JPH0449569B2 - - Google Patents

Info

Publication number
JPH0449569B2
JPH0449569B2 JP58176966A JP17696683A JPH0449569B2 JP H0449569 B2 JPH0449569 B2 JP H0449569B2 JP 58176966 A JP58176966 A JP 58176966A JP 17696683 A JP17696683 A JP 17696683A JP H0449569 B2 JPH0449569 B2 JP H0449569B2
Authority
JP
Japan
Prior art keywords
aromatic polyester
wholly aromatic
weight
parts
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58176966A
Other languages
Japanese (ja)
Other versions
JPS6069132A (en
Inventor
Wataru Funakoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP17696683A priority Critical patent/JPS6069132A/en
Publication of JPS6069132A publication Critical patent/JPS6069132A/en
Priority to JP20240790A priority patent/JPH0395231A/en
Publication of JPH0449569B2 publication Critical patent/JPH0449569B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明は、倚次元配向䜓の補造に適した新芏な
党芳銙族ポリ゚ステル組成物及びそれを補造する
する方法に関する。 埓来の技術 埓来から、ポリパラオキシペンゟ゚ヌト、
ポリ−プニレンテレフタレヌト等の党芳
銙族ポリ゚ステルが高ダング率、高耐薬品性の高
性胜成圢品を賊圢するこずは知られおいる。 しかしながら、これらのポリマヌは融点が分解
枩床よりはるかに高いため、溶融成圢ははもずよ
り、延䌞プロセスにより倚次元配向䜓を補造する
こずは極めお困難であり、実質的に䞍可胜であ
る。 そこで、溶融成圢可胜な党芳銙族ポリ゚ステル
ずしお䟋えば
INDUSTRIAL APPLICATION FIELD The present invention relates to a novel wholly aromatic polyester composition suitable for producing a multidimensionally oriented body and a method for producing the same. Conventional technology Traditionally, poly(paraoxypenzoate),
It is known that wholly aromatic polyesters such as poly(p-phenylene terephthalate) form high performance molded articles with high Young's modulus and high chemical resistance. However, since the melting point of these polymers is much higher than the decomposition temperature, it is extremely difficult and virtually impossible to produce a multidimensionally oriented body not only by melt molding but also by a stretching process. Therefore, as a fully aromatic polyester that can be melt-molded, for example,

