にP軌道を担っている
。一方に−p摂動論によれば、伝導帯の底はSの軌道の
、また価電子帯の頂上付近はP軌道の電子によって形成
されている。従って半導体へテロ接合においてIII族
元素による組成の違いが大きければ伝導帯のエネルギー
差ΔEcが、逆に■族元素による組成の違いが大きけれ
ば価電子帯のエネルギー差ΔEvが大きくなるようなペ
テロ接合が形成される。InAsPあるいはInGaA
sPの歪ウェルを用いる場合には以上のような理由によ
り、第3図(b)に示すように電子に対する閉じ込めポ
テンシャル△Ecを大きく、逆にホールに対する閉じ込
めポテンシャルΔEvを小さくすることができるため、
先に述べた電子のオーバーフローの問題とホール注入の
不均一の問題を同時に解決できる。ちなみに歪Ino、
−t Gao 3Asウエル/Ino7□Gao28A
so6Po4バリヤの場合ΔEcは0.3eV程度の値
になるが、歪InAso6Po4ウェル/InO,72
Ga0.2B””0.6”0.4バリヤの場合△Ecは
0.5eV程度となる。(第3図(aXb)参照) さらに結晶成長の観点から言えば、InGaAs/In
GaAsPのへテロ接合よりもInAsP/InGaA
sPのへテロ接合の方がへテロ界面での組成の急峻な切
り代わりが得られており、良好なポテンシャル構造を有
する量子井戸が得られる。
Furthermore, when InAsP or InGaAsP is used for the well, the difference in energy gap between the well and the barrier is caused by the compositional difference between group III In and Ga rather than light elements such as As and P, which are group V elements. Become. Group III + V compound semiconductors are formed by covalent bonding of these elements through SP hybrid orbitals, and among these, group III elements mainly have S orbitals, and group V elements mainly have P orbitals. is in charge of On the other hand, according to the -p perturbation theory, the bottom of the conduction band is formed by the S orbit, and the vicinity of the top of the valence band is formed by the electrons of the P orbit. Therefore, in a semiconductor heterojunction, if the difference in composition due to group III elements is large, the energy difference ΔEc in the conduction band will be large, and conversely, if the difference in composition due to group II elements is large, the energy difference ΔEv in the valence band will be large. is formed. InAsP or InGaA
When using an sP strain well, for the reasons mentioned above, the confinement potential ΔEc for electrons can be increased and confinement potential ΔEv for holes can be decreased, as shown in FIG. 3(b).
The above-mentioned problem of electron overflow and non-uniformity of hole injection can be solved at the same time. By the way, Tsuru Ino,
-t Gao 3As well/Ino7□Gao28A
In the case of the so6Po4 barrier, ΔEc has a value of about 0.3 eV, but in the case of the strained InAso6Po4 well/InO, 72
In the case of Ga0.2B""0.6"0.4 barrier, △Ec is about 0.5eV (see Figure 3 (aXb)) Furthermore, from the viewpoint of crystal growth, InGaAs/In
InAsP/InGaA than GaAsP heterojunction
In the sP heterojunction, a steeper change in composition at the hetero interface is obtained, and a quantum well with a better potential structure can be obtained.

(実施例) 第1図を用いて本発明の実施例について説明する。(Example) An embodiment of the present invention will be described with reference to FIG.

第1図に埋め込み型歪超格子半導体レーザの活性領域部
分の断面図を示す。作製方法はまずn−InP基板15
上にMOVPE法によりn−InPバッファ層14を0
.1.zm成長し、次に1.3.um組成InGaAs
Pバリヤ12を150人成長し、その上にInO,8G
aO,2””0.6”0.4ウエル13を40人成長さ
せる。このウェルとバリヤの成長を5回繰り返して5層
の多重量子井戸構造を作製する。
FIG. 1 shows a cross-sectional view of the active region of a buried strained superlattice semiconductor laser. The manufacturing method begins with an n-InP substrate 15.
An n-InP buffer layer 14 is formed on top by the MOVPE method.
.. 1. zm grow, then 1.3. um composition InGaAs
Grow 150 P barrier 12 and add InO, 8G on top of it.
40 aO,2""0.6"0.4 wells 13 are grown. This well and barrier growth is repeated five times to produce a five-layer multi-quantum well structure.

その上にさらにp−InPクラッド層11を約11□m
成長する。ここでウェルには約1.5%の圧縮応力が加
わっていることになる。このようにして作製した歪量子
井戸ウェハをDC−PBH構造に埋め込み、最後にp側
、n側に電極を蒸着する。
On top of that, a p-InP cladding layer 11 of approximately 11□m
grow up. At this point, a compressive stress of about 1.5% is applied to the well. The strained quantum well wafer thus produced is embedded in a DC-PBH structure, and finally electrodes are deposited on the p-side and n-side.

