JPH0449517A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH0449517A
JPH0449517A JP2160536A JP16053690A JPH0449517A JP H0449517 A JPH0449517 A JP H0449517A JP 2160536 A JP2160536 A JP 2160536A JP 16053690 A JP16053690 A JP 16053690A JP H0449517 A JPH0449517 A JP H0449517A
Authority
JP
Japan
Prior art keywords
magnetic
binder resin
resin
powder
magnetic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2160536A
Other languages
Japanese (ja)
Inventor
Kazunori Sakamoto
坂本 和徳
Yukihiro Shimazaki
幸博 島崎
Yuji Mido
勇治 御堂
Akira Kisoda
晃 木曽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2160536A priority Critical patent/JPH0449517A/en
Publication of JPH0449517A publication Critical patent/JPH0449517A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve electromagnetic conversion characteristics and durability by using a ferromagnetic metal powder having a specified axial ratio and X-ray particle size and using a binder resin having specified metal-sulfonate group to form a magnetic layer. CONSTITUTION:A magnetic layer formed on a nonmagnetic supporting body essentially consists of a needle-like ferromagnetic metal powder and a binder resin. The metal powder has 5 - 7 axial ratio and <=170 Angstrom X-ray particle size. The binder resin contains metal-sulfonate group in the molecule to 0.1 - 0.9 wt.% sulfer content and has 10000 - 50000 mol.wt. The binder resin is incorpo rated by 16 - 19 pts.wt. to 100 pts.wt. of the metal powder. Thus, superfine particles of ferromagnetic metal magnetic powder can be highly dispersed, and the obtd. medium has high video S/N and excellent durability.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は磁気テープ、磁気ディスク等の磁気記録媒体、
特に分子中にスルホン酸金属塩を含有した結合剤樹脂を
用いた磁気記録媒体に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to magnetic recording media such as magnetic tapes and magnetic disks,
In particular, it relates to a magnetic recording medium using a binder resin containing a sulfonic acid metal salt in its molecule.

従来の技術 磁気テープ、磁気ディスクなどの塗布型磁気記録媒体は
、一般に磁性粉と少量の研磨材、帯電防止剤、潤滑剤分
散剤、硬化剤等を結合剤樹脂中に分散させて構成されて
いる。
Conventional technology Coated magnetic recording media such as magnetic tapes and magnetic disks are generally composed of magnetic powder and small amounts of abrasives, antistatic agents, lubricant dispersants, hardeners, etc. dispersed in a binder resin. There is.

塗布型磁気記録媒体の結合剤樹脂に要求される特性とし
ては、磁性粉の高密度充填化、高配向性、易カレンダー
性等の電磁変換特性に影響する因子、あるいは各環境下
においてデツキ走行させた場合に、テープが特性劣化を
起こさないという耐久性に関わる因子、さらには非磁性
支持体であるポリエステルフィルムとの接着性に関わる
因子、等様々であり非常に重要な役割を果たしている。
The properties required of the binder resin for coated magnetic recording media include factors that affect electromagnetic conversion properties such as high density packing of magnetic powder, high orientation, and easy calendering properties, and factors that affect electromagnetic conversion properties such as high density packing of magnetic powder, high orientation, and ease of calendering. In this case, there are various factors that play a very important role, including factors related to the durability of the tape so that its characteristics do not deteriorate, and factors related to adhesiveness with the polyester film, which is a non-magnetic support.

近年、磁気記録媒体、特にVTR用テープにおいてはハ
イバンド8ミリビデオに代表されるように、機器の発達
にともない高密度記録を目的とした単波長記録化の傾向
が著しい。さらには今後ハイビジョン、あるいはデジタ
ルといった次世代のVTRにおいては一層の単波長記録
化が進み、将来的には最短記録波長が0.4μm以下に
なることも予想されている。
In recent years, with the development of magnetic recording media, especially tapes for VTRs, as typified by high-band 8 mm video, there has been a remarkable trend toward single-wavelength recording for the purpose of high-density recording. Furthermore, next-generation VTRs such as high-definition or digital VTRs will increasingly use single-wavelength recording, and it is expected that the shortest recording wavelength will be 0.4 μm or less in the future.

このような高密度記録を実現するためには、磁性粉とし
ては保磁力Hc、残留磁束密度Brが大きな強磁性金属
粉末が現在量も注目されており、各テープメーカーにお
いてこれを用いた磁気記録媒体の開発が、活発に行われ
ている。ハイバンド8ミリビデオの発売を契機に塗布型
の磁気記録媒体の特性向上は目覚ましく、従来の概念を
こえた高い特性が達成されている。これには磁気記録媒
体の製造方法の向上もさることながら、用いられている
強磁性金属粉末の特性そのものも大幅に向上している。
In order to realize such high-density recording, ferromagnetic metal powders with large coercive force Hc and residual magnetic flux density Br are currently attracting attention as magnetic powders, and each tape manufacturer is using them for magnetic recording. Media development is actively underway. With the release of high-band 8mm video, the characteristics of coating-type magnetic recording media have improved markedly, and high characteristics beyond conventional concepts have been achieved. This is not only due to improvements in the manufacturing method of magnetic recording media, but also to significant improvements in the properties of the ferromagnetic metal powders used.