【匏】【formula】

【匏】〔ビスプノヌル〕の劂き 繰り返し構造で、䞻鎖内郚に屈曲点を倚数有する
非晶性あるいは半結晶性の党芳銙族ポリ゚ステル
の研究がも぀ぱら行なわれお来た。しかしこれら
の非晶性、半結晶性の党芳銙族ポリ゚ステルから
は、本発明の目的ずするが劂き高性胜の配向䜓は
埗られない。䟋えば繊維あるいはフむルムのダン
グモゞナラスは、高々100デニヌルあるい200
〜300Kgmm2皋床の倀を持぀にすぎない。 近幎、特開昭50−157619号、特開昭50−158695
号においお、ポリマヌ分子鎖の盎線性を極力維持
し、棒状剛盎性をできるだけ保持しながら、共重
合や巊右非察象モノマヌや非盎線性モノマヌの䜿
甚により、完党な結晶栌子を取りがたく、融点を
䜎䞋させるこずにより溶融状態に斌お光孊的異方
性融液を圢成する党芳銙族ポリ゚ステル、曎には
該党芳銙族ポリ゚ステルを溶融圢成し、埗られた
成圢品を熱凊理するこずにより性胜を向䞊せしめ
る方法が提案された。 この提案以来、溶融時、光孊的異方性融液の圢
成胜を有する新芏組成の党芳銙族ポリ゚ステルが
極めお倚数提案されおおり、さらにこれらの党芳
銙族ポリ゚ステルより異方性融液の特性を利甚し
おの溶融成圢による高性胜の配向成圢品が提案さ
れおいる。 溶融時光孊的異方性融液圢成胜を持぀党芳銙族
ポリ゚ステルは、剪断力䞋あるいは䌞長流動䞋、
容易にか぀高床に配向した融液を䞎え、該融液を
固化、さらに結晶化せしめる事により、高床に配
向した成圢品を䞎える。 かかる性質は、䞀次元配向䜓の高性胜化には極
めお有利に䜜甚するが、より高次元の配向䜓の補
造にはむしろ逆の䜜甚に働く。 すなわち、次元配向䜓を目的ずしお、溶融
時、異方性融液圢成胜を有する党芳銙族ポリ゚ス
テルを溶融抌出しによりシヌトあるいはフむルム
状に成圢した堎合、分子鎖は流れ芳銙に沿぀お䞊
んでしたい、その結果埗られるフむルム又はシヌ
トに斌おは盎行する぀の軞方向の物性に倧きな
差がでおしたう。このような物性のバラツキをな
くすために、ラミネヌト等の手段をずるペヌロ
ツパ特蚱第72210号公開明现曞あるいはペヌロ
ツパ特蚱出願第24494号公開明现曞、米囜特蚱第
4333907号明现曞に開瀺されおいる劂く溶融抌出
物を抌出した盎埌に抌出し方向及びこれず盎亀方
向に1.5倍以䞊延䌞するこずを基本ずする方法が
提案されおいるが、この提案においおも優れた均
䞀性を有するフむルムを補造するには極めお制限
された条件を維持しなければならない。 かかる䞍利益にもかかわらず、溶融時異方性融
液を䞎える皮々の党芳銙族ポリ゚ステルが、䞊蚘
特開昭50−157619号、特開昭50−158695号以来、
極めお倚数提案されおいるのは、(1)溶融成圢ずい
う極めお効率的な方法で成圢品を補造しうるずい
う工業的芋地からの利点のみならず、(2)溶融時異
方性融液成圢胜を持぀党芳銙族ポリ゚ステルが、
溶融時等方性融液を圢成する党芳銙族ポリ゚ステ
ルに比しお、より剛盎な分子鎖を有し、その結果
ずしお異方性融液から埗られる成圢品䟋えば繊
維の方が、等方性融液しか䞎えないポリ゚ステ
ルから埗られた成圢品に比しお、皮々の物性䟋え
ばダング率等に代衚される機械的物性が優れたも
のずなるペヌロツパ特蚱出願第70539号公開明
现曞ず考えられおいるためであろう。 䞊述の問題点を解決するために、䟋えば溶融時
光孊的意異方性融液成圢胜を有する党芳銙族ポリ
゚ステルず䜎分子量化合物ずを混合しお光孊的に
等方性融液を䞎える組成物を補造し、異方性融液
の持぀自己配向性、特に流れの方向にそ぀おの自
発的配向をさけ぀぀、溶融抌出成圢する事によ
り、実質的に無配向の未遠延䌞フむルムを埗、次
いでこれを延䌞する方法により、光孊的に異方性
融液を圢成するポリ゚ステルから実質的に軞延
䌞されたフむルムを補造する方法及び該フむルム
が提案されおいる。ペヌロツパ特蚱出願第70539
号公開明现曞 この方法で埗られた軞延䌞フむルムの物性倀
は、䜎分子量化合物を甚いるこずなしに光孊的異
方性融液を溶融抌出成圢したフむルムに比べお、
盎亀する軞にそ぀おの機械的、熱的物性倀及び
そのバランス等きわめおすぐれたものずな぀おい
る。しかしながら、これらの物性倀及びそのバラ
ンスは未だ十分満足のいくものずはな぀おいな
い。この原因ずしおは、圓時公知の光孊的異方性
融液成圢性の党芳銙族ポリ゚ステルが本質的に高
性胜を発揮するには未だ十分でない分子構造であ
るか、あるいはかかる党芳銙族ポリ゚ステルの等
方性融液を䞎える組成物が十分バランスのずれた
物性倀を有するフむルムを䞎えるに十分か぀均䞀
な未配向未延䌞フむルムを賊圢するには未だ十分
でないためであるず掚枬される。 発明の目的 本発明は、高性胜ず機械的、熱的、化孊的性質
を有し、しかも盎亀する軞にそ぀おのバランス
のずれた物性を瀺す倚次元配向䜓䟋えば軞配
向フむルムを補造するに適した溶融異方性を瀺
さない党芳銙族ポリ゚ステルの組成物及びそれを
補造する方法を提䟛するこずを目的ずするもので
ある。 発明の構成 䞊述の目的は、䞋蚘の本発明の組成物及びその
補造法によ぀お達成される。 (A) プノキシテレフタル酞成分ず芳銙栞に結合
しおいる個のヒドロキシ基が互いに逆方向ぞ
の鎖䌞長性でか぀同軞あるいは平行軞の䜍眮に
ある芳銙族ゞヒドロキシ化合物ずの゚ステル結
合を䞻たる繰返し結合ずする実質的に線状の党
芳銙族ポリ゚ステルであ぀お、固有粘床が1.0
以䞊であり、か぀該党芳銙族ポリ゚ステル60重
量郚ず4′−ビス−プニルプノキ
シゞプニルスルホン40重量郚の混合物ずし
お枬定した380℃での溶融粘床剪断速床γ
100sec-1が1000ポむズ以䞊である党芳銙族ポ
リ゚ステル100重量郚、及び䞋蚘匏で衚わされ
る化合物であ぀お䞊蚘党芳銙族ポリ゚ステルに
察しお実質的に非反応性でありか぀分子量1000
以䞋の高沞点䜎分子量化合物〜400重量郚よ
りなる党芳銙族ポリ゚ステル組成物。 Ar−−Ar ここでArは䟡の芳銙族基、は−SO2−
たたは−CO−である。 (B) プノキシテレフタル酞成分ず芳銙栞に結合
しおいる個のヒドロキシ基が互いに逆方向ぞ
の鎖䌞長性でか぀同軞あるいは平行軞の䜍眮に
ある芳銙族ゞヒドロキシ化合物ずを反応させ
お、実質的に線状の党芳銙族ポシ゚ステルを補
造するに際し、重合系に、䞋蚘匏で衚わされる
化合物であ぀お生成する党芳銙族ポリ゚ステル
に察しお実質的に非反応性でありか぀分子量
1000以䞋の高沞点䜎分子量化合物を該党芳銙族
ポリ゚ステル100重量郚圓り〜400重量郚の割
合で共存せしめお溶融重瞮合反応を行い、固有
粘床が1.0以䞊であり、か぀該党芳銙族ポリ゚
ステル60重量郚ず4′−ビス−プニル
プノキシゞプニルスルホン40重量郚の混
合物ずしお枬定した380℃での溶融粘床剪断
速床γ100sec-1が1000ポむズ以䞊である党
芳銙族ポリ゚ステルを含む組成物を圢成せしめ
るこずを特城ずする党芳銙族ポリ゚ステル組成
物の補造法。 Ar−−Ar ここでAr、は䞊蚘ず同矩 本発明における酞成分のプノキシテレフタル
酞ずは䞋蚘構造匏 〔ここでは氎玠、クロル、ブロム、炭玠数〜
のアルキルたたはプニルである〕 で衚わされる化合物である。䞊蚘構造匏䞭のず
しおの炭玠数〜のアルキル基ずしおは、メチ
ル、゚チル、プロピル、ブチル等が䟋瀺されおい
る。 䞊蚘プノキシテレフタル酞の具䜓䟋ずしお
は、プノキシテレフタル酞、クロルプノキシ
テレフタル酞、ブロムプノキシテレフタル酞、
メチルプノキシテレフタル酞、゚チルプノキ
シテレフタル酞等が挙げられる。これらの䞭でも
特にが氎玠であるプノキシフタル酞が奜たし
い。 本発明の党芳銙族ポリ゚ステルは䞊蚘プノキ
シテレフタル酞を䞻たる酞成分ずするが、その他
の芳銙族ゞカルボン酞を小割合共重合されおいお
も良い。これらの具䜓䟋ずしおは、テレフタル
酞、む゜フタル酞、ナフタレンゞカルボン酞、ゞ
プニルゞカルボン酞、ゞプニルスルホンゞカ
ルボン酞、ゞプノキシ゚タンゞカルボン酞、ゞ
プニル゚ヌテルゞカルボン酞、メチルテレフタ
ル酞、メチルむ゜フタル酞等が䟋瀺できる。これ
らの䞭では個のカルボキシル基が互いに同軞あ
るいは平行軞の䜍眮関係でか぀逆方向ぞの鎮延長
性にある芳銙族ゞカルボン酞が奜適に䜿甚され
る。これらの具䜓䟋ずしおは、テレフタル酞、メ
チルテレフタル酞、ナフタレン−ゞカルボ
ン酞、ナフタレン−ゞカルボン酞、ナフタ
レン−ゞカルボン酞、ゞプニル4′−
ゞカルボン酞等を䟋瀺でき、これらの合蚈量は通
垞党酞成分の内20モル以䞋、より奜たしくは10
モル以䞋で甚いる。も぀ずもテレフタル酞は䞊
述の他の芳銙族ゞカルボン酞に比べ倚量に䜿甚し
うる。䜕故なら、通垞異皮の酞を共重合するずポ
リマヌ融点が䜎䞋するが、プノキシテレフタル
酞に察しおテレフタル酞を共重合する堎合にはポ
リマヌ融点を䜎䞋させるこずなく共重合しうるか
らである。䟋えば、ヒドロキシノン−プノキシ
テレフタル酞よりなるポリむマヌの融点は玄330
℃であるが、このポリマヌにテレフタル酞成分を
20モルパヌセント共重合しおもコポリマヌの融点
は䞊蚘ず同䞀である。この堎合50モルパヌセント
をこえお共重合するず、コポリマヌの融点が倧巟
に向䞊しお奜たしくないが、20〜30モルパヌセン
ト共重合する堎合には成圢品、流動性が向䞊し奜
たしい。 本発明におけるゞオキシ成分の、芳銙栞に結合
しおいる個のヒオロキシ基が互いに逆方向ぞの
鎖䌞長性でか぀同軞あるいは平行軞の䜍眮にある
芳銙族ゞヒドロキシ化合物ずしおは、ハむドロキ
ノン、クロルハむドキロキノン、プロムハむドロ
キノン、メチルハむドロキノン、゚チルハむドロ
キノン、−ブチルハむドロキノン、−アミル
ハむロドキノン、−ヘプチルハむドロキノン、
プニルハむドロキノン、ベンゞルハむドロキノ
ン、α−メチルベンゞルハむドロキノン、αα
−ゞメチルベンゞルハむドロキノン、4′−ゞ
ヒドロキシゞプニル、3′−ゞヒドロキシゞ
プニル、−ゞヒドロキシナフタレン、
−ゞヒロキシナフタレン、−ゞヒド
ロキシナフタレン等々が䟋瀺できる。これらの䞭
でハむドロキノン、クロルハむドロキノン、メチ
ルハむドロキノン、−ゞヒドロキシゞプ
ニル、−ゞヒドロキシナフタレン、
−ゞヒドロキシナフタレンが奜たしく䜿甚され
る。特に奜たしくはハむドロキノンである。 本発明の党芳銙族ポリ゚ステルは䞊蚘芳銙族ゞ
ヒドロキシ化合物を䞻たるゞオヌル成分ずする
が、その他の芳銙族ゞヒドロキシ化合物䟋えばレ
ゟルシン、4′−ゞヒドロキシゞプニル゚ヌ
テル、2′−ビス−ヒドロキシプニル
プロパン、−ビス−ヒドロキシプニ
ルシクロヘキサン、−ビス−ヒドロ
キシプノキシ゚タン等々を極く少量でか぀埗
られる成圢品の物性を著しく害しない範囲で共重
合するこずができる。 たた䞊述の成分以倖にも芳銙族オキシカルボン
酞を小割合共重合する事ができる。これらの芳銙
族オキシカルボン酞ずしおは、䟋えば−オキシ
安息銙酞、−オキシゞプニル−4′−カルボ
酞、−クロル−−オキシ安息銙酞、−メト
キシ−−オキシ安息銙酞、−゚トキシ−−
オキシ安息銙酞、−メチル−−オキシ安息銙
酞、−メチル−−オキシ安息銙酞、−プ
ニル−−オキシ安息銙酞、−プニル−−
オキシ安息銙酞、−クロル−−オキシゞプ
ニル−4′−カルボ酞、−ヒドロキシナフタレン
−−カルボン酞等を挙げるこずができる。 本発明の党芳銙族ポリ゚ステルは、䞊述の芳銙
族カルボン酞、芳銙族ゞヒドロキシ化合物、さら
に堎合によ぀おは芳銙族オキシカルボン酞あるい
はこれらの゚ステル成圢性誘導䜓より遞ばれる
皮又は皮以䞊から䞻ずしお成るポリ゚ステル原
料を、䞊蚘原料および生成する党芳銙族ポリ゚ス
テルに察し実質的に非反応性であり䞔぀重瞮合反
応条件䞋で少なくずも留去し難い分子量1000以䞋
の埌述する特定の高沞点䜎分子量化合物の存圚䞋
で、融液状態で重瞮合せしめ、かくしお、䞊蚘原
料を高分子量の党芳銙族ポリ゚ステルに倉換せし
めるこずによ぀お補造するこずができる。 その際、重瞮合はポリマヌの固有粘床が1.0以
䞊ずなりか぀該ポリマヌ60重量郚ず4′−ビス
−プニルプノキシゞプニルスルホン
40重量郚の混合物ずしお枬定した380℃の溶融粘
床剪断速床γ100sec-1が1000ポむズ以䞊ず
なるたで行う。 本発明の党芳銙族ポリ゚ステル成圢甚組成物ず
しおは、䞊蚘方法によ぀お補造される反応生成物
をそのたゝ甚いるこずができる。たた党芳銙族ポ
リ゚ステル成圢甚組成物は党芳銙族ポリ゚ステル
を䞊蚘ず同じ䜎分子量化合物ず溶融混合するこず
によ぀お補造するこずはもちろん可胜であるが、
かかる方法に比范しお䞊蚘方法によれば、党芳銙
族ポリ゚ステルおよび高沞点䜎分子量化合物に負
荷する枩床を倧巟に䜎い枩床ずし埗る点で優れお
いる。 このこずは、第に、䞀般に党芳銙族ポリ゚ス
テルは高い溶融点を有し、しかも溶融点を超える
成圢枩床で熱分解し易いため、党芳銙族ポリ゚ス
テルの熱分解を抑制するこずずなる利点を有する
こずずなるのみならず、第に高分子量の党芳銙
族ポリ゚ステルを、高沞点䜎分子量化合物の非存
圚䞋で重瞮合を実斜する通垞の重瞮合方法におけ
るよりも䜎い重瞮合枩床で補造するずを可胜ず
し、たた同じ重瞮合枩床では、より高重合床の党
芳銙族ポリ゚ステルを補造するこずを可胜ずし、
埓぀お、高枩加熱を必芁ずする特殊な重瞮合反応
装眮は通垞の重瞮合方法を実斜する堎合の劂く、
必ずしも必芁ずしないこずずなる利点をもたら
す。 たた、䞊蚘重合方法によれば、本発明で甚いら
れる䞊蚘高沞点䜎分子量化合物は党芳銙族ポリ゚
ステルの溶融粘床を芋掛け䞊倧巟に䜎䞋せしめ埗
るため、該高沞点䜎分子量化合物の非存圚䞋で重
瞮合を実斜する堎合に比范しお、より速かに重瞮
合反応を進行せしめるこずが可胜ずなりたたより
速かに䞔぀より高分子量の党芳銙族ポリ゚ステル
を補造するこずができる利点がある。 特に本発明の党芳銙族ポリ゚ステルの配向成圢
䜓の機械的、熱的、化孊的性胜を十分発揮せしめ
るためには高分子量すなわち高重合床化のポリ゚
ステルを補造する事が必須であり、その重合床は
䞊述のように固有粘床1.0は必芁である。本発明
の党芳銙族ポリ゚ステルは、䞀般に重合床が䞊昇
する皋、重合床枬定溶媒−クロロプノヌ
ルテトラクロル゚タン6040重量の混合
溶媒に難溶性ずなり、固粘床〜をこえたあ
たりより䞍溶性にな぀おいく。かかる重瞮合床枬
定溶媒に䞍溶になる皋重合床が䞊昇したものは、
本発明の目的の぀ずする倚次元配向䜓に斌お特
に高性胜が発揮される。 䞀般に䞀次元配向䜓の補造に぀いおは比范的䜎
分子量、䜎重合床でも良いが、高性胜を発揮させ
るには固有粘床は少なくずも1.0は必芁であり、
たた4′−ビス−プニルプノキシノゞ
プニルスルホン40重量ずポリ゚ステル60重量
ずの組成物ずしお枬定溶融粘床が380℃におい
おγ100sce1000ポむズ以䞊である必芁が ある。より奜たしくは固有粘床が3.0以䞊であり
か぀䞊蚘溶融粘床が×105以䞊のものである。
さらにたた高次元の配向䜓の高性胜化を目的ずし
た堎合、䞊蚘溶融粘床が×104ポむズ以䞊のも
のが奜たしく䜿甚される。 プノキシテルフタル酞を含有する党芳銙族ポ
リ゚ステルは、米囜特蚱第3723388号明现曞に、
䜎いガラス転移点、䜎い熱倉圢枩床、䜎い溶融粘
床及び䜎い成圢枩床を有するプノキシフタル酞
Amorphous or semi-crystalline wholly aromatic polyesters with a repeating structure such as [Formula] [bisphenol] and many bending points within the main chain have been extensively studied. However, from these amorphous, semicrystalline, wholly aromatic polyesters, it is not possible to obtain a high-performance oriented material as the object of the present invention. For example, the young modulus of a fiber or film is at most 100g/denier or 200g/denier.
It only has a value of ~300Kg/ mm2 . In recent years, JP-A-50-157619, JP-A-50-158695
In this issue, while maintaining the linearity of the polymer molecular chain as much as possible and maintaining the rod-like rigidity as much as possible, we have made it difficult to obtain a perfect crystal lattice by copolymerization and the use of left-right asymmetric monomers and non-linear monomers. A wholly aromatic polyester that forms an optically anisotropic melt in a molten state by lowering the temperature, and a method of improving performance by melt-forming the wholly aromatic polyester and heat-treating the obtained molded product. was suggested. Since this proposal, an extremely large number of wholly aromatic polyesters with new compositions that have the ability to form an optically anisotropic melt when melted have been proposed, and furthermore, these wholly aromatic polyesters have the ability to form optically anisotropic melts. High-performance oriented molded products by melt molding have been proposed. A wholly aromatic polyester that has the ability to form an optically anisotropic melt when melted can be used under shearing force or extensional flow.
By easily providing a highly oriented melt, solidifying and further crystallizing the melt, a highly oriented molded article can be obtained. Although such properties work very advantageously in improving the performance of one-dimensional oriented bodies, they work rather in the opposite way in producing higher-dimensional oriented bodies. In other words, when a wholly aromatic polyester that has the ability to form an anisotropic melt when melted is formed into a sheet or film by melt extrusion for the purpose of making a two-dimensionally oriented body, the molecular chains are arranged along the flow aroma. In the resulting film or sheet, there will be a large difference in physical properties in two orthogonal axial directions. In order to eliminate such variations in physical properties, measures such as lamination are taken (as disclosed in European Patent No. 72210), European Patent Application No. 24494, and U.S. Patent No.
As disclosed in the specification of No. 4333907, a method based on stretching the melt extrudate by 1.5 times or more in the extrusion direction and a direction orthogonal to this immediately after extrusion has been proposed, but this proposal also has an excellent method. Very restrictive conditions must be maintained to produce films with uniformity. Despite these disadvantages, various wholly aromatic polyesters that give an anisotropic melt when melted have been developed since the above-mentioned JP-A-50-157619 and JP-A-50-158695.
An extremely large number of proposals have been made not only because of (1) the industrial advantage of being able to manufacture molded products using the extremely efficient method of melt molding, but also (2) having anisotropic melt molding ability when melted. Fully aromatic polyester
Compared to fully aromatic polyesters, which form an isotropic melt when melted, molded products (e.g. fibers) that have more rigid molecular chains and can be obtained from an anisotropic melt produce only an isotropic melt. This is because it is believed that various physical properties such as Young's modulus and other mechanical properties are superior to molded products obtained from non-polyester (European Patent Application No. 70539). Will. In order to solve the above-mentioned problems, for example, a composition that gives an optically isotropic melt is produced by mixing a wholly aromatic polyester having an optically anisotropic melt forming ability when melted and a low molecular weight compound, A method of obtaining a substantially non-oriented unstretched film by melt extrusion while avoiding the self-orientation property of an anisotropic melt, especially spontaneous orientation along the direction of flow, and then stretching this. proposed a method for producing a substantially biaxially stretched film from polyester that forms an optically anisotropic melt, and the film. (European Patent Application No. 70539
The physical properties of the biaxially stretched film obtained by this method are as compared to a film obtained by melt-extruding an optically anisotropic melt without using a low molecular weight compound.