このレーザを評価したところ、発振しきい値Ith=5
mA、効率1.= 0.28W/A、最大光出力Pma
x=50mW程度の良好な静特性を示した。また内部量
子井戸効率を測定したところ0.95という非常に高い
値が得られた。さらにDFB構造のレーザを試作し、伝
送実験による評価を行った。その結果、歪の効果による
線幅増大係数(αパラメータ)の低減から良好な低チャ
ープ性が得られ、2.5Gbit/see−100km
の伝送にも成功している。
When this laser was evaluated, the oscillation threshold Ith=5
mA, efficiency 1. = 0.28W/A, maximum optical output Pma
It showed good static characteristics with x=about 50 mW. Furthermore, when the internal quantum well efficiency was measured, a very high value of 0.95 was obtained. Furthermore, we prototyped a laser with a DFB structure and evaluated it through transmission experiments. As a result, good low chirp performance was obtained due to the reduction of the linewidth increase coefficient (α parameter) due to the effect of distortion, and a speed of 2.5 Gbit/see-100 km was obtained.
transmission has also been successful.

本実施例では歪ウェル層のInの組成を0.8としたが
、Inの組成をさらに大きくして歪InAsPウェルに
することによってその効果はより一層顕著になるが、J
、W、Matthewsらがジャーナル・オブ・クリス
タル・グロウス(Journal of Crysta
l Growth) Vol、27. pH8において
計算しているクリティカル・レイヤー・シツクネスで与
えられる条件に近付くと逆に悪くなる。この他に1.1
5μm組成のバリヤ層でも同様の試作を行ない、同様に
良好な特性の素子が得られている。
In this example, the In composition of the strained well layer was set to 0.8, but by increasing the In composition to form a strained InAsP well, the effect becomes even more remarkable.
, W. Matthews et al. in the Journal of Crystal Growth.
Growth) Vol, 27. On the contrary, it gets worse as it approaches the condition given by the critical layer thickness calculated at pH 8. In addition to this, 1.1
A similar trial production was conducted using a barrier layer having a composition of 5 μm, and a device with similarly good characteristics was obtained.

(発明の効果) 本発明によれば電子のオーバーフローを解消し、均一な
キャリア注入ができ、利得スペクトルがシャープな低し
きい値歪量子井戸レーザが得られる。
(Effects of the Invention) According to the present invention, it is possible to obtain a low threshold strain quantum well laser that eliminates electron overflow, enables uniform carrier injection, and has a sharp gain spectrum.

本発明の歪量子井戸半導体レーザでは、従来の歪量子井
戸レーザの特性が歪みが大きくなるにつれて論理的に予
測される値を大きく下回るようになり、期待した程の特
性の改善が得られていない問題に関して一つの打開策を
与えることができ、幹線系光通信での大容量直接検波系
およびコヒーレント検波系の高性能光源として幅広い応
用が期待できる。
In the strained quantum well semiconductor laser of the present invention, the characteristics of the conventional strained quantum well laser become much lower than logically predicted values as the strain increases, and the characteristics are not improved as much as expected. This provides a solution to the problem, and is expected to find wide application as a high-performance light source for large-capacity direct detection systems and coherent detection systems in trunk optical communications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構造図、第2図および
第3図は本発明の原理を示す図であり、第2図は格子定
数とバンドギャップの関係を示す図、第3図(a)は従
来例のバンド図、第3図(b)は本発明の実施例のバン
ド図である。 図において、11・・・p−InPクラッド層、12・
・・1.3μm組成InGaAsPバリヤ層、13・・
・Ino8Gao2Aso6Po4n上8Gao4n−
InPバッファ層、15・n−InP基板。
FIG. 1 is a structural diagram showing one embodiment of the present invention, FIGS. 2 and 3 are diagrams showing the principle of the present invention, FIG. 2 is a diagram showing the relationship between lattice constant and band gap, and FIG. FIG. 3(a) is a band diagram of a conventional example, and FIG. 3(b) is a band diagram of an embodiment of the present invention. In the figure, 11...p-InP cladding layer, 12...
...1.3 μm composition InGaAsP barrier layer, 13...
・Ino8Gao2Aso6Po4n8Gao4n-
InP buffer layer, 15·n-InP substrate.

