JPH0448716A - Substrate holder and exposure device with said holder - Google Patents

Substrate holder and exposure device with said holder

Info

Publication number
JPH0448716A
JPH0448716A JP2155611A JP15561190A JPH0448716A JP H0448716 A JPH0448716 A JP H0448716A JP 2155611 A JP2155611 A JP 2155611A JP 15561190 A JP15561190 A JP 15561190A JP H0448716 A JPH0448716 A JP H0448716A
Authority
JP
Japan
Prior art keywords
substrate
suction
pressure
holding device
blowout
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2155611A
Other languages
Japanese (ja)
Inventor
Mitsuaki Amamiya
光陽 雨宮
Shinichi Hara
真一 原
Eiji Sakamoto
英治 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2155611A priority Critical patent/JPH0448716A/en
Publication of JPH0448716A publication Critical patent/JPH0448716A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/707Chucks, e.g. chucking or un-chucking operations or structural details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70841Constructional issues related to vacuum environment, e.g. load-lock chamber
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70866Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece
    • G03F7/70875Temperature, e.g. temperature control of masks or workpieces via control of stage temperature

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To obtain a substrate holder, in which contact heat resistance can be lowered and the accuracy of pattern transfer is improved, by providing a control means controlling the opening and closing of a blow-off quantity adjusting valve and a suction-quantity adjusting valve from the output signal of a pressure sensor. CONSTITUTION:In the substrate holder, a plurality of blow-off ports 7 and a plurality of suction ports 3 are formed to the chuck surface 6 of a susceptor l, and the pressure of a fine space formed between the rear of a substrate 51 and the chuck surface 52 of a susceptor 50 is detected by a pressure sensor 11. The pressure of the fine space is kept at a constant value or more by opening and closing a blow-off quantity adjusting valve 14 installed on its midway of a blow-off pipe g connecting a plurality of the blow-off ports and outside space or a in response to detecting pressure and a suction-quantity adjusting valve 10 mounted on its midway of a suction pipe 4 connecting a plurality of the suction ports and a vacuum source 9 by control means 15, 16, thus keeping contact heat resistance between the substrate and the susceptor at a constant value or less.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、基板の裏面を真空吸着することにより該基板
を保持するピンチャック方式の基板保持装置および該装
置を有する露光装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a pin-chuck type substrate holding device that holds a substrate by vacuum suctioning the back side of the substrate, and an exposure apparatus having the device. .

〔従来の技術〕[Conventional technology]

半導体製造装置の露光装置において、マスクパターンを
ウェハなどの基板に転写する際の基板保持装置としては
、該基板の裏面を真空吸着することにより保持する基板
保持装置(たとえば、特公平1−14703号公報)が
よく用いられている。
In exposure equipment of semiconductor manufacturing equipment, a substrate holding device used when transferring a mask pattern onto a substrate such as a wafer is a substrate holding device that holds the back side of the substrate by vacuum suction (for example, Japanese Patent Publication No. 1-14703). Publications) are often used.

一般に、基板保持装置で基板を保持したとき、該基板と
該基板保持装置の保持台間の接触熱抵抗が大きいと、マ
スクパターンを前記基板に転写する際の露光エネルギー
が該基板から前記保持台に逃げていかないため、該基板
の温度上昇および熱変形を招きパターン転写精度が悪化
する。特に、真空吸着による基板保持装置の場合には、
前記基板の裏面と前記保持台のチャック面(吸着された
基板と対向する面)との間に形成される微小空間に、熱
を逃がすための熱媒体である気体が存在しないため、前
記基板の温度上昇によるパターン転写精度の悪化が顕著
となる。
Generally, when a substrate is held by a substrate holding device, if the contact thermal resistance between the substrate and the holding stand of the substrate holding device is large, the exposure energy when transferring a mask pattern to the substrate will be transferred from the substrate to the holding stand. As a result, the temperature of the substrate increases and thermal deformation occurs, resulting in a deterioration of pattern transfer accuracy. In particular, in the case of a substrate holding device using vacuum suction,
Since there is no gas as a heat medium for dissipating heat in the microspace formed between the back surface of the substrate and the chuck surface of the holding table (the surface facing the adsorbed substrate), the substrate The pattern transfer accuracy deteriorates significantly due to temperature rise.

そこで、真空吸着された基板の露光中の温度管理が行え
てしかも該基板の平坦度も保てる基板保持装置として、
ピンチャック方式の基板保持装置が提案されている。該
基板保持装置は、温度調節された水(以下、「温調水」
と称する。)を該基板保持装置の保持台内に設けた水路
に流すことにより前記基板の温度管理をするとともに、
前記保持台のチャック面に複数の突起部を設けることに
より前記基板の平坦度を保ち、しかも前記チャック面と
前記基板との間にごみなどが入るのを避けるものである
Therefore, we have developed a substrate holding device that can control the temperature of vacuum-adsorbed substrates during exposure and also maintain the flatness of the substrates.
A pin chuck type substrate holding device has been proposed. The substrate holding device uses temperature-controlled water (hereinafter referred to as "temperature-controlled water").
It is called. ) is allowed to flow through a water channel provided in the holding stand of the substrate holding device to control the temperature of the substrate, and
By providing a plurality of protrusions on the chuck surface of the holder, the flatness of the substrate is maintained and dirt and the like are prevented from entering between the chuck surface and the substrate.