The mechanical and thermal properties along two orthogonal axes and their balance are extremely excellent. However, these physical property values and their balance are still not fully satisfactory. This may be due to the fact that the optically anisotropic melt-formable fully aromatic polyester known at the time has a molecular structure that is still insufficient to exhibit essentially high performance, or that the isotropic melt-formable polyester of such fully aromatic polyester This is presumed to be due to the fact that the composition that provides the above is not yet sufficient to form an unoriented, unstretched film that is uniform enough to provide a film with well-balanced physical properties. Purpose of the Invention The present invention provides a multidimensionally oriented body (for example, a biaxially oriented film) that has high performance, mechanical, thermal, and chemical properties, and also exhibits well-balanced physical properties along two orthogonal axes. The object of the present invention is to provide a wholly aromatic polyester composition that does not exhibit melt anisotropy and is suitable for producing a polyester, and a method for producing the same. Structure of the Invention The above-mentioned objects are achieved by the composition of the present invention and the method for producing the same as described below. (A) An ester bond between the phenoxyterephthalic acid component and an aromatic dihydroxy compound in which the two hydroxy groups bonded to the aromatic nucleus have chain elongation in opposite directions and are located on the same or parallel axes. A substantially linear wholly aromatic polyester with a main repeating bond and an intrinsic viscosity of 1.0.
and the melt viscosity at 380°C (shear rate γ =
100 parts by weight of a wholly aromatic polyester whose 100sec -1 ) is 1000 poise or more, and a compound represented by the following formula, which is substantially non-reactive with the above wholly aromatic polyester and has a molecular weight of 1000.
A wholly aromatic polyester composition comprising 5 to 400 parts by weight of the following high boiling point, low molecular weight compound. Ar-X-Ar (where Ar is a monovalent aromatic group, X is -SO 2 -
or -CO-. ) (B) Reacting the phenoxyterephthalic acid component with an aromatic dihydroxy compound in which the two hydroxy groups bonded to the aromatic nucleus have chain elongation properties in opposite directions and are coaxial or parallel axes. When producing a substantially linear wholly aromatic polyester, a compound represented by the following formula, which is substantially non-reactive with respect to the produced wholly aromatic polyester, and has a molecular weight of
A melt polycondensation reaction is carried out by coexisting a high boiling point, low molecular weight compound of 1000 or less at a ratio of 5 to 400 parts by weight per 100 parts by weight of the wholly aromatic polyester, and the wholly aromatic polyester has an intrinsic viscosity of 1.0 or more. The melt viscosity at 380°C (shear rate γ = 100 sec -1 ) measured as a mixture of 60 parts by weight and 40 parts by weight of 4,4'-bis(p-phenylphenoxy) diphenylsulfone is 1000 poise or more. 1. A method for producing a wholly aromatic polyester composition, comprising forming a composition containing a certain wholly aromatic polyester. Ar-X-Ar (where Ar and X have the same meanings as above) Phenoxyterephthalic acid, which is an acid component in the present invention, has the following structural formula: [Here, Y is hydrogen, chloro, bromine, carbon number 1-
4 alkyl or phenyl] Examples of the alkyl group having 1 to 4 carbon atoms as Y in the above structural formula include methyl, ethyl, propyl, butyl, and the like. Specific examples of the above phenoxyterephthalic acid include phenoxyterephthalic acid, chlorophenoxyterephthalic acid, bromophenoxyterephthalic acid,
Examples include methylphenoxyterephthalic acid and ethylphenoxyterephthalic acid. Among these, phenoxyphthalic acid in which Y is hydrogen is particularly preferred. The wholly aromatic polyester of the present invention has the above-mentioned phenoxyterephthalic acid as a main acid component, but a small proportion of other aromatic dicarboxylic acids may be copolymerized. Specific examples of these include terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, diphenylsulfonedicarboxylic acid, diphenoxyethanedicarboxylic acid, diphenyl etherdicarboxylic acid, methylterephthalic acid, methylisophthalic acid, etc. I can give an example. Among these, aromatic dicarboxylic acids in which two carboxyl groups are coaxial or parallel to each other and extend in opposite directions are preferably used. Specific examples of these include terephthalic acid, methyl terephthalic acid, naphthalene 1,4-dicarboxylic acid, naphthalene 1,5-dicarboxylic acid, naphthalene 2,6-dicarboxylic acid, diphenyl 4,4'-
Examples include dicarboxylic acids, and the total amount of these is usually 20 mol% or less of the total acid components, more preferably 10
Used in mole% or less. However, terephthalic acid can be used in larger amounts than the other aromatic dicarboxylic acids mentioned above. This is because when different types of acids are copolymerized, the polymer melting point usually decreases, but when terephthalic acid is copolymerized with phenoxyterephthalic acid, the copolymerization can be performed without decreasing the polymer melting point. For example, the melting point of a polyimer made of hydroxynon-phenoxyterephthalic acid is approximately 330.
℃, but if the terephthalic acid component is added to this polymer,
Even with 20 mole percent copolymerization, the melting point of the copolymer is the same as above. In this case, if the copolymerization exceeds 50 mole percent, the melting point of the copolymer will greatly increase, which is undesirable, but if the copolymerization exceeds 20 to 30 mole percent, the molded product and fluidity will improve, which is preferable. Examples of aromatic dihydroxy compounds in which the two hydroxyl groups bonded to the aromatic nucleus of the dioxy component in the present invention have chain elongation properties in opposite directions and are located on the same or parallel axes, such as hydroquinone, chlorhydrochloride, etc. Quinone, promhydroquinone, methylhydroquinone, ethylhydroquinone, t-butylhydroquinone, t-amylhydroquinone, t-heptylhydroquinone,
Phenylhydroquinone, benzylhydroquinone, α-methylbenzylhydroquinone, α, α
-dimethylbenzylhydroquinone, 4,4'-dihydroxydiphenyl, 3,3'-dihydroxydiphenyl, 1,4-dihydroxynaphthalene,
Examples include 1,6-dihydroxynaphthalene and 2,6-dihydroxynaphthalene. Among these, hydroquinone, chlorohydroquinone, methylhydroquinone, 4,4-dihydroxydiphenyl, 1,4-dihydroxynaphthalene, 2,6
-dihydroxynaphthalene is preferably used. Particularly preferred is hydroquinone. The wholly aromatic polyester of the present invention has the above-mentioned aromatic dihydroxy compound as the main diol component, but other aromatic dihydroxy compounds such as resorcinol, 4,4'-dihydroxy diphenyl ether, 2,2'-bis(4-hydroxy phenyl)
Propane, 1,1-bis(4-hydroxyphenyl)cyclohexane, 1,2-bis(4-hydroxyphenoxy)ethane, etc. are added in extremely small amounts and within the range that does not significantly impair the physical properties of the resulting molded product. Can be polymerized. In addition to the above-mentioned components, a small proportion of aromatic oxycarboxylic acid can be copolymerized. Examples of these aromatic oxycarboxylic acids include P-oxybenzoic acid, 4-oxydiphenyl-4'-carboxylic acid, 3-chloro-4-oxybenzoic acid, 3-methoxy-4-oxybenzoic acid, and 3-ethoxybenzoic acid. -4-
Oxybenzoic acid, 2-methyl-4-oxybenzoic acid, 3-methyl-4-oxybenzoic acid, 2-phenyl-4-oxybenzoic acid, 3-phenyl-4-
Examples include oxybenzoic acid, 2-chloro-4-oxydiphenyl-4'-carboxylic acid, and 2-hydroxynaphthalene-6-carboxylic acid. The wholly aromatic polyester of the present invention includes one selected from the above-mentioned aromatic carboxylic acids, aromatic dihydroxy compounds, and in some cases, aromatic oxycarboxylic acids or ester-formable derivatives thereof.
A polyester raw material mainly consisting of a species or two or more species, which is substantially non-reactive with the raw materials and the wholly aromatic polyester to be produced, and which is at least difficult to distill off under polycondensation reaction conditions and has a molecular weight of 1000 or less, specified below. It can be produced by polycondensation in the melt state in the presence of a high boiling point, low molecular weight compound, thereby converting the above raw material into a high molecular weight wholly aromatic polyester. At that time, the polycondensation is carried out so that the intrinsic viscosity of the polymer is 1.0 or more, and 60 parts by weight of the polymer and 4,4'-bis(p-phenylphenoxy) diphenylsulfone are
This is carried out until the melt viscosity at 380°C (shear rate γ = 100 sec -1 ) measured as a 40 parts by weight mixture becomes 1000 poise or more. As the wholly aromatic polyester molding composition of the present invention, the reaction product produced by the above method can be used as is. Although it is of course possible to produce a wholly aromatic polyester molding composition by melt-mixing a wholly aromatic polyester with the same low molecular weight compound as mentioned above,
Compared to such methods, the above method is superior in that the temperature at which the wholly aromatic polyester and the high boiling point low molecular weight compound can be loaded can be significantly lowered. Firstly, since fully aromatic polyesters generally have a high melting point and are easily thermally decomposed at molding temperatures exceeding their melting point, the advantage of suppressing thermal decomposition of fully aromatic polyesters is Not only that, but secondly, high molecular weight fully aromatic polyesters are produced at a lower polycondensation temperature than in conventional polycondensation methods in which polycondensation is carried out in the absence of high-boiling low molecular weight compounds. It also makes it possible to produce fully aromatic polyester with a higher degree of polymerization at the same polycondensation temperature.
Therefore, special polycondensation reactors that require high-temperature heating can be
Provides benefits that you may not necessarily need. Furthermore, according to the above polymerization method, the high boiling point, low molecular weight compound used in the present invention can significantly reduce the apparent melt viscosity of the wholly aromatic polyester, so that in the absence of the high boiling point, low molecular weight compound, Compared to the case where polycondensation is carried out, there is an advantage that the polycondensation reaction can proceed more quickly and that a wholly aromatic polyester having a higher molecular weight can be produced more quickly. In particular, in order to fully demonstrate the mechanical, thermal, and chemical properties of the oriented molded article of fully aromatic polyester of the present invention, it is essential to produce a polyester with a high molecular weight, that is, a high degree of polymerization. As mentioned above, an intrinsic viscosity of 1.0 is required. Generally, as the degree of polymerization increases, the wholly aromatic polyester of the present invention becomes less soluble in the solvent for measuring the degree of polymerization (mixed solvent of p-chlorophenol/tetrachloroethane = 60/40 (by weight)), and has a solid viscosity of 3 to 3. When it exceeds 4, it becomes insoluble. Those whose degree of polymerization has increased to such an extent that they become insoluble in the solvent for measuring the degree of polycondensation,
Particularly high performance is exhibited in a multidimensionally oriented body, which is one of the objects of the present invention. In general, relatively low molecular weight and low degree of polymerization are acceptable for producing one-dimensional oriented materials, but in order to achieve high performance, the intrinsic viscosity must be at least 1.0.
In addition, the melt viscosity measured as a composition of 40% by weight of 4,4'-bis(p-phenylphenoxynodiphenylsulfone and 60% by weight of polyester) is 1000 poise or more at 380°C (γ = 1001/sce). More preferably, the intrinsic viscosity is 3.0 or more and the melt viscosity is 5×10 5 or more.
Furthermore, when the purpose is to improve the performance of a high-dimensional oriented body, those having a melt viscosity of 1×10 4 poise or more are preferably used. A wholly aromatic polyester containing phenoxyterphthalic acid is described in US Pat. No. 3,723,388,
Phenoxyphthalic acid with low glass transition temperature, low heat distortion temperature, low melt viscosity and low molding temperature

