JPH0449046B2 - - Google Patents

Info

Publication number
JPH0449046B2
JPH0449046B2 JP61229866A JP22986686A JPH0449046B2 JP H0449046 B2 JPH0449046 B2 JP H0449046B2 JP 61229866 A JP61229866 A JP 61229866A JP 22986686 A JP22986686 A JP 22986686A JP H0449046 B2 JPH0449046 B2 JP H0449046B2
Authority
JP
Japan
Prior art keywords
measuring
measured
measurement
rail
arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61229866A
Other languages
Japanese (ja)
Other versions
JPS6385311A (en
Inventor
Hiroshi Ogawa
Haruo Yoshida
Shuji Okamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP22986686A priority Critical patent/JPS6385311A/en
Publication of JPS6385311A publication Critical patent/JPS6385311A/en
Publication of JPH0449046B2 publication Critical patent/JPH0449046B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、薄板状の被測定物体表面に平坦度を
測定するフラツトネス測定装置に係わり、特に被
測定物体を固定して測定センサを移動させるよう
にしたフラツトネス測定装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a flatness measuring device that measures the flatness of the surface of a thin plate-shaped object to be measured, and particularly relates to a flatness measuring device that measures the flatness of the surface of a thin plate-shaped object to be measured. The present invention relates to a flatness measuring device as described above.

[従来の技術] 例えばIC半導体回路素子を製作するときの材
料に用いられる半導体ウエーハ、セラミツク基
板、コンピユータの記憶媒体としての磁気デイス
クや光デイスク等の製造過程の中間検査工程や最
終検査工程において、これ等が規格寸法どうり製
作されているか否かを検査する装置の一つとして
フラツトネス測定装置がある。
[Prior Art] For example, in the intermediate inspection process and final inspection process of the manufacturing process of semiconductor wafers and ceramic substrates used as materials for manufacturing IC semiconductor circuit elements, magnetic disks and optical disks as storage media for computers, etc. A flatness measuring device is one of the devices for inspecting whether these products are manufactured to standard dimensions.

このフラツトネス測定装置は、主として前記ウ
エーハ等の薄板状に形成された被測定物体表面に
おけるうねり現象(波打ち現象)を測定するもの
である。そして、一般にこのようなフラツトネス
測定装置は第7図に示すように構成されている。
すなわち、図示しない筐体内のフレーム1にレー
ル2が配設されており、このレール2に第8図に
示す2個のリニア軸受体3a,3bを介して断面
がL字型に形成された測定台4が係合されてい
る。なお、この測定台4はボールねじ等の図示し
ない送り機構によつてレール2の敷設方向に移動
される。
This flatness measuring device mainly measures the undulation phenomenon (undulation phenomenon) on the surface of a thin plate-like object to be measured, such as the wafer. Generally, such a flatness measuring device is constructed as shown in FIG.
That is, a rail 2 is disposed on a frame 1 in a housing (not shown), and the rail 2 has an L-shaped cross section through two linear bearing bodies 3a, 3b shown in FIG. Platform 4 is engaged. Note that this measuring table 4 is moved in the direction in which the rail 2 is laid by a feeding mechanism (not shown) such as a ball screw.

測定台4の上面5には例えば円形の被測定物体
6が載置される。そして、この測定台4の上方位
置に、上端が前記筐体の天井に固定された支持ア
ーム7が対向配置され、この支持アーム7の下端
に距離測定センサ8が取付けられている。
For example, a circular object to be measured 6 is placed on the upper surface 5 of the measurement table 4 . A support arm 7 whose upper end is fixed to the ceiling of the casing is disposed above the measuring table 4 to face it, and a distance measuring sensor 8 is attached to the lower end of the support arm 7.

この距離測定センサ8内には、第9図に示すよ
うに、例えば単一波長の測定光を出力する発光ダ
イオード等の光源9と光の受光位置を検出できる
ポジシヨンセンサ10とが所定角度を有して配置
されている。
As shown in FIG. 9, within this distance measurement sensor 8, a light source 9 such as a light emitting diode that outputs measurement light of a single wavelength, and a position sensor 10 that can detect the light receiving position are installed at a predetermined angle. It is located with a