最近では17000 eを超える高い保磁力、さらには
短軸方向のX線粒子径で170オングストローム以下(
N、BET値換算で60%/g以上)の強磁性で超微粒
子の金属磁性粉も開発されている。また磁性塗膜中にお
ける磁性粉のバッキングを向上させるために、軸比も小
さくなる傾向があり、軸比が5といった磁性粉もある。
Recently, high coercivity exceeding 17,000 e, and X-ray particle diameter in the short axis direction of less than 170 angstroms (
A ferromagnetic and ultrafine metal magnetic powder with a BET value of 60%/g or more has also been developed. Furthermore, in order to improve the backing of the magnetic powder in the magnetic coating film, the axial ratio tends to become smaller, and some magnetic powders have an axial ratio of 5.

ところが、この様な強磁性で超微粒子の磁性粉を使用し
た場合、結合剤樹脂溶液中での磁性粉の分散性の劣化、
及びそれに伴う磁性塗料の増粘といった問題が生じる。
However, when such ferromagnetic and ultrafine magnetic powder is used, the dispersibility of the magnetic powder in the binder resin solution deteriorates,
This causes problems such as increased viscosity of the magnetic paint.

特に強磁性で軸比の小さな磁性粉の場合、磁気的な吸引
力に加えて、分子間引力も大きくなるため分散技術には
材料技術、塗料化技術ともに非常に高度なものが要求さ
れる。
In particular, in the case of magnetic powders that are ferromagnetic and have a small axial ratio, in addition to the magnetic attraction force, there is also a large intermolecular attraction force, so the dispersion technology requires extremely advanced materials technology and coating technology.

一方、記録密度の向上に伴い最短記録波長が短くなるに
つれて、テープとヘッドの相対速度も一般に早くなるた
めに、耐久性についてもいっそう厳しい条件となり、よ
り高度なものが要求される。
On the other hand, as the shortest recording wavelength becomes shorter as the recording density improves, the relative speed between the tape and the head generally increases, and therefore durability becomes even more demanding, and a higher level of performance is required.

特に微粒子でなおかつ軸比の小さな磁性粉を用いた場合
、これらを磁性塗膜中にしっかりとバインドし、各環境
下でヘッドやシリンダーに粕付着の少ない強靭なテープ
とすることは非常に困難であり、そのための結合剤樹脂
の設計開発は塗布型磁気記録媒体の開発において最も重
要な要素技術である。
In particular, when using fine particles of magnetic powder with a small axial ratio, it is extremely difficult to bind these particles firmly into the magnetic coating and create a strong tape that does not adhere to the head or cylinder under various environments. The design and development of the binder resin for this purpose is the most important elemental technology in the development of coated magnetic recording media.

従来より用いられている結合剤樹脂としては、塩化ビニ
ル−酢酸ビニル共重合体、塩化ビニル酢酸ビニル−ビニ
ルアルコール共重合体、塩化ビニル−塩化ビニリデン共
重合体、ポリウレタン樹脂、ポリエステル樹脂、アクリ
ロニトリル−ブタジェン共重合体、ニトロセルロース、
エポキシ樹脂等がある。
Conventionally used binder resins include vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinyl acetate-vinyl alcohol copolymer, vinyl chloride-vinylidene chloride copolymer, polyurethane resin, polyester resin, acrylonitrile-butadiene. copolymer, nitrocellulose,
There are epoxy resins, etc.

これらの樹脂のうち、塩化ビニル系樹脂は比較的低分子
量であること、あるいは分子中に容易に水酸基あるいは
カルボキシル基などの様な官能基を導入できること等の
理由で磁性粉の分散性に優れていることから、またポリ
ウレタン樹脂はウレタン結合による分子間水素結合によ
り、他の樹脂に比べ強靭性、耐摩耗性に非常に優れてい
ることから、はとんどの塗布型磁気記録媒体にはこれら
2種類の樹脂が組み合わされて使用されている。
Among these resins, vinyl chloride resin has excellent dispersibility of magnetic powder due to its relatively low molecular weight and the ability to easily introduce functional groups such as hydroxyl or carboxyl groups into the molecule. In addition, polyurethane resin has extremely superior toughness and abrasion resistance compared to other resins due to intermolecular hydrogen bonding caused by urethane bonds, so most coated magnetic recording media contain these two types. A combination of different resins are used.

最近の磁性粉の微粒子化にともない、塩化ビニル系樹脂
、ポリウレタン樹脂共に分散性を向上させるために、様
々な工夫がなされている。その代表的なものは特開昭5
4−157603号公報、特開昭57−165464号
公報にみられるように、樹脂中に吸着性の強い官能基で
あるスルホン酸金属塩を導入する手法である。さらに特
開平1−59646号公報においては、スルホン酸金属
塩を導入した結合剤樹脂を用いた磁気記録媒体の実際の
組成までも詳しく開示されている。
With the recent trend toward finer particles of magnetic powder, various efforts have been made to improve the dispersibility of both vinyl chloride resins and polyurethane resins. The representative example is the Japanese Patent Publication No. 5
As seen in JP-A-4-157603 and JP-A-57-165464, this is a method of introducing a sulfonic acid metal salt, which is a highly adsorptive functional group, into the resin. Furthermore, JP-A-1-59646 discloses in detail the actual composition of a magnetic recording medium using a binder resin into which a sulfonic acid metal salt is introduced.