【匏】含有の党 芳銙族ポリ゚ステルの぀ずしお蚘茉されおい
る。この米囜特蚱第3723388号明现曞には、通垞
の党芳銙族ポリ゚ステルは高いガラス転移枩床ず
高い熱倉圢枩床を有し、したが぀お高い溶融粘床
を有する。このためフむルムあるいは他の成圢物
を溶融抌出しあるいは射出成圢するためには高枩
床を必芁ずする。さらに、通垞の射出成圢機は
400℃もの高枩では䜜動し埗ないのに察し倚くの
党芳銙族ポリ゚ステルは400℃以䞊の融点を有す
る。これに察しプノキシフタル酞含有の党芳銙
族ポリ゚ステルは優れた溶融成圢性を有し、優れ
た耐熱性、難燃性を有するこずが述べられおい
る。䞊蚘米囜特蚱明现曞に蚘茉されおいる具䜓䟋
を埌掲衚にたずめお瀺しおあるが、いずれも
IV固有粘床が0.57以䞋の、極めお䜎い重合床
の重合䜓であり、本発明の目的ずする固有粘床
1.0以䞊のものは瀺されおおらず、殊にプノキ
シテレフタル酞成分を含む䟋では高々IVは0.57に
しかな぀おいない。このように䜎い重合床のポリ
マヌは䞊蚘米囜特蚱明现曞に蚘茉されおいる目的
に有甚であ぀おも、本発明の目的を満足させるこ
ずができない。このこずは埌掲の衚より明らか
である。
It is described as one of the fully aromatic polyesters containing the formula: The '388 patent teaches that conventional wholly aromatic polyesters have high glass transition temperatures, high heat distortion temperatures, and therefore high melt viscosities. For this reason, high temperatures are required for melt extrusion or injection molding of films or other molded articles. In addition, ordinary injection molding machines
Many wholly aromatic polyesters have melting points above 400°C, whereas they cannot operate at temperatures as high as 400°C. On the other hand, it has been stated that a wholly aromatic polyester containing phenoxyphthalic acid has excellent melt moldability, as well as excellent heat resistance and flame retardancy. Specific examples described in the above US patent specification are summarized in Table 1 below, but none of them
It is a polymer with an extremely low degree of polymerization with an IV (intrinsic viscosity) of 0.57 or less, and the intrinsic viscosity targeted by the present invention is
IV is not shown to be more than 1.0, and in particular, in examples containing phenoxyterephthalic acid components, the IV is only 0.57 at most. Although polymers with such low degrees of polymerization are useful for the purposes described in the above-mentioned US patents, they cannot satisfy the purposes of the present invention. This is clear from Table 2 below.