このように構成されたフラツトネス測定装置に
おいて、測定台4をレール2に沿つて移動させる
と、距離測定センサ8の被測定物体6に対する対
向位置が順次移動する。そして測定台4の任意の
位置において、光源9から出力された測定光11
は被測定物体6の表面で反射されて、実線で示す
ようにポジシヨンセンサ10へ入力される。ポジ
シヨンセンサ10は測定光11の入射位置に対応
した位置信号を出力する。次に測定台4が移動し
て、被測定物体6の表面位置が例えば二点鎖線で
示すように変化すると、ポジシヨンセンサ10上
の測定光11の入射位置が変化する。したがつ
て、距離測定センサ8と被測定物体6との間の距
離変化、すなわち被測定物体6表面のうねり現象
が測定できる。
In the flatness measuring device configured in this manner, when the measuring table 4 is moved along the rail 2, the position of the distance measuring sensor 8 facing the object to be measured 6 is sequentially moved. Then, at any position on the measuring table 4, the measuring light 11 output from the light source 9
is reflected by the surface of the object to be measured 6 and is input to the position sensor 10 as shown by the solid line. The position sensor 10 outputs a position signal corresponding to the incident position of the measurement light 11. Next, when the measuring table 4 moves and the surface position of the object to be measured 6 changes, for example, as shown by the two-dot chain line, the incident position of the measuring light 11 on the position sensor 10 changes. Therefore, the change in distance between the distance measurement sensor 8 and the object to be measured 6, that is, the undulation phenomenon on the surface of the object to be measured 6 can be measured.

[発明が解決しようとする問題点] しかしながら、上記のように構成されたフラツ
トネス測定装置においても次のような問題があつ
た。すなわち、第7図および第8図に示すよう
に、被測定物体6の各部のうねり現象を測定する
ためには、距離測定センサ8を固定したままで、
測定台4に搭載された被測定物体6を移動させる
ようにしている。この測定台4は精密に構成され
たリニア軸受体3a,3bにレール2に沿つて移
動されるが、移動に伴う振動を零に制御すること
は不可能である。従つて測定台4は移動期間中に
種々の振動モードで振動する。例えば一つの振動
モードとして第8図に示すように測定台4の中心
点Aを中心として矢印Bで示すようなピツチング
振動が生じる。したがつてこの場合、測定台4の
上面5の中心点A近傍位置における被測定物体6
表面の上下位置はあまり変化しないが、両端部に
位置している被測定物体6表面の上下方向位置は
大きく変動することになる。その結果、距離測定
センサ8が図中aで示す中央位置に位置した場合
と、図中b,cで示す周辺位置に位置した場合と
では測定値に大きな差が生じ、正確な測定結果が
得られない問題がある。
[Problems to be Solved by the Invention] However, the flatness measuring device configured as described above also has the following problems. That is, as shown in FIGS. 7 and 8, in order to measure the undulation phenomenon of each part of the object to be measured 6, the distance measurement sensor 8 is kept fixed;
An object to be measured 6 mounted on a measuring table 4 is moved. Although the measuring table 4 is moved along the rail 2 by precisely configured linear bearing bodies 3a and 3b, it is impossible to control vibrations accompanying the movement to zero. The measuring table 4 therefore vibrates in various vibration modes during the movement. For example, as one vibration mode, pitting vibration as shown by arrow B occurs around center point A of measuring table 4 as shown in FIG. Therefore, in this case, the object to be measured 6 at a position near the center point A of the upper surface 5 of the measuring table 4
Although the vertical position of the surface does not change much, the vertical position of the surface of the object to be measured 6 located at both ends varies greatly. As a result, there is a large difference in the measured value between when the distance measurement sensor 8 is located at the center position shown as a in the figure and when it is located at the peripheral positions shown as b and c in the figure, making it difficult to obtain accurate measurement results. There is a problem that cannot be resolved.

特に、前述したようなウエーハやセラミツク基
板の被測定物体を測定する場合は、この被測定物
体の厚さが0.2〜0.6mm程度であり、外径は75〜
150mmもある。そのような形状で測定精度が1ミ
クロン程度を要求されるので、上述した振動現象
が発生すると、この測定精度を維持することは困
難であつた。
In particular, when measuring objects to be measured such as wafers and ceramic substrates as described above, the thickness of the objects to be measured is approximately 0.2 to 0.6 mm, and the outer diameter is approximately 75 to 75 mm.
150mm is also available. Since such a shape requires a measurement accuracy of about 1 micron, it has been difficult to maintain this measurement accuracy when the above-mentioned vibration phenomenon occurs.