磁性粉の分散を向上させるためにはこれ以外にも、特開
昭61−14705号公報で開示されているように金属
磁性粉表面を界面活性剤を含有する水溶液で表面処理す
る方法、あるいは特開昭60−107731号公報、特
開昭60−127526号公報のようにチタンカップリ
ング剤で表面処理する方法等、様々な有機的、無機的な
表面処理をする方法等がある。
In order to improve the dispersion of magnetic powder, there are other methods such as surface treatment of the surface of metal magnetic powder with an aqueous solution containing a surfactant, as disclosed in JP-A-61-14705, or a special method. There are various organic and inorganic surface treatment methods, such as a method of surface treatment with a titanium coupling agent as disclosed in JP-A-60-107731 and JP-A-60-127526.

また塗料化工法の面からも、ニーダ−、インターナルミ
キサー、バンバリーミキサ−1あるいはプラネタリ−ミ
キサー、等の混線装置を用いて磁性粉の硬練りを行い樹
脂の吸着を促進させて、磁性粉を高分散させる方法があ
る。特に最近各テープメーカーとも塗料化技術について
は力をいれており、様々な新しい手法が発表されている
。特開平1−106338号公報においては、二軸型連
続混練混合機を用いて金属磁性粉末を高分散させる方法
が詳細に述べられている。
In addition, from the perspective of paint processing methods, magnetic powder is hard-kneaded using a mixing device such as a kneader, internal mixer, Banbury mixer 1, or planetary mixer to promote resin adsorption. There is a way to achieve high dispersion. In particular, tape manufacturers have recently put a lot of effort into coating technology, and various new methods have been announced. JP-A-1-106338 describes in detail a method for highly dispersing metal magnetic powder using a biaxial continuous kneading mixer.

発明が解決しようとする課題 しかし従来より行われてきた方法によって、特に最近の
強磁性超微粒子でなおかつ軸比の小さい金属磁性粉末を
分散させることは、非常に困難であり、また耐久性の面
からも様々な問題が生じている。
Problems to be Solved by the Invention However, it is extremely difficult to disperse metal magnetic powder, especially the recent ultrafine ferromagnetic particles with a small axial ratio, using conventional methods, and it is also difficult to disperse in terms of durability. Various problems are arising from this.

塩化ビニル系樹脂、あるいはウレタン樹脂に吸着性の最
も強いスルホン酸金属塩を導入する方法は、磁性粉の分
散性向上には効果があるが、導入するスルホン酸金属塩
の濃度、さらにはスルホン酸金属塩を導入した結合剤樹
脂の分子量及び使用量、については磁性粉の磁化の大き
さ、形状、粒子径を十分に考慮して決めなくてはならな
い。むやみにスルホン酸金属塩の導入量を多くすると、
スルホン酸基自身は強力な電子吸引性官能基であるため
、スルホン酸基同士が相互作用をおこし樹脂がゲル化す
る。そうなると磁性塗料の粘度が大幅に上昇し、その結
果磁性粉に対する分散性が逆に悪くなる。また逆にスル
ホン酸金属塩の導入量が少ないと磁性粉に対する吸着性
が弱くなり、その結果分散が悪くなる。
The method of introducing a sulfonic acid metal salt with the strongest adsorption into vinyl chloride resin or urethane resin is effective in improving the dispersibility of magnetic powder, but the concentration of the sulfonic acid metal salt introduced and the sulfonic acid The molecular weight and usage amount of the binder resin into which the metal salt is introduced must be determined by fully considering the magnetization size, shape, and particle size of the magnetic powder. If the amount of sulfonic acid metal salt introduced is increased unnecessarily,
Since the sulfonic acid groups themselves are strong electron-withdrawing functional groups, the sulfonic acid groups interact with each other, causing the resin to gel. In this case, the viscosity of the magnetic paint increases significantly, and as a result, its dispersibility with respect to magnetic powder deteriorates. On the other hand, if the amount of sulfonic acid metal salt introduced is small, the adsorption to magnetic powder becomes weak, resulting in poor dispersion.

さらに結合剤樹脂量も磁性粉の形状、粒子径等を考慮し
て決定しなくてはならない。結合剤樹脂量が多すぎると
余分な樹脂は塗工後のカレンダー処理時に磁性層表面に
浮き出てきて、薄層の樹脂層を形成する。これはヘッド
のスペーシングロスを増大し、電磁変換特性を低下させ
る。最短記録波長0.4μmとし、磁性層表面の樹脂層
の膜厚を300オングストロームと仮定して計算すれば
、スペーシングロスによる電磁変換特性の出力低下は実
に4dB以上になる。また逆に結合剤樹脂量が少ないと
、磁性粉の分散が劣化することに加え、樹脂によって磁
性粉を十分に被覆することが困難になるため耐久性の面
でも問題が生じて来る。すなわち磁性粉と樹脂との結合
力が弱くなるため、デツキ走行時における粉落ちによる
ドロップアウトの増加、あるいは高温高温環境下におけ
るヘッド粉付着、さらには最悪の場合ヘッド目詰まりを
生じる可能性もある。
Furthermore, the amount of binder resin must be determined by taking into account the shape, particle size, etc. of the magnetic powder. If the amount of binder resin is too large, the excess resin will rise to the surface of the magnetic layer during calendering after coating, forming a thin resin layer. This increases head spacing loss and degrades electromagnetic conversion characteristics. If the calculation is performed assuming that the shortest recording wavelength is 0.4 μm and the thickness of the resin layer on the surface of the magnetic layer is 300 angstroms, the output drop in the electromagnetic conversion characteristics due to spacing loss will actually be more than 4 dB. On the other hand, if the amount of binder resin is small, not only will the dispersion of the magnetic powder deteriorate, but it will also become difficult to cover the magnetic powder sufficiently with the resin, causing problems in terms of durability. In other words, the binding force between the magnetic powder and the resin becomes weaker, which may lead to an increase in dropouts due to powder falling off when the deck is running, powder adhesion to the head in high-temperature environments, and, in the worst case, head clogging. .