【衚】【table】

【衚】【table】

〔発明の効果〕〔Effect of the invention〕

本発明の組成物は、溶融重瞮合方法のみによ぀
お埓来埗られなか぀たような高重合床の党芳銙族
ポリ゚ステルを含む組成物ずしお溶融重瞮合法に
より提䟛されるこずから理解できるずおり、同じ
重合床の党芳銙族ポリ゚ステルに぀いお比范する
ず本発明の組成物は党芳銙族ポリ゚ステルそのも
のを溶融成圢する堎合よりも䜎い枩床で成圢する
こずができるかあるいは同じ成圢枩床でも負荷を
小さくしおより容易に成圢するこずができる利点
がある。 たた、本発明の組成物は、䞊蚘のずおり高融点
䜎分子量化合物を含有しおいるから、党芳銙族ポ
リ゚ステルが光孊的異方性溶融物を圢成するもの
であ぀おも、該組成物ずしおは光孊的に等方性で
ある溶融物を圢成するこずができる。 本発明の組成物からは先ず本発明の党芳銙族ポ
リ゚ステル組成物から溶融成圢により未延䌞のフ
むルム状物又は繊維状物が成圢される。 溶融成圢はそれ自䜓䟋えば芳銙族ポリ゚ステル
䟋えばポリ゚チレンテレフタレヌトの溶融圢に甚
いられる装眮を甚い、党芳銙族ポリ゚ステルの溶
融物をスリツトあるいはノズルから抌出すこずに
よ぀お実斜するこずができる。 かくしお埗られた未延䌞のフむルム状物又は繊
維状物は、次いで有機溶剀によ぀おその䞭に含有
される高融点䜎分子量化合物の少くずも䞻たる郚
分を抜出される。有機溶剀による抜出は、未延䌞
のフむルム状物あるいは繊維状物によ぀お行぀お
もよく、あるいは延䌞したのちさらには延䌞しさ
らに熱固定したのち、実斜しおもよい。 有機溶剀による抜出は、該高沞点䜎分子量化合
物を溶解するこずができ䞔぀甚いられた党芳銙族
ポリ゚ステルを抜出条件䞋においお実質的に溶解
しない有機溶剀、奜たしくはさらに呚囲枩床で液
䜓であり䞔぀垞圧での沞点が玄200℃より䜎い有
機溶剀を甚いお行なわれる。 かかる有機溶剀ずしおは、䟋えば炭玠数〜
の芳銙族炭化氎玠、炭玠数又はのハロゲン化
脂肪族炭化氎玠、炭玠数〜の脂肪族ケトンも
しくは脂肪族゚ステル、員又は員の環状の゚
ヌテル又は炭玠数〜の脂肪族アルコヌルが奜
たしく甚いられる。 具䜓的には、䟋えばベンれン、トル゚ン、゚チ
ルベンれン、キシレン、タメン、ブ゜むドクメン
の劂き炭玠数〜の芳銙族炭化氎玠塩化メチ
レン、クロロホルム、ゞクロロ゚タンの劂き炭玠
数又はのハロゲン化脂肪族炭化氎玠アセト
ン、メチル゚チルケトン、メチルむ゜ブチルケト
ンの劂き炭玠数〜の脂肪族ケトンメチルア
セテヌト、゚チルアセテヌト、プロピルアセテヌ
ト、メチルプロピオネヌト、゚チルプロピオネヌ
ト、プロピルプオネヌトの劂き炭玠数〜の脂
肪族゚ステルテトラヒドロフラン、ゞオキサン
の劂き員又は員の環状゚ヌテル又はメタノ
ヌル、゚タノヌル、プロパノヌルの劂き炭玠数
〜の脂肪族アルコヌルを挙げるこずができる。 これらのうち、炭玠数〜の芳銙族炭化氎
玠、炭玠数又はのハロゲン化炭化氎玠又は
員又は員の環状゚ヌテルが特に奜たしく甚いら
れる。 有機溶剀による抜出は、厚さ玄mm以䞋、奜た
しくは玄1Ό〜玄500Όのフむルム状物又は平均盎
埄玄mm以䞋、奜たしくは玄〜玄400Όの繊維
状物に぀いお有利に行なわれる。 有機溶剀による抜出は、緊匵䞋で行うのが奜た
しく、たた呚囲枩床ず䜿甚する有機溶剀の沞点ず
の間の枩床で行なうこずができる。抜出に芁する
最適抜出時間は、䜿甚する有機溶剀、抜出に付さ
れるフむルム状物の厚さあるいは繊維状物の盎
埄、該フむルム状物あるいは繊維状物が含有する
䜎分子量化物の量および抜出枩床等によ぀お異な
る。䞀般的に云えば、䟋えばフむルム状物の厚さ
が薄くなり、繊維状物の盎埄が小さくなりあるい
は抜出枩床が高くなるほど、抜出に芁する最適時
間は短かくなる。 本発明によれば、倚くの堎合数秒ないし時間
皋床で抜出を終了せしめるこずができ、かくしお
含有される高沞点䜎分子量化合物の玄70重量以
䞊、奜たしくは玄80重量以䞊、就䞭玄90重量
以䞊が抜出されたフむルム状物又は繊維状物を埗
るこずができる。 有機溶剀による抜出は、走行しおいるフむルム
状物又は繊維状物を有機溶剀䞭を通過させお行う
こずができ、たた、停止しおいるフむルム状物又
は繊維状物を有機溶剀䞭に浞挬しお行うこずもで
きる。いずれの堎合にも有機溶剀は流動しおいお
もたた静止しおいおもよいが、フむルム状物又
は繊維状物又は有機溶剀の少なくずも䞀方が流
動しおいるのが望たしい。抜出に甚いる有機溶剀
の量は、抜出されるべき高融点䜎分子量化合物の
党おが溶解し埗る量以䞊必芁であるこずは圓然で
あるが、通垞抜出に付されるフむルム小物又は繊
維状物の玄10重量倍以䞊、奜たしくは玄15重量倍
以䞊である。 延䌞はそれ自䜓公知の方法で䞀軞方向に繊維
状物又はフむルム状物あるいは同時に又は逐次
的に二軞方向にフむルム状物実斜される。 䜿甚した党芳銙族ポリ゚ステル組成物の熱倉圢
枩床Tg℃及び融点をTm℃ずするず䞀軞
延䌞および同時二軞延䌞の延䌞枩床T1、℃
は、䞋蚘匏 Tg−10≩T1≩Tm−20 より奜たしくは䞋蚘匏 Tg−≊T1≩Tm−30 を満足する範囲である。 たた逐次二軞延䌞の堎合には第段目の延䌞枩
床は、䞊蚘匏を満足する枩床T1ずし、第
段目の延䌞枩床T1、℃は䞋蚘匏 T2≧T1 を満足する範囲ずする。 延䌞倍率は繊維状物では通垞玄〜玄10倍皋床
であり、フむルム状物では面積倍率で通垞玄〜
箄30倍皋床である。 本発明方法によれば、䜿甚する党芳銙族ポリ゚
ステル組成物が䞊蚘した高沞点䜎分子量化合物が
含有するために、該党芳銙族ポリ゚ステル組成物
の溶融粘床は該組成物に含たれる党芳銙族ポリ゚
ステル単独の溶融粘床よりも䜎くな぀おおり、そ
れ故高分子量の芳銙族ポリ゚ステルを含有する組
成物からでさえ非垞に现い繊維状物又は非垞に薄
いフむルム状物を補造するこずが可胜ずなる。 抜出前の前蚘熱固定は、緊匵䞋で行なわれる。
䞀軞延䌞および同時二軞延䌞に付されたものの熱
固定枩床Ts、℃は、延䌞枩床をT1℃ず
し、甚いた党芳銙族ポリ゚ステル組成物の融点
Tm、℃ずするず、䞋蚘匏 T1≊Ts≩Tm−10 を満足する範囲である。たた、逐次二軞延䌞に付
されたものでは、二段目の延䌞枩床をT2℃ず
するず、䞋蚘匏 T2≊Ts≩Tm−10 を満足する範囲である。熱固定は、通垞秒〜10
分間行なうこずができる。 かくしお、その䞭に含有される高融点䜎分子量
化合物の少くずも䞻たる郚分を抜出陀去された党
芳銙族ポリ゚ステルの未延䌞あるいは延䌞フむル
ム状物又は繊維状物は、必芁により、さらに延
䌞、熱固定あるいは延䌞したのちさらに熱固定す
るこずもできる。 抜出埌のかかる延䌞は、抜出前の前蚘延䌞にお
いお党芳銙族ポリ゚ステル組成物の熱倉圢枩床を
党芳銙族ポリ゚ステルの熱倉圢枩床を読み替えた
枩床条件䞋で実斜するこずができる。延䌞倍率は
抜出前の前蚘倍率ず同様にするこずができるが、
䞀般に抜出前の延䌞倍率ず抜出埌の延䌞倍率の和
は前蚘抜出前の前蚘倍率の範囲内に玍たる。 抜出埌の熱固定は、抜出前の前蚘熱固定ず同様
の条件䞋で実斜するこずができる。䜆し、党芳銙
族ポリ゚ステル組成物の融点を党芳銙族ポリ゚ス
テルの融点ず読み替えるこずを条件ずする。 かくしお、本発明方法によれば䞊蚘高融点䜎分
子量化合物を実質的に含有しないか又は党芳銙族
ポリ゚ステル100重量郚に察し䞊蚘高融点䜎分子
量化合物を高々重量郚で含有するにすぎない党
芳銙族ポリ゚ステルのフむルム状物又は繊維状物
を補造するこずができる。 本発明によ぀お提䟛されるフむルム状物又は繊
維状物は、優れた有機的性質、耐熱性等を有する
ため、フむルム状物にあ぀おは、䟋えば金属蒞着
甚のフむルム、フレキシブルプリント配線甚フむ
ルム、電気絶瞁フむルム、磁気テヌプ甚フむルム
等ずしお甚いるこずができ、たた繊維状物にあ぀
おは䟋えばゎム補匷材等ずしお甚いるこずができ
る。 実斜䟋 以䞋、実斜䟋により本発明をさらに詳述する。
本発明は、しかしながらかかる実斜䟋によ぀お劂
䜕なる限床を受けるものでもない。実斜䟋䞭の
皮々の物性倀は次のようにしお枬定又は定矩され
る。 郚に重量郚を衚わす。匷床、䌞床およびダング
モゞナラスはむンストロン枬定機を甚い、匕匵速
床100分で枬定された。固有粘床は−クロ
ロプノヌルテトラクロル゚タン6040重
量比の混合溶媒䞭の溶液ポリマヌ濃床0.1
dlに぀いお35℃で枬定した。 融点粘床は、盎埄mm、長さmmの吐出ノズル
を備えた断面積cm3の円筒に残料を玄充填
し、フロヌテスタヌによ぀お枬定した。 党芳銙族ポリ゚ステルが溶融状態で光孊的に等
方性であるものに぀いおは、パヌキン・゚ルマヌ
瀟補DSC−1B型の瀺差熱分析機を甚いお昇枩速
床16℃mmでその融点ポリマヌに぀いおは
Tm、組成物に぀いおはTm′を枬定した。 たた、党芳銙族ポリ゚ステルが光孊的異方性溶
融物を圢成するものに぀いおは、埮量融点枬定装
眮により、固䜓から光孊的異方性溶融物に転移す
る枩床ポリマヌに぀いはTN組成物に぀いおは
TN′および固䜓又は光孊的異方性溶融物から光
孊的等方性溶融物に転移する枩床ポリマヌに぀
いおはTL、組成物に぀いおはTL′を枬定した。
党芳銙族ポリ゚ステル組成物又は党芳銙族ポリ゚
ステルの熱倉圢枩床Tgは、厚さ500Ό、巟
cm、長さ玄cmの非晶質の詊隓薄を溶融成圢し、
間隔cmのツの支点各支点の巟はcmを持
぀支持台の䞊に茉せ、さらにこのようにセツトし
た詊隓薄の䞊に䞔぀ほがツの支点の䞭倮郚に重
さ10の分銅を茉せ、そのたたシリコンオむル济
䞭に浞挬せしめ、次いで济の枩床を玄℃分の
速床で䞊昇せしめ、分銅を茉せた詊隓薄の䞭倮郚
が支点の䞊端からcm䞋降した時点の枩床を枬定
しお求めた。 たた、高沞点䜎分子量化合物の抜出率重量
は、抜出前埌の詊料の重量の差から算出しお
求めた。 参考䟋  プノキシテレフタル酞ゞプニル゚ステル
410郚及びハむドロキノン132郚を重合觊媒ずしお
の酢酞第スズ0.088郚ず共に撹拌機を備えた重
瞮合反応噚䞭に仕蟌み、系の雰囲気を窒玠ガスで
眮換したのち、250℃より290℃たで120分かけお、
か぀生成するプノヌルを反応系倖ぞ留出しなが
ら加熱した。 続いお反応系の圧力を埐々に枛圧にし぀぀反応
噚の枩床を䞊げ、60分埌に反応噚の内圧をmm
Hg以䞋、反応枩床を340℃にし、曎にこの枩床で
撹拌を止めお30分反応せしめた。 埗られたポリマヌは融点DSCが325℃であ
぀たが、プロヌテスタヌによる流動開始枩床は玄
405℃であ぀た。 なお、この流動開始枩床は、溶融粘床枬定甚の
フロヌテスタヌで100Kgの荷重ポリマヌ圧100
Kgcm2䞋昇枩し、ポリマヌがキダツプより流出
を開始する枩床で瀺した。 䞊蚘結果より、本発明のポリ゚ステルは400℃
以䞋では成圢しえないこずが理解される。さらに
又405℃以䞊で無理に成圢しようずしおも熱分解
が進行しはじめ、効率的にか぀高品質を保぀た状
態で成圢するこずはできなか぀た。 実斜䟋  参考䟋に斌お䞊蚘原料ず䞀緒に非反応性の
4′−ビス−−プニルプノキシゞフ
゚ニルスルホン220郚を添加し、参考䟋ず同様
にしお重合した。かくしお埗られた溶融重合䜓を
10−20メツシナに粉砕し、そしお枩床270℃、圧
力0.2mmHg䞋で10時間反応せしめた、埗られた重
合䜓の組成物は、
As can be understood from the fact that the composition of the present invention is provided by a melt polycondensation method as a composition containing a fully aromatic polyester with a high degree of polymerization that could not be conventionally obtained only by a melt polycondensation method, Comparing the degree of polymerization of fully aromatic polyesters, the composition of the present invention can be molded at a lower temperature than when melt molding the fully aromatic polyester itself, or even at the same molding temperature, it can be molded more easily with a lower load. It has the advantage of being moldable. Furthermore, since the composition of the present invention contains the high melting point low molecular weight compound as described above, even if the wholly aromatic polyester forms an optically anisotropic melt, the composition Melts that are optically isotropic can be formed. First, an unstretched film or fibrous material is formed from the composition of the present invention by melt molding the wholly aromatic polyester composition of the present invention. Melt molding itself can be carried out, for example, using equipment used for melt forming aromatic polyesters, such as polyethylene terephthalate, by extruding the wholly aromatic polyester melt through a slit or nozzle. The unstretched film or fibrous material thus obtained is then extracted with an organic solvent to extract at least a major portion of the high melting point, low molecular weight compound contained therein. Extraction with an organic solvent may be carried out using an unstretched film or fibrous material, or may be carried out after being stretched, further stretched, and further heat-set. Extraction with an organic solvent is preferably further carried out using an organic solvent which is capable of dissolving the high boiling low molecular weight compound and which does not substantially dissolve the wholly aromatic polyester used under the extraction conditions, and which is liquid at ambient temperature and normally It is carried out using an organic solvent having a boiling point below about 200° C. at pressure. Such an organic solvent may have, for example, a carbon number of 6 to 9.
aromatic hydrocarbon, halogenated aliphatic hydrocarbon having 1 or 2 carbon atoms, aliphatic ketone or aliphatic ester having 3 to 6 carbon atoms, 5- or 6-membered cyclic ether, or aliphatic having 1 to 3 carbon atoms. Group alcohols are preferably used. Specifically, aromatic hydrocarbons having 6 to 9 carbon atoms such as benzene, toluene, ethylbenzene, xylene, tamene, and butoidcumene; halogenated aliphatic hydrocarbons having 1 or 2 carbon atoms such as methylene chloride, chloroform, and dichloroethane; ; Aliphatic ketones having 3 to 6 carbon atoms, such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; Aliphatic esters; 5- or 6-membered cyclic ethers such as tetrahydrofuran and dioxane; or 1 carbon atoms such as methanol, ethanol, and propanol.
-3 aliphatic alcohols may be mentioned. Among these, aromatic hydrocarbons having 6 to 9 carbon atoms, halogenated hydrocarbons having 1 or 2 carbon atoms, or 5
Particularly preferably used are 6-membered or 6-membered cyclic ethers. Extraction with organic solvents is advantageously carried out on films having a thickness of less than about 1 mm, preferably from about 1 micron to about 500 microns, or on fibrous materials having an average diameter of less than about 1 mm, preferably from about 3 to about 400 microns. Extraction with organic solvents is preferably carried out under tension and can be carried out at temperatures between ambient temperature and the boiling point of the organic solvent used. The optimum extraction time required for extraction depends on the organic solvent used, the thickness or diameter of the film-like material or fibrous material subjected to extraction, the amount of low molecular weight substances contained in the film-like material or fibrous material, and the extraction temperature. It varies depending on etc. Generally speaking, for example, the thinner the film-like material, the smaller the diameter of the fibrous material, or the higher the extraction temperature, the shorter the optimum time required for extraction. According to the present invention, extraction can be completed in several seconds to about an hour in most cases, and the high-boiling, low-molecular-weight compounds thus contained are about 70% by weight or more, preferably about 80% by weight or more, especially about 90% by weight