さらに、前述したように被測定物体6は非常に
薄いので、振動により測定台4上を水平にずれる
懸念もある。
Furthermore, as described above, since the object to be measured 6 is very thin, there is also a concern that it may shift horizontally on the measuring table 4 due to vibration.

本発明は上記事情に鑑みてなされたものであ
り、その目的とするところは、被測定物体を移動
させずに、距離測定センサを移動させることによ
つて、振動による測定誤差を最少限に抑制でき、
測定精度を大幅に向上できるフラツトネス測定装
置を提供することにある。
The present invention has been made in view of the above circumstances, and its purpose is to minimize measurement errors caused by vibration by moving a distance measurement sensor without moving the object to be measured. I can,
An object of the present invention is to provide a flatness measuring device that can significantly improve measurement accuracy.

[問題点を解決するための手段] 本発明のフラツトネス測定装置においては、上
面に薄板状の被測定物体が載置される測定台と、
この測定台を上面が水平面内に回転するように支
持する回転支持機構と、測定台の上面に平行でか
つ上下方向に互い離間し、さらに被測定物体の測
定方向に平行に敷設された一対のレールと、この
各レールにおけるレール敷設方向の互いに異なる
位置に係合するとともに各レールの敷設方向に移
動自在に設けられた複数のリニア軸受体と、一端
が複数のリニア軸受体に固定され、他端が測定台
の上方でかつレールの敷設方向における各リニア
軸受体相互間の中心に位置するL字型の測定アー
ムと、各リニア軸受体を介して各レールに連結さ
れた測定アームを測定台に載置された被測定体の
測定方向に移動させる移動機構と、測定アームの
他端に取付けられ、この測定アームが移動期間中
における被測定物体までの距離の変化を非接触で
測定する距離測定センサとを設けている。
[Means for Solving the Problems] The flatness measuring device of the present invention includes a measuring table on which a thin plate-shaped object to be measured is placed;
A rotation support mechanism that supports this measurement table so that its top surface rotates within a horizontal plane, and a pair of rotating support mechanisms that are parallel to the top surface of the measurement table, spaced apart from each other in the vertical direction, and parallel to the measurement direction of the object to be measured. A rail, a plurality of linear bearing bodies that engage at different positions in the rail laying direction on each rail and are movable in the rail laying direction, one end of which is fixed to the plurality of linear bearing bodies, and the other An L-shaped measuring arm whose end is above the measuring stand and located at the center between each linear bearing body in the rail installation direction, and a measuring arm connected to each rail via each linear bearing body are connected to the measuring stand. A moving mechanism that moves the object to be measured placed on the object in the measurement direction, and a distance mechanism that is attached to the other end of the measuring arm and that measures the change in distance to the object during the movement period without contact. A measurement sensor is provided.

[作用] このように構成されたフラツトネス測定装置で
あれば、距離測定センサが他端に取付けられた測
定アームの一端はリニア軸受体を介してレールに
係合されいる。このレールは被測定物体が載置さ
れる測定台の上面に平行でかつ被測定物体の測定
方向に平行に敷設されているので、移動機構で測
定アームを移動させれば、測定アームに取付けら
れた距離測定センサは被測定物体の上方位置を測
定方向へ移動する。この場合、測定アームは測定
台の上面に平行でかつ上下方向に離間して敷設さ
れた一対のレールにおける各レールにそれぞれ係
合する複数のリニア軸受体に取付けられている。
したがつて、測定アームは上下方向に離間した一
対のレールに係合しているので、測定アームが移
動する場合に移動方向の両端が上下方向に振動す
るピツチング振動が発生しにくい。また、距離測
定センサが取付けられる測定アームの他端(上
端)の測定方向の位置は各リニア軸受体相互間の
中心位置に一致している。よつて、たとえこの測
定アームが移動することに起因してピツチング振
動が生じたとしても、距離測定センサの位置変化
はほとんど無いので、振動による測定誤差が低減
される。また、測定台は移動しないので、被測定
物体が振動することもない。
[Operation] In the flatness measuring device configured as described above, one end of the measuring arm, to which the distance measuring sensor is attached to the other end, is engaged with the rail via the linear bearing body. This rail is laid parallel to the top surface of the measuring table on which the object to be measured is placed and parallel to the measuring direction of the object to be measured, so if the measuring arm is moved by the moving mechanism, it can be attached to the measuring arm. The distance measurement sensor moves in the measurement direction above the object to be measured. In this case, the measurement arm is attached to a plurality of linear bearing bodies that engage with each rail of a pair of rails that are laid parallel to the top surface of the measurement table and spaced apart in the vertical direction.
Therefore, since the measuring arm is engaged with a pair of rails spaced apart in the vertical direction, pitting vibration, in which both ends of the measuring arm in the moving direction vibrate in the vertical direction, is less likely to occur when the measuring arm moves. Further, the position in the measurement direction of the other end (upper end) of the measurement arm to which the distance measurement sensor is attached coincides with the center position between the linear bearing bodies. Therefore, even if pitching vibration occurs due to the movement of the measurement arm, there is almost no change in the position of the distance measurement sensor, so measurement errors due to vibration are reduced. Furthermore, since the measuring table does not move, the object to be measured does not vibrate.