また分子量についてもある範囲に選定しなくてはならな
い。分子量が大きすぎると、X線粒子径で170オング
ストローム以下の超微粒子磁性粉に対しては、塗料粘度
が急激に上昇し逆に磁性粉の分散を阻害する。逆に分子
量が小さいと磁性塗料を支持体上に塗布してから硬化剤
を用いて硬化させる際に、未反応分が生じ低分子量成分
が磁性塗膜中に残存して塗膜の物性を劣化させるからで
ある。
The molecular weight must also be selected within a certain range. If the molecular weight is too large, the viscosity of the coating material will rapidly increase for ultrafine magnetic powder having an X-ray particle size of 170 angstroms or less, and the dispersion of the magnetic powder will be inhibited. On the other hand, if the molecular weight is small, when the magnetic paint is applied onto a support and then cured using a curing agent, unreacted components will be generated and low molecular weight components will remain in the magnetic coating, deteriorating the physical properties of the coating. This is because it makes you

以上のように塩化ビニル系樹脂、およびポリウレタン樹
脂においてそのスルホン酸基導入量、あるいは樹脂使用
量、さらには分子量がテープ特性に及ぼす影響はきわめ
て大きく、その設定は十分慎重に行う必要がある。
As described above, the amount of sulfonic acid groups introduced into vinyl chloride resins and polyurethane resins, the amount of resin used, and even the molecular weight have a very large influence on tape properties, and these settings must be made with great care.

磁性粉の表面を有機的、無機的に処理して分散性を向上
させる手法は、粒子径が比較的大きく、磁化強度も小さ
い酸化鉄系磁性粉ではある程度効果が期待できるが、磁
化強度も大きくなおかつX線粒子径で170オングスト
ロームを切る様な、超微粒子の金属磁性粉末にはこれま
で満足のいく分散性が得られていない。さらに有機的な
表面処理の場合、表面処理剤が磁性粉と未反応で磁性塗
膜中に残存すると、塗膜物性が劣化し、特に高温高温環
境下における粉落ち、あるいは低温におけるスチル特性
の悪化を招く。無機的な表面処理の場合、磁性塗料に最
も不適当な材料である水を用いることが多(、そのため
に表面処理後磁性粉を十分に洗浄、乾燥を行う必要があ
り工程が複雑になり、磁性粉が高価になり定常的に使用
することは困難となる。
The method of organically or inorganically treating the surface of magnetic powder to improve dispersibility can be expected to be somewhat effective for iron oxide magnetic powders, which have relatively large particle sizes and low magnetization strength, but Furthermore, it has not been possible to obtain satisfactory dispersibility for ultrafine metal magnetic powder particles having an X-ray particle diameter of less than 170 angstroms. Furthermore, in the case of organic surface treatment, if the surface treatment agent remains in the magnetic coating without reacting with the magnetic powder, the physical properties of the coating will deteriorate, especially powder falling off in high-temperature environments, or deterioration of still characteristics at low temperatures. invite. In the case of inorganic surface treatment, water is often used, which is the most unsuitable material for magnetic paint (because of this, it is necessary to thoroughly wash and dry the magnetic powder after surface treatment, which complicates the process. Magnetic powder becomes expensive and difficult to use regularly.

塗料化工法については最近その発達は目覚ましく、磁化
が大きく微粒子の金属磁性粉末も分散ができる様になっ
てきた。しかしこれらはあくまでも本発明で述べている
様なスルホン酸基を導入した、塩化ビニル系樹脂かポリ
ウレタン樹脂をもちいてはじめて高分散されるのであり
、いかに塗料化技術が進歩しても高分散性の結合剤樹脂
がなければ、必要とする高い電磁変換特性を満足する分
散はできないのが現状である。
Recently, there has been remarkable progress in paint conversion methods, and it has become possible to disperse fine particles of metal magnetic powder with large magnetization. However, these can only be highly dispersed by using vinyl chloride resin or polyurethane resin into which sulfonic acid groups have been introduced as described in the present invention, and no matter how advanced the coating technology is, it will not be possible to achieve high dispersion. At present, without a binder resin, dispersion that satisfies the required high electromagnetic conversion properties is not possible.