Claims (1)

【特許請求の範囲】[Claims] InPを基板、InGaAsPをバリヤ層として用いる
歪量子井戸半導体レーザにおいて、ウェル層を形成する
半導体がIn_xGa_1_−_XAs_yP_1_−
_yあるいはInAs_zP_1_−_zからなり、そ
の格子定数が基板の格子定数よりも大きいことを特徴と
する歪量子井戸半導体レーザ。
In a strained quantum well semiconductor laser using InP as a substrate and InGaAsP as a barrier layer, the semiconductor forming the well layer is In_xGa_1_-_XAs_yP_1_-
A strained quantum well semiconductor laser made of _y or InAs_zP_1_-_z, characterized in that its lattice constant is larger than the lattice constant of the substrate.
JP2160108A 1990-06-19 1990-06-19 Strained quantum well semiconductor laser Expired - Lifetime JP2712767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2160108A JP2712767B2 (en) 1990-06-19 1990-06-19 Strained quantum well semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2160108A JP2712767B2 (en) 1990-06-19 1990-06-19 Strained quantum well semiconductor laser

Publications (2)

Publication Number Publication Date
JPH0449689A true JPH0449689A (en) 1992-02-19
JP2712767B2 JP2712767B2 (en) 1998-02-16

Family

ID=15708028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2160108A Expired - Lifetime JP2712767B2 (en) 1990-06-19 1990-06-19 Strained quantum well semiconductor laser

Country Status (1)

Country Link
JP (1) JP2712767B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH057054A (en) * 1991-06-26 1993-01-14 Hikari Gijutsu Kenkyu Kaihatsu Kk Strain quantum well semiconductor laser device and fabrication method of strain quantum well structure
JPH06342959A (en) * 1993-03-12 1994-12-13 Matsushita Electric Ind Co Ltd Multiple quantum well semiconductor laser and optical communication system using the same
WO1995015022A1 (en) * 1993-11-24 1995-06-01 The Furukawa Electric Co., Ltd. Semiconductor optical element
JP2021034497A (en) * 2019-08-22 2021-03-01 株式会社東芝 Semiconductor light-emitting device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02130988A (en) * 1988-11-11 1990-05-18 Furukawa Electric Co Ltd:The Quantum well semiconductor laser element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02130988A (en) * 1988-11-11 1990-05-18 Furukawa Electric Co Ltd:The Quantum well semiconductor laser element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH057054A (en) * 1991-06-26 1993-01-14 Hikari Gijutsu Kenkyu Kaihatsu Kk Strain quantum well semiconductor laser device and fabrication method of strain quantum well structure
JPH06342959A (en) * 1993-03-12 1994-12-13 Matsushita Electric Ind Co Ltd Multiple quantum well semiconductor laser and optical communication system using the same
WO1995015022A1 (en) * 1993-11-24 1995-06-01 The Furukawa Electric Co., Ltd. Semiconductor optical element
US5739543A (en) * 1993-11-24 1998-04-14 The Furukawa Electric Co., Ltd. Optical semiconductive device with inplanar compressive strain
JP2021034497A (en) * 2019-08-22 2021-03-01 株式会社東芝 Semiconductor light-emitting device

Also Published As

Publication number Publication date
JP2712767B2 (en) 1998-02-16

Similar Documents

Publication Publication Date Title
US5544188A (en) Semiconductor laser device having a high emission efficiency and a large modulation bandwidth
US4794611A (en) Semiconductor laser having superlattice structure
JP3129779B2 (en) Semiconductor laser device
JP2724827B2 (en) Infrared light emitting device
JP4664725B2 (en) Semiconductor laser element
JPH0661570A (en) Strain multiple quantum well semiconductor laser
JPH0143472B2 (en)
US5107514A (en) Semiconductor optical element
JP2933051B2 (en) Multiple quantum well structure optical semiconductor device and method of manufacturing the same
EP0549103B1 (en) A semiconductor laser device
JP2969979B2 (en) Semiconductor structures for optoelectronic components
US5644587A (en) Semiconductor laser device
JPS60260181A (en) Semiconductor luminescent device
US8213477B2 (en) Semiconductor laser and method of manufacturing the same
JPH08255950A (en) Semiconductor laser
JPH0449689A (en) Strain quantum well semiconductor laser
JP3288283B2 (en) Multiple quantum well structure and optical modulator having the same
JPH0677592A (en) Semiconductor laser element
JP2937460B2 (en) Quantum well structure optical device
US5170404A (en) Semiconductor laser device suitable for optical communications systems drive
Kapon et al. Lateral patterning of semiconductor superlattice heterostructures by epitaxial growth on nonplanar substrates
US5539762A (en) Article comprising a semiconductor laser with carrier stopper layer
JPH1117284A (en) Semiconductor laser element
JP3033333B2 (en) Semiconductor laser device
JPH0449688A (en) Strain barrier quantum well semiconductor laser

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071031

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 13