[実施例] 以下本発明の一実施例を図面を用いて説明す
る。
[Example] An example of the present invention will be described below with reference to the drawings.

第2図は実施例のフラツトネス測定装置の全体
を示す正面図である。図示するように、この装置
はフラツトネス測定機本体21と、このフラツト
ネス測定機本体21の測定アーム32と円形の測
定台24を駆動制御する駆動制御装置25と、距
離測定センサ36のアナログ信号を処理する信号
処理装置23と、各測定結果を演算処理するパー
ソナルコンピユータ26と、演算解析結果を表示
するCRT表示管27とで構成されている。
FIG. 2 is a front view showing the entire flatness measuring device of the embodiment. As shown in the figure, this device processes analog signals from a flatness measuring device main body 21, a drive control device 25 that drives and controls a measuring arm 32 of the flatness measuring device main body 21, and a circular measuring table 24, and a distance measuring sensor 36. A personal computer 26 performs arithmetic processing on each measurement result, and a CRT display tube 27 displays the arithmetic and analysis results.

第3図は実施例のフラツトネス測定機本体21
の外観を示す斜視図であり、第1図は第3図のX
−X′線で切断した場合の断面図である。ほぼ直
方体状に形成されたケース28の上面に前記円形
の測定台24が取付けられており、この測定台2
4の上面29の中央位置には磁気デイスクや光デ
イスク等の環状の被測定物体を載置するためのボ
ス30が取付けられている。なお、ウエーハやセ
ラミツク基板等の穴が形成されていない被測定物
体を載置するときは上記ボス30を取外す。この
測定台24はケース28内に載置されたサーボモ
ータ31で任意の角度位置に回転制御される。
Figure 3 shows the flatness measuring machine body 21 of the embodiment.
FIG. 1 is a perspective view showing the appearance of the
FIG. 3 is a cross-sectional view taken along the −X′ line. The circular measuring stand 24 is attached to the upper surface of the case 28 which is formed into a substantially rectangular parallelepiped shape.
A boss 30 is attached to the center of the upper surface 29 of the sensor 4 for placing an annular object to be measured such as a magnetic disk or an optical disk. Note that the boss 30 is removed when placing an object to be measured in which no holes are formed, such as a wafer or a ceramic substrate. This measuring table 24 is rotationally controlled to an arbitrary angular position by a servo motor 31 placed in a case 28 .

さらにケース28の上面には略L字型に形成さ
れた測定アーム32が往復移動するための方形窓
33が穿設されている。この方形窓33には測定
アーム32の移動方向に平行する5本の金属製の
丸棒34が横一列に嵌込まれている。
Furthermore, a rectangular window 33 is bored in the upper surface of the case 28 through which a measuring arm 32 formed in a substantially L-shape moves back and forth. Five metal round bars 34 parallel to the moving direction of the measuring arm 32 are fitted into the rectangular window 33 in a horizontal row.