課題を解決するための手段 上記課題を解決するために本発明の構成は、軸比が5〜
7であって短軸方向のX線粒子径が170オングストロ
ーム以下である強磁性金属粉末に対して、分子中にイオ
ウ含有率が0.1〜0.9重量%になるようにスルホン
酸金属塩基を有し、分子量が10000〜50000で
ある結合剤樹脂を、金属粉末100重量部に対し16〜
19重量部となるように使用して実現される。
Means for Solving the Problems In order to solve the above problems, the configuration of the present invention has an axial ratio of 5 to 5.
7 and has an X-ray particle size in the short axis direction of 170 angstroms or less, a sulfonic acid metal base is added so that the sulfur content in the molecule is 0.1 to 0.9% by weight. and a molecular weight of 10,000 to 50,000, in an amount of 16 to 100 parts by weight of metal powder.
This is achieved by using 19 parts by weight.

作用 本発明の構成によれば、結合剤樹脂中に磁性粉への吸着
力の強いスルホン酸金属塩基を特定量使用しているため
に、分散時に高い剪断力の加わる樹脂粘度となり、磁性
粉を強力に凝集させている磁気的引力と分子間力にうち
かって磁性粉に結合剤樹脂を吸着させることが可能とな
る。
Effects According to the structure of the present invention, since a specific amount of a sulfonic acid metal base that has a strong adsorption power to magnetic powder is used in the binder resin, the resin viscosity is such that a high shear force is applied during dispersion, which makes it difficult to absorb magnetic powder. It becomes possible to adsorb the binder resin to the magnetic powder by using the magnetic attraction and intermolecular force that cause the powder to coagulate strongly.

また吸着力が強いために、磁性塗料中で樹脂が磁性粉か
ら離脱することもなく、磁性塗料中でテーリングしてい
る樹脂は、磁性粉間で立体障害となり磁性粉の再凝集を
防ぐ。このため分散安定性に優れた磁性塗料が得られる
In addition, since the adsorption force is strong, the resin does not separate from the magnetic powder in the magnetic paint, and the tailing resin in the magnetic paint acts as a steric hindrance between the magnetic powders, preventing the magnetic powder from re-agglomerating. Therefore, a magnetic coating material with excellent dispersion stability can be obtained.

また必要最小限の量の結合剤樹脂が用いられているため
、磁性粉を被覆する樹脂層が薄く、広い環境下で耐久性
と電磁変換性に優れた磁気記録媒体が得られる。
Furthermore, since the minimum amount of binder resin is used, the resin layer covering the magnetic powder is thin, and a magnetic recording medium with excellent durability and electromagnetic conversion properties can be obtained in a wide range of environments.

さらに結合剤樹脂の分子量が10000〜50000と
好ましい範囲に特定されているため、塗料調整時に作業
性に優れ、硬化剤との反応後も未反応成分が残らず、保
存に対する信頼性も高い。
Furthermore, since the molecular weight of the binder resin is specified within a preferable range of 10,000 to 50,000, it has excellent workability during paint preparation, no unreacted components remain after reaction with the curing agent, and is highly reliable for storage.

実施例 本発明に用いられるスルホン酸金属塩基は、結合剤樹脂
中の側鎖に一303Mのかたちで導入されている。ここ
でMは水素原子、リチウム、ナトリウム、カリウムであ
る。またこれら金属塩基が導入される本発明に係わる結
合剤樹脂としては、塩化ビニル−酢酸ビニル共重合体、
塩化ビニル酢酸ビニル−ビニルアルコール共重合体、塩
化ヒニループロビオン酸ビニルービニルアルコール共重
合体、塩化ビニル−酢酸ビニル−マレイン酸ビニル−ビ
ニルアルコール共重合体、ポリエステル樹脂、ポリウレ
タン樹脂などが好適なものとして使用される。
EXAMPLE The sulfonic acid metal base used in the present invention is introduced into the side chain in the binder resin in the form of -303M. Here, M is a hydrogen atom, lithium, sodium, or potassium. In addition, the binder resin according to the present invention into which these metal bases are introduced include vinyl chloride-vinyl acetate copolymer,
Suitable examples include vinyl chloride-vinyl acetate-vinyl alcohol copolymer, vinyl chloride-vinyl acetate-vinyl alcohol copolymer, vinyl chloride-vinyl acetate-vinyl maleate-vinyl alcohol copolymer, polyester resin, polyurethane resin, etc. used as something.

また本発明における強磁性金属粉末は、Fe、Fe−G
o、Fe−Co−Ni等、あるいは耐候性、または製造
時の焼結防止等を考慮してAI、Cr、St等の微量の
添加元素を含有した針状金属粉末を用いることができる
。なおこれら強磁性金属粉末のX線粒子径、及び軸比は
、出発材料である含水酸化鉄の、結晶粒子径やH2によ
る還元時の温度、時間、雰囲気等を特定することによっ
て制御することができる。
Further, the ferromagnetic metal powder in the present invention is Fe, Fe-G
It is possible to use needle-shaped metal powder containing trace amounts of additive elements such as Al, Cr, St, etc. in consideration of weather resistance, prevention of sintering during manufacturing, etc. The X-ray particle size and axial ratio of these ferromagnetic metal powders can be controlled by specifying the crystal particle size of the starting material, hydrated iron oxide, and the temperature, time, atmosphere, etc. during reduction with H2. can.