A film or fibrous material from which the above components are extracted can be obtained. Extraction with an organic solvent can be carried out by passing a moving film or fibrous material through an organic solvent, or by immersing a stopped film or fibrous material in an organic solvent. You can also do it by In either case, the organic solvent may be fluid or stationary, but it is desirable that at least one of the film (or fibrous material) or the organic solvent is fluid. It goes without saying that the amount of organic solvent used for extraction must be at least enough to dissolve all of the high-melting, low-molecular-weight compounds to be extracted; It is 10 times or more by weight, preferably about 15 times or more by weight. Stretching is carried out in a manner known per se uniaxially (fibers or films) or biaxially (films) simultaneously or successively. If the heat distortion temperature Tg (°C) and melting point of the wholly aromatic polyester composition used are Tm (°C), then the stretching temperature (T 1 , °C) for uniaxial stretching and simultaneous biaxial stretching is
is in a range that satisfies the following formula Tg-10≩T 1 ≩Tm-20, more preferably the following formula Tg-5≩T 1 ≩Tm-30. In addition, in the case of sequential biaxial stretching, the first stage stretching temperature is the temperature (T 1 ) that satisfies the above formula, and the second stage stretching temperature is
The stretching temperature (T 1 , °C) of the stage is set within a range that satisfies the following formula T 2 ≧T 1 . The stretching ratio is usually about 2 to 10 times for fibrous materials, and the area ratio is usually about 2 to 10 times for film materials.
It is about 30 times larger. According to the method of the present invention, since the wholly aromatic polyester composition used contains the above-mentioned high boiling point low molecular weight compound, the melt viscosity of the wholly aromatic polyester composition is lower than that of the wholly aromatic polyester contained in the composition. The melt viscosity is lower than that of the single melt viscosity, thus making it possible to produce very fine fibers or very thin films even from compositions containing high molecular weight aromatic polyesters. Said heat fixation before extraction is carried out under tension.
The heat setting temperature (Ts, °C) of the material subjected to uniaxial stretching and simultaneous biaxial stretching is as follows, where the stretching temperature is T 1 (°C) and the melting point (Tm, °C) of the wholly aromatic polyester composition used is: This is a range that satisfies the following formula T 1 +5≩Ts≩Tm−10. Further, in the case of a film subjected to sequential biaxial stretching, when the second stage stretching temperature is T 2 (° C.), the range satisfies the following formula T 2 +5≩Ts≩Tm−10. Heat fixation is usually 1 second to 10
It can be done for minutes. In this way, the unstretched or stretched film or fibrous material of the wholly aromatic polyester from which at least the main portion of the high melting point low molecular weight compounds contained therein has been extracted and removed may be further stretched, heat set or fibrous as required. It is also possible to further heat set after stretching. Such stretching after extraction can be carried out under temperature conditions in which the heat distortion temperature of the wholly aromatic polyester composition is read as the heat distortion temperature of the wholly aromatic polyester in the stretching before extraction. The stretching ratio can be the same as the above-mentioned ratio before extraction, but
Generally, the sum of the stretching ratio before extraction and the stretching ratio after extraction falls within the range of the stretching ratio before extraction. Heat fixation after extraction can be carried out under the same conditions as the heat fixation before extraction. However, the condition is that the melting point of the wholly aromatic polyester composition is read as the melting point of the wholly aromatic polyester. Thus, according to the method of the present invention, a completely aromatic product containing substantially no high melting point low molecular weight compound or containing at most 1 part by weight of the above high melting point low molecular weight compound per 100 parts by weight of the wholly aromatic polyester. Films or fibers of the group polyesters can be produced. Since the film or fibrous material provided by the present invention has excellent organic properties and heat resistance, it can be used as a film for metal deposition, a film for flexible printed wiring, etc. It can be used as an electrical insulating film, a film for magnetic tape, etc., and in the case of fibrous materials, it can be used, for example, as a rubber reinforcing material. Examples Hereinafter, the present invention will be explained in further detail with reference to Examples.
However, the invention is not limited in any way by such embodiments. Various physical property values in Examples are measured or defined as follows. Parts represent parts by weight. Strength, elongation and Young's modulus were measured using an Instron measuring machine at a tensile rate of 100%/min. The intrinsic viscosity is a solution in a mixed solvent of p-chlorophenol/tetrachloroethane = 60/40 (weight ratio) (polymer concentration 0.1
g/dl) at 35°C. The melting point viscosity was measured using a flow tester after filling about 1 g of the residue into a cylinder with a cross-sectional area of 1 cm 3 equipped with a discharge nozzle of 1 mm in diameter and 5 mm in length. For wholly aromatic polyesters that are optically isotropic in their molten state, their melting point (for polymers teeth
Tm and Tm′ for the composition were measured. In addition, for fully aromatic polyesters that form optically anisotropic melts, the temperature at which they transition from a solid to an optically anisotropic melt (for polymers, T N compositions
T N ') and the temperature of transition from a solid or optically anisotropic melt to an optically isotropic melt (T L for polymers and T L ' for compositions) were measured.
The heat distortion temperature (Tg) of the wholly aromatic polyester composition or wholly aromatic polyester is 500Ό in thickness and 1 in width.
cm, an amorphous test thin film with a length of about 6 cm was melt-molded,
It was placed on a support stand with two fulcrums spaced 3 cm apart (the width of each fulcrum was 2 cm), and a weight weighing 10 g was placed on top of the test thin set in this manner and approximately in the center of the two fulcrums. Place the weight on it, immerse it in a silicone oil bath, then raise the temperature of the bath at a rate of about 4℃/min, and measure the temperature when the center of the test thin with the weight on it drops 1cm from the top of the fulcrum. I asked. Moreover, the extraction rate (weight %) of the high boiling point low molecular weight compound was calculated from the difference in weight of the sample before and after extraction. Reference example 1 Phenoxyterephthalic acid diphenyl ester
410 parts of hydroquinone and 132 parts of hydroquinone were charged together with 0.088 parts of stannous acetate as a polymerization catalyst into a polycondensation reactor equipped with a stirrer, and after replacing the atmosphere of the system with nitrogen gas, the temperature was raised from 250°C to 290°C for 120 minutes. Put it on,
The mixture was heated while distilling the produced phenol out of the reaction system. Next, the pressure of the reaction system was gradually reduced and the temperature of the reactor was raised, and after 60 minutes, the internal pressure of the reactor was reduced to 1 mm.
Hg or less, the reaction temperature was set to 340°C, and at this temperature, stirring was stopped and the reaction was allowed to proceed for 30 minutes. The melting point (DSC) of the obtained polymer was 325°C, but the flow initiation temperature measured by the Protester was approximately
It was 405℃. Note that this flow start temperature is calculated using a flow tester for measuring melt viscosity at a load of 100 kg (polymer pressure of 100 kg).
Kg/cm 2 ), and the temperature is shown as the temperature at which the polymer starts flowing out from the cap. From the above results, the polyester of the present invention can be heated to 400°C.
It is understood that it cannot be molded below. Furthermore, even if an attempt was made to forcibly mold the material at temperatures above 405° C., thermal decomposition began to proceed, making it impossible to mold the material efficiently and while maintaining high quality. Example 1 In Reference Example 1, 220 parts of non-reactive 4,4'-bis-(p-phenylphenoxy) diphenylsulfone was added together with the above raw materials, and the same procedure as in Reference Example 1 was carried out. Polymerized. The thus obtained molten polymer
The resulting polymer composition, which was ground into 10-20 meshes and reacted for 10 hours at a temperature of 270°C and a pressure of 0.2 mmHg, was