前記L字型の測定アーム32のケース28上面
より上方に位置する部分の先端部には上下調節器
具35を介して距離測定センサ36が下向きに取
付けられている。この距離測定センサ36の先端
には測定光を出力する光源36aと被測定物体表
面で反射された測定光が入射されるポジシヨンセ
ンサ36bが取付けられている。そして、測定ア
ーム32を移動させたときに距離測定センサ36
の測定中心が前記測定台24の中心線を通過する
ように測定アーム32の寸法が設定されている。
測定アーム32の前記方形窓33に対向する位置
には、前記5個の丸棒34が貫通する貫通孔37
が穿設されている。また、ケース32内に設けら
れた仕切壁38には測定台24の上面29に平行
でかつ、この上面29に載置される被測定物体の
測定方向に平行する2本のレール39,40が取
付けられている。そして、レール39,40には
それぞれこのレール39,40に係合するそれぞ
れ2個のリニア軸受体41a,41bおよび42
a,42bが設けられており、これ等のリニア軸
受体41a,41bおよび42a,42bは前記
測定アーム32のケース28内に位置する一辺に
固定されている。前記リニア軸受体41a,41
bは例えば第4図に示すようにレール39に係合
しており、レール39の敷設方向に自由に移動で
きるように構成されている。
A distance measuring sensor 36 is attached to the distal end of the L-shaped measuring arm 32 located above the upper surface of the case 28 so as to face downward via a vertical adjustment device 35. A light source 36a that outputs measurement light and a position sensor 36b that receives measurement light reflected from the surface of the object to be measured are attached to the tip of the distance measurement sensor 36. Then, when the measuring arm 32 is moved, the distance measuring sensor 36
The dimensions of the measuring arm 32 are set so that the center of measurement passes through the center line of the measuring table 24.
A through hole 37 through which the five round bars 34 pass is provided at a position facing the square window 33 of the measurement arm 32.
is drilled. Further, on a partition wall 38 provided in the case 32, two rails 39 and 40 are provided which are parallel to the upper surface 29 of the measuring table 24 and parallel to the measurement direction of the object to be measured placed on this upper surface 29. installed. The rails 39, 40 have two linear bearing bodies 41a, 41b and 42, respectively, which engage with the rails 39, 40, respectively.
a, 42b are provided, and these linear bearing bodies 41a, 41b and 42a, 42b are fixed to one side of the measuring arm 32 located inside the case 28. The linear bearing bodies 41a, 41
For example, as shown in FIG. 4, b engages with the rail 39 and is configured to be able to move freely in the direction in which the rail 39 is laid.

さらに、ケース28内の両側壁間には第5図で
示すボールねじ43が軸支されており、このボー
ルねじ43は、このボールねじ43に螺合する前
記測定アーム32に取付けられたナツト44を介
してこの測定アーム32を貫通する。そして、こ
のボールねじ43はベルト45を介して送りモー
タ46にて回転される。したがつて、この送りモ
ータ46を回転させると、先端に距離測定センサ
36が取付けられた測定アーム32が測定方向に
移動する。しかして、ボールねじ43、ナツト4
4、ベルト45および送りモータ46は測定アー
ム32を被測定物体の測定方向に移動させる移動
機構を構成する。
Furthermore, a ball screw 43 as shown in FIG. The measuring arm 32 is penetrated through the measuring arm 32 through the measuring arm 32 . This ball screw 43 is rotated by a feed motor 46 via a belt 45. Therefore, when the feed motor 46 is rotated, the measuring arm 32 having the distance measuring sensor 36 attached to its tip moves in the measuring direction. Therefore, the ball screw 43 and the nut 4
4. The belt 45 and the feed motor 46 constitute a moving mechanism that moves the measuring arm 32 in the measuring direction of the object to be measured.

このように構成されたフラツトネス測定装置に
おいて、最初に送りモータ46を起動して、測定
アーム32を方形窓33のいずれか一方端へ移動
させる。次の、被測定物体を円形の測定台24の
上面2に載置する。そして、サーボモータ31に
て測定台24を回転させて被測定物体における測
定しようとする方向と距離測定センサ36の移動
方向とを合せる。次に一旦距離測定センサ36を
測定台24上へ移動させ、上下位置調整器35で
もつて、被測定物体表面で反射した測定光がポジ
シヨンセンサ36bのほぼ中央位置に入射するよ
うに、距離測定センサ36の上下位置を調整す
る。調整が終了すると、距離測定センサ36を再
び方形窓33の一方端の移動開始位置へ移動させ
る。以上の初期設定操作が終了し、送りモータ4
6を起動すると、測定アーム32の先端に取付け
られた距離測定センサ36が被測定物体の上方位
置を測定方向に等速度で移動する。しかして、距
離測定センサ36は前述した測定原理でもつて被
測定物体のうねり現象を測定していく。測定結果
はパーソナルコンピユータ26で演算処理されて
CRT表示管27に表示される。
In the flatness measuring device configured as described above, the feed motor 46 is first started to move the measuring arm 32 to either end of the rectangular window 33. The next object to be measured is placed on the upper surface 2 of the circular measuring table 24. Then, the measuring table 24 is rotated by the servo motor 31 to align the direction in which the measurement target object is to be measured with the moving direction of the distance measuring sensor 36. Next, the distance measurement sensor 36 is moved onto the measurement table 24, and the vertical position adjuster 35 is used to measure the distance so that the measurement light reflected from the surface of the object to be measured is incident on the approximately central position of the position sensor 36b. Adjust the vertical position of the sensor 36. When the adjustment is completed, the distance measurement sensor 36 is moved again to the movement start position at one end of the rectangular window 33. After the above initial setting operation is completed, the feed motor 4
6, the distance measuring sensor 36 attached to the tip of the measuring arm 32 moves at a constant speed in the measurement direction above the object to be measured. Thus, the distance measuring sensor 36 measures the undulation phenomenon of the object to be measured using the measurement principle described above. The measurement results are processed by the personal computer 26.
It is displayed on the CRT display tube 27.