硬化剤はポリイソシアネートが好適なものとして使用さ
れる。特に分子中に−N =、C= O基を2個以上有
する脂肪族、芳香族あるいは脂環式化合物から選ばれた
ジ、トリ、テトライソシアネートなどがその代表的なも
のである。これらのイソシアネートとしてはへキサメチ
レンジイソシアネート、キシリレンジイソシアネート、
4−4′ジフエニルメタンジイソシアネート、イソホロ
ンジイソシアネート、トリレンジイソシアネートなどで
ある。
A polyisocyanate is preferably used as the curing agent. Particularly representative are di-, tri-, and tetraisocyanates selected from aliphatic, aromatic, or alicyclic compounds having two or more -N=, C=O groups in the molecule. These isocyanates include hexamethylene diisocyanate, xylylene diisocyanate,
These include 4-4' diphenylmethane diisocyanate, isophorone diisocyanate, and tolylene diisocyanate.

また磁性層には、酸化アルミニウム、酸化クロム、酸化
鉄、シリコン酸化物を補強剤、研磨剤として添加したり
、滑剤として高級脂肪酸、及び脂肪酸エステルを、帯電
防止剤としてカーボンブラックなどを添加することも可
能である。
In addition, aluminum oxide, chromium oxide, iron oxide, and silicon oxide may be added as reinforcing agents and abrasives, higher fatty acids and fatty acid esters may be added as lubricants, and carbon black may be added as antistatic agents to the magnetic layer. is also possible.

以下に本発明の実施例について詳細に説明する。Examples of the present invention will be described in detail below.

実施例1 磁性粉 (鉄メタル粉 長軸0.13μm  短軸0.017μ
m Hc15500 e ) カーボンブラック         2 重量部(東海
カーボン(株)製、ジーストS)スルホン酸ナトリウム
基含有塩化ビニル樹脂(イオウ含有率 0.5%、分子
量 30000)9 重量部 スルホン酸ナトリウム基含有ポリウレタン樹脂(イオウ
含有率 0.5%、分子量 35000 )9 重量部 溶剤 メチルエチルケトン     24  重量部トルエン
          16  重量部シクロへキサノン
       8 重量部上記組成物を窒素雰囲気下(
02濃度2%以下)10リットル加圧ニーダ−にて2時
間混合混練をおこない混練物を得た。
Example 1 Magnetic powder (iron metal powder, major axis 0.13μm, short axis 0.017μm)
m Hc15500 e) Carbon black 2 parts by weight (manufactured by Tokai Carbon Co., Ltd., GEST S) Sodium sulfonate group-containing vinyl chloride resin (sulfur content 0.5%, molecular weight 30000) 9 parts by weight Sodium sulfonate group-containing polyurethane resin (Sulfur content 0.5%, molecular weight 35000) 9 parts by weight Solvent methyl ethyl ketone 24 parts by weight Toluene 16 parts by weight cyclohexanone 8 parts by weight The above composition was mixed under a nitrogen atmosphere (
02 (concentration: 2% or less) was mixed and kneaded for 2 hours in a 10 liter pressure kneader to obtain a kneaded product.

得られた混練物に、さらに以下に示す様な組成の材料を
添加し、デイシルバーにて希釈した後10リツトルサン
ドグラインダーにて分散をおこない磁性塗料とした。
Materials having the composition shown below were further added to the obtained kneaded material, diluted with Daysilver, and then dispersed in a 10-liter sand grinder to obtain a magnetic paint.

混練物            160  重量部a 
 A I z O3(0,3um粒状) 7 重量部溶
剤 メチルエチルケトン    150  重量部トルエン
         100  重量部シクロヘキサノン
      40  重量部得られた磁性塗料にさらに
以下の組成の材料を添加し、塗工を行った。
Kneaded product 160 parts by weight a
A I z O3 (0.3 um granules) 7 parts by weight Solvent methyl ethyl ketone 150 parts by weight Toluene 100 parts by weight Cyclohexanone 40 parts by weight Materials having the following composition were further added to the obtained magnetic paint, and coating was performed.

ステアリン酸          3 重量部ステアリ
ン酸−n−ブチル    1 重量部コロネートし  
        5 重量部塗工は厚さ15μmのポリ
エステルベースフィルム上に乾燥厚が4μmとなるよう
に行い、その後配向磁界を印加して配向させ、次いで熱
風により乾燥させた。さらに80°Cでカレンダー処理
を行ったのち、60″Cのオーブン中に24時間保持し
て硬化処理を施した。硬化後、バックコート層を0.6
μm塗布し、1/2インチ幅に切断してメタルビデオテ
ープとした。
Stearic acid 3 parts by weight n-butyl stearate 1 part by weight Coronate
5 parts by weight The coating was carried out on a polyester base film having a thickness of 15 μm so that the dry thickness was 4 μm, and then an orientation magnetic field was applied to orient it, and then it was dried with hot air. After further calendering at 80°C, it was kept in an oven at 60"C for 24 hours for curing. After curing, a back coat layer of 0.6
It was coated in micrometers and cut into 1/2 inch width to make metal video tape.

実施例2 実施例1のスルホン酸ナトリウム基含有ポリウレタン樹
脂9重量部のかわりに、スルホン酸基含有ポリエルテル
樹脂(イオウ含有率0.5% 分子量25000>を使
用した以外は実施例1と同様にして磁性塗料を得、これ
を用いてメタルビデオテープを作成した。
Example 2 The same procedure as in Example 1 was carried out except that instead of 9 parts by weight of the sodium sulfonate group-containing polyurethane resin of Example 1, a sulfonic acid group-containing polyester resin (sulfur content 0.5%, molecular weight 25,000) was used. We obtained a magnetic paint and used it to create a metal videotape.