【匏】【formula】

【匏】 を構成成分ずするポリ゚ステル60重量ず
4′−ビス−パラプニルプノキシゞプニ
ルスルホン40重量よりなる組成を有し、該組成
物の融点は285℃であり、か぀380℃における融点
粘床は6.0×104ポむズを瀺した。 埗られた組成物を15mmφの軞゚クストルヌダ
ヌシリンダヌ枩床360〜70℃を甚いお巟0.5
mm、長さ100mmの−ダむより溶融抌出ししお厚
さ玄0.4mmの原反フむルムを埗た。 埗られた原反フむルムを200℃で機械軞方向
MDに倍、さらに盎角方向TDに倍に
延䌞した。 このようにしお埗られたフむルムを定長䞋ゞオ
キサンに浞挬し、ゞオキサンの還流䞋で30分凊理
し、぀いで150℃で5hr真空也燥した。 この凊理で、4′−ビス−パラプニルフ
゚ノキシゞプニルスルホンの99以䞊が抜出
された。 埗られたフむルムの性胜を䞋蚘衚に瀺す。
60% by weight polyester consisting of [Formula] and 4,
It has a composition consisting of 40% by weight of 4'-bis-(paraphenylphenoxy) diphenyl sulfone, the melting point of the composition is 285°C, and the melting point viscosity at 380°C is 6.0 × 10 4 poise. Ta. The obtained composition was extruded to a width of 0.5 mm using a 15 mmφ twin-screw extruder (cylinder temperature 360 to 70°C).
A raw film with a thickness of about 0.4 mm was obtained by melt extrusion through a T-die with a length of 100 mm. The obtained raw film was stretched at 200° C. twice in the machine axis direction (MD) and further twice in the transverse direction (TD). The film thus obtained was immersed in dioxane at a fixed length, treated under refluxing dioxane for 30 minutes, and then vacuum-dried at 150° C. for 5 hours. This treatment extracted more than 99% of 4,4'-bis-(paraphenylphenoxy)diphenylsulfone. The performance of the obtained film is shown in Table 3 below.

【衚】 たた、䞊蚘ポリ゚ステル組成物を固盞重合しな
い固有粘床4.5で埄0.5mm、長さmmの単䞀
ノズルキダツプより360℃玡糞し、埗られた原糞
を金枠に固定しおキシレン䞭120℃で抜出し、぀
いで200℃1.5倍延䌞した。埗られた糞の物性は䞋
蚘の通りであ぀た。 匷床デニヌル 䌞床 ダングモゞナラス450デニヌル 実斜䟋  プノキシテレフタル酞テレフタル酞
モル比を甚いる䟋 プノキシテレフタル酞ゞプニル328郚、テ
レフタル酞ゞプニル63.6郚、ハむドロキノン
132郚、重瞮合觊媒ずしおの酢酞第スズ0.088郚
及び4′−ビス−−プニルプノキシ
ゞプニルケトン210郚を甚いお実斜䟋ず同様
に溶融重合し、さらに固盞重合を行な぀た。埗ら
れた組成物は380℃剪断速床γ100secで 6.5×104ポむズの溶融粘床を瀺した。 埗られた組成物を実斜䟋ず同様にしお゚クス
トルヌダヌより溶融抌し出ししお厚さ300Όの原
反フむルムを埗た。次いで該原反フむルムを金枠
に固定しおゞオキサン䞭100℃で抜出凊理し、続
いお150℃で5hr真空也燥した。 この凊理で4′−ビス−プニルプノ
キシゞプニルスルホンの99以䞊が抜出され
た。 埗られた未延䌞フむルムの物性は䞋蚘衚の劂
くであ぀た。
[Table] In addition, the above polyester composition was spun at 360°C without solid phase polymerization (intrinsic viscosity: 4.5) through a single nozzle cap with a diameter of 0.5 mm and a length of 3 mm, and the obtained raw yarn was fixed in a metal frame. The film was extracted in xylene at 120°C, and then stretched 1.5 times at 200°C. The physical properties of the obtained yarn were as follows. Strength: 5g/Denier Elongation: 5% Young Modulus: 450g/Denier Example 2 (Phenoxyterephthalic acid/Terephthalic acid =
(Example using 8/2 molar ratio) 328 parts of diphenyl phenoxyterephthalate, 63.6 parts of diphenyl terephthalate, hydroquinone
132 parts, 0.088 parts of stannous acetate as a polycondensation catalyst, and 4,4'-bis-(p-phenylphenoxy)
Melt polymerization was carried out in the same manner as in Example 1 using 210 parts of diphenyl ketone, followed by solid phase polymerization. The obtained composition exhibited a melt viscosity of 6.5×10 4 poise at 380° C. (shear rate γ=1001/sec). The obtained composition was melt-extruded from an extruder in the same manner as in Example 1 to obtain a raw film having a thickness of 300 ÎŒm. Next, the original film was fixed in a metal frame and extracted in dioxane at 100°C, followed by vacuum drying at 150°C for 5 hours. This treatment extracted more than 99% of 4,4'-bis(p-phenylphenoxy)diphenylsulfone. The physical properties of the obtained unstretched film were as shown in Table 4 below.

【衚】 この未延䌞フむルムを260℃に斌お機械方向
MDに2.5倍、さらに盎角方向TDに2.5倍
延䌞した。 埗られたフむルムの物性は䞋蚘衚に瀺す通り
であ぀た。
[Table] This unstretched film was stretched 2.5 times in the machine direction (MD) and further 2.5 times in the transverse direction (TD) at 260°C. The physical properties of the obtained film were as shown in Table 5 below.