このように構成されたフラツトネス測定装置の
測定アーム32の移動期間中における振動現象を
第6図を用いて説明する。この場合、測定台24
は測定期間中は停止しているので、この測定台2
4による振動は発生しない。測定アーム32は図
示するように2本のレール39,40にてそれぞ
れリニア軸受体41a,41b,42a,42b
でもつてカイドされる。したがつて、測定アーム
32は第6図に示すように、上下方向2か所と水
平方向2か所との合計4か所でもつて各レール3
9,40に係合しているので、第8図に示す水平
方向2か所のみで係合している従来装置に比較し
てピツチング振動が発生しにくい。また、たと
え、第8図と同様に、移動方向に中心位置である
C点を中心とする矢印Dで示すピツチング振動が
発生したとしても、距離測定センサ36の中心軸
はこのピツチング振動している振動中心のC点を
通過するので、距離測定センサ36の下端位置に
おける上下方向位置変動はほとんどない。したが
つて、距離測定センサ36の下端に取付けられた
光源36a、ポジシヨンセンサ36bと測定台2
4に載置された被測定物体47との間の距離はた
とえピツチング振動が発生したとしてもほとんど
変化しない。その結果、測定精度を大幅に向上で
きる。
The vibration phenomenon during the period of movement of the measuring arm 32 of the flatness measuring device constructed in this way will be explained using FIG. 6. In this case, the measuring table 24
is stopped during the measurement period, so this measurement platform 2
No vibration occurs due to 4. The measuring arm 32 has linear bearing bodies 41a, 41b, 42a, 42b on two rails 39, 40, respectively, as shown in the figure.
But he is guided. Therefore, as shown in FIG.
9 and 40, pitting vibration is less likely to occur compared to the conventional device that engages only at two horizontal locations as shown in FIG. Further, even if pitching vibration shown by arrow D centered on point C, which is the center position, occurs in the moving direction as shown in FIG. Since the vibration passes through point C, which is the center of vibration, there is almost no vertical positional change in the lower end position of the distance measurement sensor 36. Therefore, the light source 36a attached to the lower end of the distance measurement sensor 36, the position sensor 36b and the measurement table 2
Even if pitching vibration occurs, the distance between the measured object 47 and the measured object 47 placed on the test piece 4 hardly changes. As a result, measurement accuracy can be significantly improved.

また、測定台24は測定期間中は移動しないの
で、たとえウエーハやセラミツク基板等の極く薄
い被測定物体であつたとしても、この被測定物体
が測定期間中に振動により移動することはない。
Further, since the measurement table 24 does not move during the measurement period, even if the object to be measured is extremely thin, such as a wafer or a ceramic substrate, the object to be measured will not move due to vibration during the measurement period.

なお、本発明は上述した実施例に限定されるも
のではない、実施例においては、レールを2本設
け、リニア軸受体を4個設けたが、これ等の設置
数は必要に応じて変更してもよい。
Note that the present invention is not limited to the embodiments described above. In the embodiments, two rails and four linear bearing bodies were provided, but the number of these rails installed may be changed as necessary. It's okay.