比較例1〜2 実施例1のスルホン酸ナトリウム基含有塩化ビニル樹脂
、及びスルホン酸ナトリウム基含有ポリウレタン樹脂の
重量部を第1表に示す重量部とした以外は実施例1と同
様にして磁性塗料を得、これを用いてメタルビデオテー
プを作成した。
Comparative Examples 1-2 Magnetic paint was prepared in the same manner as in Example 1, except that the parts by weight of the sodium sulfonate group-containing vinyl chloride resin and the sodium sulfonate group-containing polyurethane resin of Example 1 were changed to the parts by weight shown in Table 1. was obtained and used to create a metal videotape.

(以下余白) 第1表 第2表 比較例3および比較例4 実施例1において、スルホン酸ナトリウム基含有の塩化
ビニル樹脂のスルホン酸基含有量を、イオウ含有率で第
2表に示す量に変える以外は実施例1と同様にして磁塗
料を得、これを用いてメタルビデオテープを作成した。
(Left below) Table 1 Table 2 Comparative Example 3 and Comparative Example 4 In Example 1, the sulfonic acid group content of the vinyl chloride resin containing sodium sulfonate group was adjusted to the amount shown in Table 2 in terms of sulfur content. A magnetic paint was obtained in the same manner as in Example 1 except for the changes, and a metal videotape was made using this.

(以下余白) 比較例5および比較例6 実施例1において、スルホン酸ナトリウム基含有ポリウ
レタン樹脂の分子量を第3表に示すように変えた以外は
実施例1と同様にして磁性塗料を得、これを用いてメタ
ルビデオテープを作成した。
(Margin below) Comparative Example 5 and Comparative Example 6 A magnetic paint was obtained in the same manner as in Example 1 except that the molecular weight of the sodium sulfonate group-containing polyurethane resin was changed as shown in Table 3. A metal videotape was created using

(以下余白) 第3表 例1をOdBとして示した。(Margin below) Table 3 Example 1 is shown as OdB.

第4表 第4表に得られた磁性塗料の塗料粘度、及びメタルビデ
オテープの表面粗さ、光沢度(塗工後)、ビデオS/N
比の測定結果を示す。
Table 4 Paint viscosity of magnetic paint obtained in Table 4, surface roughness of metal videotape, glossiness (after coating), video S/N
The results of the ratio measurements are shown.

ここで塗料粘度は塗工直前の塗料を、B型粘度計を用い
60rpmで測定した値を示す。また表面粗さはwyc
o社の非接触微小表面粗さ計で測定した場合の平均表面
粗さを示している。また光沢度は45°−45°クロス
の値を示す。ビデオS/N比は市販のMIrデツキを用
いて測定を行い、実施第5表には樹脂溶出量、及びこれ
らメタルビデオテープを用いて耐久試験を行ったときの
、ヘッド粉付着の程度を示す。
Here, the paint viscosity is a value measured at 60 rpm using a B-type viscometer for the paint just before coating. Also, the surface roughness is wyc
It shows the average surface roughness measured using a non-contact microsurface roughness meter manufactured by Company O. Moreover, the glossiness shows the value of 45°-45° cross. The video S/N ratio was measured using a commercially available MIr deck, and Table 5 shows the amount of resin eluted and the degree of head powder adhesion when a durability test was conducted using these metal video tapes. .

ここで樹脂溶出量は作成したテープをテトラヒドロフラ
ン溶液中に60°Cで1時間放置した場合に、溶出して
くる樹脂量を測定した値である。耐久試験は市販のMI
Iデツキを用い40°C180RH%の環境下で100
バス走行させた場合のヘッド粉付着の状態を目視で5段
階評価した。
Here, the amount of resin eluted is the value obtained by measuring the amount of resin eluted when the prepared tape is left in a tetrahydrofuran solution at 60° C. for 1 hour. Durability test was conducted using commercially available MI
100 in an environment of 40°C, 180RH% using an I-deck.
The state of powder adhesion to the head when the bus was running was visually evaluated on a five-point scale.

(以下余白) 第5表 ■ ビデオテープが得られる。耐久性に関しても樹脂の磁性
粉に対する吸着力が強力なため、テトラヒドロフラン溶
液への溶出量も少なく、その結果ヘッド粉付着も少ない
(Left below) Table 5 ■ Videotape is obtained. In terms of durability, since the resin has a strong adsorption power to magnetic powder, the amount eluted into the tetrahydrofuran solution is small, and as a result, there is little adhesion of powder to the head.