【衚】 実斜䟋 〜 実斜䟋に斌お、䜎分子量化合物の皮類及び量
を倉化させ、固盞重合し、䞋蚘衚に瀺す組成物
を埗た。
[Table] Examples 3 to 8 In Example 1, the type and amount of the low molecular weight compound were changed and solid phase polymerization was performed to obtain the compositions shown in Table 6 below.

【衚】  これらの倀の単䜍は、匷床Kgmm2、䌞床
、ダングモゞナラスKgmm2である。
䞊蚘組成物はいずれも370℃〜380℃で゚クスト
ルヌダヌより溶融補膜したずころ良奜な原反フむ
ルムを埗られた。 埗られた原反を220℃で3.0倍延䌞し、以䞋実斜
䟋ず同様に凊理した。 実斜䟋 〜11 実斜䟋におけるヒドロキノン132郚の代りに
䞋蚘衚に瀺すゞオヌルを䜿甚し、実斜䟋ず同
様にしお党芳銙族ポリ゚ステル組成物を぀く぀
た。そしお該党芳銙族ポリ゚ステル組成物を甚い
お実斜䟋ず同様にしお軞延䌞フむルムを䜜぀
た。 その結果を衚に瀺す。
[Table] ** The units of these values are strength: Kg/mm 2 and elongation:
%, Young modulus: Kg/ mm2 .
When each of the above compositions was melt-formed into a film using an extruder at 370°C to 380°C, good original films were obtained. The obtained original fabric was stretched 3.0 times at 220°C, and then treated in the same manner as in Example 1. Examples 9 to 11 A wholly aromatic polyester composition was prepared in the same manner as in Example 1 except that 132 parts of hydroquinone in Example 1 was replaced with the diol shown in Table 7 below. A uniaxially stretched film was produced in the same manner as in Example 3 using the wholly aromatic polyester composition. The results are shown in Table 7.

【衚】【table】

Claims (1)

【特蚱請求の範囲】  プノキシテレフタル酞成分ず芳銙栞に結合
しおいる個のヒドロキシ基が互いに逆方向ぞの
鎖䌞長性でか぀同軞あるいは平行軞の䜍眮にある
芳銙族ゞヒドロキシ化合物ずの゚ステル結合を䞻
たる繰返し結合ずする実質的に線状の党芳銙族ポ
リ゚ステルであ぀お、固有粘床が1.0以䞊であり、
か぀該党芳銙族ポリ゚ステル60重量郚ず4′−
ビス−プニルプノキシゞプニルスル
ホン40重量郚の混合物ずしお枬定した380℃での
溶融粘床剪断速床γ100sec-1が1000ポむズ
以䞊である党芳銙族ポリ゚ステル100重量郚、及
び䞋蚘匏で衚わされる化合物であ぀お䞊蚘党芳銙
族ポリ゚ステルに察し実質的に非反応性でありか
぀分子量1000以䞋の高沞点䜎分子量化合物〜
400重量郚よりなる党芳銙族ポリ゚ステル組成物。 Ar−−Ar ここでArは䟡の芳銙族基、は−SO2−た
たは−CO−である。  プノキシテレフタル酞成分ず芳銙栞に結合
しおいる個のヒドロキシ基が互いに逆方向ぞの
鎖䌞長性でか぀同軞あるいは平行軞の䜍眮にある
芳銙族ゞヒドロキシ化合物成分ずを反応させお、
実質的に線状の党芳銙族ポリ゚ステルを補造する
に際し、重合系䞭に、䞋蚘匏で衚わされる化合物
であ぀お生成する党芳銙族ポリ゚ステルに察しお
実質的に非反応性でありか぀分子量1000以䞋の高
沞点䜎分子量化合物を該党芳銙族ポリ゚ステル
100重量郚圓り〜400重量郚の割合で共存せしめ
お溶融重瞮合反応を行い、固有粘床が1.0以䞊で
あり、か぀該党芳銙族ポリ゚ステル60重量郚ず
4′−ビス−プニルプノキシゞプ
ニルスルホン40重量郚の混合物ずしお枬定した
380℃での溶融粘床剪断速床γ100sec-1が
1000ポむズ以䞊である党芳銙族ポリ゚ステルを含
む組成物を圢成せしめるこずを特城ずする党芳銙
族ポリ゚ステル組成物の補造法。 Ar−−Ar ここでArは䟡の芳銙族基、は−SO2−た
たは−CO−である。
[Claims] 1. An aromatic dihydroxy compound in which the phenoxyterephthalic acid component and the two hydroxy groups bonded to the aromatic nucleus have chain elongation properties in opposite directions and are coaxial or parallel axes. A substantially linear wholly aromatic polyester having ester bonds as the main repeating bonds, and having an intrinsic viscosity of 1.0 or more,
and 60 parts by weight of the wholly aromatic polyester and 4,4'-
100 parts by weight of a wholly aromatic polyester having a melt viscosity at 380°C (shear rate γ = 100 sec -1 ) of 1000 poise or more, measured as a mixture of 40 parts by weight of bis(p-phenylphenoxy) diphenylsulfone; and a high-boiling point, low-molecular-weight compound 5 to 1, which is a compound represented by the following formula, is substantially non-reactive with the above-mentioned wholly aromatic polyester, and has a molecular weight of 1000 or less.
A wholly aromatic polyester composition comprising 400 parts by weight. Ar-X-Ar (where Ar is a monovalent aromatic group, and X is -SO 2 - or -CO-) Reacting with an aromatic dihydroxy compound component whose groups have chain elongation in opposite directions and are located on the same or parallel axes,
When producing a substantially linear wholly aromatic polyester, a compound represented by the following formula that is substantially non-reactive with the produced wholly aromatic polyester and has a molecular weight of 1000 or less is added to the polymerization system. A high boiling point, low molecular weight compound is added to the wholly aromatic polyester.
A melt polycondensation reaction is carried out in the proportion of 5 to 400 parts by weight per 100 parts by weight. Determined as a mixture of 40 parts by weight of enylphenoxy)diphenylsulfone.
The melt viscosity at 380℃ (shear rate γ=100sec -1 ) is
1. A method for producing a wholly aromatic polyester composition, comprising forming a composition containing a wholly aromatic polyester having a poise of 1000 poise or more. Ar-X-Ar (Here, Ar is a monovalent aromatic group, and X is -SO2- or -CO-.)
JP17696683A 1983-09-27 1983-09-27 Fully aromatic polyester, its molding composition and production of molding using same Granted JPS6069132A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP17696683A JPS6069132A (en) 1983-09-27 1983-09-27 Fully aromatic polyester, its molding composition and production of molding using same
JP20240790A JPH0395231A (en) 1983-09-27 1990-08-01 Manufacture of wholly aromatic polyester molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17696683A JPS6069132A (en) 1983-09-27 1983-09-27 Fully aromatic polyester, its molding composition and production of molding using same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP20240790A Division JPH0395231A (en) 1983-09-27 1990-08-01 Manufacture of wholly aromatic polyester molding

Publications (2)

Publication Number Publication Date
JPS6069132A JPS6069132A (en) 1985-04-19
JPH0449569B2 true JPH0449569B2 (en) 1992-08-11

Family

ID=16022817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17696683A Granted JPS6069132A (en) 1983-09-27 1983-09-27 Fully aromatic polyester, its molding composition and production of molding using same

Country Status (1)

Country Link
JP (1) JPS6069132A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3710643A1 (en) * 1987-03-31 1988-10-20 Huels Chemische Werke Ag AROMATIC POLYESTERS BASED ON PHENOXYTEREPHTHALIC ACID, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3723388A (en) * 1971-10-08 1973-03-27 Eastman Kodak Co Phenoxyphthalate polyesters
JPS4921440A (en) * 1972-06-19 1974-02-25
JPS5884823A (en) * 1981-11-09 1983-05-21 アモコ、コヌポレヌション Manufacture of polyester or poly(ester carbonate) in presence of treatment aid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3723388A (en) * 1971-10-08 1973-03-27 Eastman Kodak Co Phenoxyphthalate polyesters
JPS4921440A (en) * 1972-06-19 1974-02-25
JPS5884823A (en) * 1981-11-09 1983-05-21 アモコ、コヌポレヌション Manufacture of polyester or poly(ester carbonate) in presence of treatment aid

Also Published As

Publication number Publication date
JPS6069132A (en) 1985-04-19

Similar Documents

Publication Publication Date Title
US4664972A (en) Optically anisotropic melt forming aromatic copolyesters based on t-butylhydroquinone
EP0156966B1 (en) Wholly aromatic polyester composition and process for producing it
KR100684815B1 (en) Mono- or biaxially-stretched polyester resin foamed sheets and films
WO1990014379A1 (en) Poly(arylene ether ketone), method of its production, and its use
KR910004906B1 (en) Films of wholly aromatic polyester and processes for preparation thereof
US5091138A (en) Production of wholly aromatic polyester film
JP3001732B2 (en) Copolyester and fiber obtained therefrom
JPS63182332A (en) Liquid-crystal polyester
JP3518954B2 (en) Polyethylene oxalate, molded product thereof, and production method thereof
JPS64484B2 (en)
JPH0449569B2 (en)
EP0213362A1 (en) Crystalline polyester-imides, process for production thereof, and use thereof
JP4665540B2 (en) Polylactic acid component segment-containing polyester and method for producing the same
JPH0395231A (en) Manufacture of wholly aromatic polyester molding
JPS61148237A (en) Molded polyester article and production thereof
JPS61148030A (en) Heat treatment method of polyester-molded article
JPS6258378B2 (en)
JP2012092260A (en) Biaxially oriented polyester film
WO2009091072A1 (en) Polyester resin, process for production of the same, and biaxially oriented polyester film comprising the same
EP0151299B1 (en) Aromatic polyester, process for production thereof and film, fiber and other shaped articles therefrom
JPH0445535B2 (en)
JPH0216929B2 (en)
Wang et al. 15 Ketone-Based Thermoplastics
WO1994004612A1 (en) Melt processable isotropic and thermotropic polymer blends
JPH0367535B2 (en)