[発明の効果] 以上説明したように本発明によれば、測定期間
中は、被測定物体を移動させずに、距離測定セン
サを移動させるようにしている。さらに、測定ア
ームは測定台の上面に平行でかつ上下方向に離間
して敷設された一対のレールにおける各レールに
それぞれ係合する複数のリニア軸受体に取付けら
れている。したがつて、測定アームは上下方向に
離間した一対のレールに係合しているので、測定
アームが移動する場合に移動方向の両端が上下方
向に振動するピツチング振動が発生しにくい。ま
た、距離測定センサが取付けられる測定アームの
他端の測定方向の位置は各リニア軸受体相互間の
中心位置に一致している。したがつて、振動によ
る測定誤差を最少限に抑制でき、測定精度を大幅
に向上できる。
[Effects of the Invention] As explained above, according to the present invention, during the measurement period, the distance measurement sensor is moved without moving the object to be measured. Furthermore, the measurement arm is attached to a plurality of linear bearing bodies that respectively engage with each rail of a pair of rails laid parallel to the top surface of the measurement table and spaced apart from each other in the vertical direction. Therefore, since the measuring arm is engaged with a pair of rails spaced apart in the vertical direction, pitting vibration, in which both ends of the measuring arm in the moving direction vibrate in the vertical direction, is less likely to occur when the measuring arm moves. Further, the position of the other end of the measurement arm to which the distance measurement sensor is attached in the measurement direction coincides with the center position between the linear bearing bodies. Therefore, measurement errors due to vibration can be suppressed to a minimum, and measurement accuracy can be greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第6図は本発明の一実施例に係わる
フラツトネス測定装置を示すものであり、第1図
は要部を示す断面図、第2図は装置全体を示す正
面図、第3図は外観を示す斜視図、第4図はレー
ルおよびリニア軸受体を取出して示す斜視図、第
5図は移動機構を取出して示す正面図、第6図は
振動状態を示す模式図であり、第7図は従来のフ
ラツトネス測定装置の要部を示す斜視図、第8図
は同従来のフラツトネス測定装置の振動状態を示
す模式図、第9図は距離測定センサの測定原理を
説明するための模式図である。 21……フラツトネス測定機本体、24……測
定台、28……ケース、29……上面、31……
サーボモータ、32……測定アーム、33……方
形窓、34……丸棒、36……距離測定センサ、
37……貫通孔、39,40……レール、41
a,41b,42a,42b……リニア軸受体、
43……ボールねじ、44……ナツト、46……
送りモータ、47……被測定物体。
1 to 6 show a flatness measuring device according to an embodiment of the present invention, FIG. 1 is a sectional view showing the main parts, FIG. 2 is a front view showing the entire device, and FIG. 3 is a flatness measuring device according to an embodiment of the present invention. 4 is a perspective view showing the rail and linear bearing body taken out, FIG. 5 is a front view showing the moving mechanism taken out, and FIG. 6 is a schematic diagram showing the vibration state. Fig. 7 is a perspective view showing the main parts of a conventional flatness measuring device, Fig. 8 is a schematic diagram showing the vibration state of the conventional flatness measuring device, and Fig. 9 is a schematic diagram for explaining the measurement principle of a distance measuring sensor. It is a diagram. 21...Flatness measuring device main body, 24...Measurement stand, 28...Case, 29...Top surface, 31...
Servo motor, 32...Measuring arm, 33...Square window, 34...Round bar, 36...Distance measurement sensor,
37...Through hole, 39, 40...Rail, 41
a, 41b, 42a, 42b... linear bearing body,
43... Ball screw, 44... Nut, 46...
Feed motor, 47...Object to be measured.

Claims (1)