比較例1は樹脂量が少ないため、磁性粉の分散が不十分
であり、その結果表面粗さが悪く、ビデオS/N比が低
い。また耐久性に関しても磁性粉を樹脂で十分に被覆で
きていないため、磁性塗膜がもろく粕付着も多い。比較
例2は逆に樹脂量が多すぎるため、磁性層表面に樹脂層
が存在し、スペーシングロスを生じている。その結果、
分散は良好で表面粗さも良いが、ビデオS/N比か低い
In Comparative Example 1, since the amount of resin was small, the magnetic powder was insufficiently dispersed, resulting in poor surface roughness and low video S/N ratio. In addition, regarding durability, since the magnetic powder is not sufficiently coated with resin, the magnetic coating film is brittle and has a lot of dregs attached. On the other hand, in Comparative Example 2, since the amount of resin was too large, a resin layer was present on the surface of the magnetic layer, resulting in spacing loss. the result,
Dispersion is good and surface roughness is good, but the video S/N ratio is low.

比較例3及び比較例5は樹脂中のスルホン酸ナトリウム
の含有量が多い、あるいは樹脂の分子量が大きいために
磁性塗料の粘度が非常に高い。そのため分散性が劣化し
、ビデオS/N比が低い。比較例4は逆にスルホン酸ナ
トリウムの含有量が少ないため、樹脂の分散性が非常に
劣り、その結果ビデオS/N比が低くなっている。比較
例6は樹脂の分子量が低いため、磁性塗料の粘度は低く
分散性も良好であるが、磁性層中に未反応の低分子量成
分が多く残存している。その結果粉付着量が多く耐久性
が著しく劣る。
In Comparative Example 3 and Comparative Example 5, the viscosity of the magnetic paint was extremely high because the content of sodium sulfonate in the resin was high or the molecular weight of the resin was large. Therefore, the dispersibility deteriorates and the video S/N ratio becomes low. On the contrary, in Comparative Example 4, the content of sodium sulfonate was low, so the dispersibility of the resin was very poor, and as a result, the video S/N ratio was low. In Comparative Example 6, since the molecular weight of the resin is low, the viscosity of the magnetic paint is low and the dispersibility is good, but many unreacted low molecular weight components remain in the magnetic layer. As a result, the amount of powder adhesion is large and the durability is significantly inferior.

発明の効果 以下述べたように、本発明によれば強磁性で超微粒子の
金属磁性粉末を高分散することが可能となり、これによ
ってビデオS/N比が高く、耐久性に優れた磁気記録媒
体を得ることができる。
Effects of the Invention As described below, according to the present invention, it is possible to highly disperse ferromagnetic and ultrafine metal magnetic powder, thereby producing a magnetic recording medium with a high video S/N ratio and excellent durability. can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 非磁性支持体上に針状強磁性金属粉末と結合剤樹脂とを
主成分とする磁性層を設けてなる磁気記録媒体であって
、上記金属粉末の軸比が5〜7であって短軸方向のX線
粒子径が170オングストローム以下であり、上記結合
剤樹脂が分子中にイオウ含有率が0.1〜0.9重量%
になるようにスルホン酸金属塩基を有しかつ分子量が1
0000〜50000であり、上記金属粉末100重量
部に対し上記結合剤樹脂が16〜19重量部含まれてい
ることを特徴とする磁気記録媒体。
A magnetic recording medium comprising a magnetic layer mainly composed of an acicular ferromagnetic metal powder and a binder resin on a non-magnetic support, the metal powder having an axial ratio of 5 to 7 and a short axis. The X-ray particle size in the direction is 170 angstroms or less, and the binder resin has a sulfur content of 0.1 to 0.9% by weight in the molecule.
It has a sulfonic acid metal base such that the molecular weight is 1.
0,000 to 50,000, and the binder resin is contained in an amount of 16 to 19 parts by weight per 100 parts by weight of the metal powder.
JP2160536A 1990-06-19 1990-06-19 Magnetic recording medium Pending JPH0449517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2160536A JPH0449517A (en) 1990-06-19 1990-06-19 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2160536A JPH0449517A (en) 1990-06-19 1990-06-19 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH0449517A true JPH0449517A (en) 1992-02-18

Family

ID=15717101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2160536A Pending JPH0449517A (en) 1990-06-19 1990-06-19 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0449517A (en)

Similar Documents

Publication Publication Date Title
JP3922664B2 (en) Magnetic recording medium
JPS6057530A (en) Magnetic recording medium
JPH05178604A (en) Carbon black and magnetic recording medium using the same
JPH0449517A (en) Magnetic recording medium
JPS6292128A (en) Magnetic recording medium
JPS62295217A (en) Magnetic recording medium
JP2822218B2 (en) Manufacturing method of magnetic recording medium
JPH03224128A (en) Magnetic recording medium
JP3638379B2 (en) Magnetic recording medium
JP2945444B2 (en) Coating type magnetic recording medium for coating type magnetic recording media
JPS62219327A (en) Solid additive for magnetic recording medium and magnetic recording medium using such additive
JP3727823B2 (en) Magnetic recording medium
JPH0935244A (en) Magnetic recording medium
JPS59144034A (en) Magnetic recording medium
JP2001351224A (en) Magnetic recording medium
JPH11102514A (en) Magnetic recording medium
JPH08194939A (en) Magnetic recording medium and its manufacture
JPH06162475A (en) Magnetic recording medium
JPH06162483A (en) Magnetic recording medium
JPS6352326A (en) Magnetic recording medium
JPS62159340A (en) Magnetic recording medium
JPH01251425A (en) Magnetic recording medium
JPH01112524A (en) Magnetic recording medium and production thereof
JPS60263327A (en) Magnetic recording medium
JPH0935243A (en) Magnetic recording medium