【特許請求の範囲】[Claims] 1 上面に薄板状の被測定物体が載置される測定
台24と、この測定台を前記上面が水平面内に回
転するように支持する回転支持機構31と、前記
測定台の上面に平行でかつ上下方向に互い離間
し、さらに前記被測定物体の測定方向に平行に敷
設された一対のレール39,40と、この各レー
ルにおけるレール敷設方向の互いに異なる位置に
係合するとともに各レールの敷設方向に移動自在
に設けられた複数のリニア軸受体41a,41
b,42a,42bと、一端が前記複数のリニア
軸受体に固定され、他端が前記測定台の上方でか
つ前記レールの敷設方向における前記各リニア軸
受体相互間の中心に位置するL字型の測定アーム
32と、前記各リニア軸受体を介して前記各レー
ルに連結された前記測定アームを前記測定台に載
置された前記被測定体の測定方向に移動させる移
動機構43,44,45,46と、前記測定アー
ムの他端に取付けられ、この測定アームが移動期
間中における前記被測定物体までの距離の変化を
非接触で測定する距離測定センサ36とを具備し
たことを特徴とするフラツトネス測定装置。
1. A measuring table 24 on which a thin plate-shaped object to be measured is placed, a rotation support mechanism 31 that supports this measuring table so that the upper surface rotates in a horizontal plane, and a rotating support mechanism 31 that is parallel to the upper surface of the measuring table and that is parallel to the upper surface of the measuring table. A pair of rails 39 and 40 are spaced apart from each other in the vertical direction and are further laid parallel to the measurement direction of the object to be measured, and the rails are engaged at mutually different positions in the rail laying direction on each rail, and the rails are engaged in the laying direction of each rail. A plurality of linear bearing bodies 41a, 41 movably provided in
b, 42a, 42b, and an L-shape having one end fixed to the plurality of linear bearing bodies and the other end located above the measuring table and at the center between the linear bearing bodies in the direction in which the rail is laid. a measuring arm 32, and a moving mechanism 43, 44, 45 that moves the measuring arm connected to each of the rails via each of the linear bearing bodies in the measuring direction of the object to be measured placed on the measuring stand. , 46, and a distance measuring sensor 36 attached to the other end of the measuring arm to non-contactly measure changes in the distance to the object to be measured while the measuring arm is moving. Flatness measuring device.
JP22986686A 1986-09-30 1986-09-30 Flatness measuring apparatus Granted JPS6385311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22986686A JPS6385311A (en) 1986-09-30 1986-09-30 Flatness measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22986686A JPS6385311A (en) 1986-09-30 1986-09-30 Flatness measuring apparatus

Publications (2)

Publication Number Publication Date
JPS6385311A JPS6385311A (en) 1988-04-15
JPH0449046B2 true JPH0449046B2 (en) 1992-08-10

Family

ID=16898925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22986686A Granted JPS6385311A (en) 1986-09-30 1986-09-30 Flatness measuring apparatus

Country Status (1)

Country Link
JP (1) JPS6385311A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008281463A (en) * 2007-05-11 2008-11-20 Lasertec Corp Device and method for optical measuring, manufacturing method of pattern board and linear reciprocation device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200419A (en) * 1985-03-01 1986-09-05 Mitsutoyo Mfg Co Ltd Measuring machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200419A (en) * 1985-03-01 1986-09-05 Mitsutoyo Mfg Co Ltd Measuring machine

Also Published As

Publication number Publication date
JPS6385311A (en) 1988-04-15

Similar Documents

Publication Publication Date Title
US6367159B1 (en) Method and apparatus for measuring surface shape of thin element
US20020104231A1 (en) Position measuring apparatus
WO2008067561A2 (en) Interior contour measurement probe
KR100397884B1 (en) Device for testing wafer-transporting robot
JPH07227723A (en) Method for holding different diameter cylindrical material
JPH0543041B2 (en)
US6351313B1 (en) Device for detecting the position of two bodies
JPH0449046B2 (en)
JP2007064748A (en) Method for measuring systematic error unique to shape measuring apparatus and upright shape measuring apparatus
JP2001124542A (en) Method and apparatus for measurement of planarity of thin sheet material
JPH0649958U (en) Semiconductor wafer thickness measuring machine
JPH07502816A (en) measuring device
US6242926B1 (en) Method and apparatus for moving an article relative to and between a pair of thickness measuring probes to develop a thickness map for the article
JP2968956B2 (en) Thickness and / or warpage measuring device and method of using the same
JPH049533Y2 (en)
JP3940819B2 (en) Semiconductor wafer surface shape measuring apparatus and surface shape measuring method
JPH0480601A (en) Measuring device for quartz jig
US5298966A (en) Measurement system
JP2549802Y2 (en) Automatic dimension measuring device
JPS62134514A (en) Apparatus for measuring thickness and flatness degree of magnetic disk
JP2560063B2 (en) Scale accuracy measuring device
JPH0642921A (en) Device for measuring height of work
JP3008828B2 (en) Method and apparatus for measuring distance between opposing surfaces in slit
JPH03203838A (en) Processor for rotating body
JPH0814485B2 (en) Scale accuracy measuring device and measuring method