第9図はピンチャック方式の基板保持装置の従来例の一
つを示す概略構成図である。
FIG. 9 is a schematic configuration diagram showing one of the conventional examples of a pin chuck type substrate holding device.

この基板保持装置は、外周壁101aを有する保持台1
01と、該保持台101のチャック面106に対称性よ
く設けられた21個の円柱状の突起部102と、前記保
持台】01のチャック面106に前記突起部102の間
に対称性よく設けられた16個の吸弓口103と、該1
6個の吸引口103と不図示の真空発生源とを接続する
吸引管104と、前記保持台101内の前記各突起部1
02の下を通るように配管された、不図示の恒温槽から
温調水が循環される水路105とを有する。
This substrate holding device includes a holding table 1 having an outer peripheral wall 101a.
01, 21 cylindrical protrusions 102 provided symmetrically on the chuck surface 106 of the holding base 101, and 21 cylindrical protrusions 102 provided symmetrically between the protrusions 102 on the chuck surface 106 of the holding base 01. The 16 bow openings 103 and the 1
A suction pipe 104 connecting six suction ports 103 and a vacuum generation source (not shown), and each of the protrusions 1 in the holding table 101
02, and a water passage 105 through which temperature-controlled water is circulated from a constant temperature bath (not shown), which is piped to pass under the water passage 102.

ここで、前記外周壁101aと前記各突起部102とは
同じ高さとなっており、またそれらの真空吸着される基
板と接触する面(以下、「接触面」と称する。)は平面
仕上げされている。
Here, the outer peripheral wall 101a and each of the protrusions 102 are at the same height, and their surfaces (hereinafter referred to as "contact surfaces") that come into contact with the substrate to be vacuum-adsorbed are finished flat. There is.

この基板保持装置では、真空吸着される基板は、該基板
が保持台1(]1の外周壁101aおよび各突起部10
2の接触面と接触する位置まで公知の搬送ハンド(不図
示)により搬送されてくる。その後、吸引v104が不
図示の真空発生源に連通されることにより、前記基板の
裏面が保持台101に真空吸着される。また、露光中の
前記基板の温度管理は、水路105に温調水を循環させ
て前記保持台101(特に、前記各突起部102)の温
度を一定に保つことにより行われる。
In this substrate holding device, the substrate to be vacuum suctioned is attached to the outer circumferential wall 101a of the holding table 1 ( ) 1 and to each protrusion 10 .
It is transported by a known transport hand (not shown) to a position where it contacts the contact surface of No. 2. Thereafter, the suction v104 is communicated with a vacuum generation source (not shown), so that the back surface of the substrate is vacuum-adsorbed onto the holding table 101. Further, the temperature of the substrate during exposure is controlled by circulating temperature-controlled water through the water channel 105 to keep the temperature of the holding table 101 (particularly, each of the projections 102) constant.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記従来例では、各突起部102の接触
面が平面仕上げされているにもかかわらず、該接触面に
は微小な凹凸やうねりが存在し、かつ基板の裏面にも微
小な凹凸やうねりが存在するため、前記基板の裏面を真
空吸着させたときの実際の接触面積は見かけの面積に比
へ非常に小さくなる。その結果、前記基板と前記各突起
部102との間の接触熱抵抗が大きくなるので、水路1
05に温調水を循環させて前記各突起部102の温度を
一定に保っても前記基板から前記各突起部102に熱が
逃げていかないため、露光中に上昇する前記基板の温度
を低くすることができないという問題がある。
However, in the above conventional example, although the contact surface of each protrusion 102 is finished flat, there are minute irregularities and undulations on the contact surface, and there are also minute irregularities and undulations on the back surface of the substrate. Therefore, when the back surface of the substrate is vacuum-adsorbed, the actual contact area becomes extremely small compared to the apparent area. As a result, the contact thermal resistance between the substrate and each of the protrusions 102 increases, so the water channel 1
Even if the temperature of each protrusion 102 is kept constant by circulating temperature-controlled water in 05, heat does not escape from the substrate to each protrusion 102, so the temperature of the substrate that rises during exposure is lowered. The problem is that I can't.

特に、X線露光装置(たとえば、特願昭63−2529
91号)などに使用される、マスクと基板とが数十ミク
ロンの距離を隔てて配置されてマスクパターンが転写さ
れるプロキシミティ方式による露光装置では、前記マス
クと前記基板との間には熱媒体である気体が存在するた
め、前記マスクの温度が前記基板の温度に追随するので
、該基板の温度上昇はそのまま前記マスクの熱歪を誘起
する。
In particular, X-ray exposure equipment (for example,
In exposure apparatuses using the proximity method, such as those used in 91), in which a mask and a substrate are placed at a distance of several tens of microns and a mask pattern is transferred, there is no heat between the mask and the substrate. Since the temperature of the mask follows the temperature of the substrate due to the presence of gas as a medium, an increase in the temperature of the substrate directly induces thermal distortion of the mask.

たとえば、第9図に示した保持台+01および各突起部
102をSUS材で構成して、基板を真空吸着したのち
の該基板と前記保持台101間の接触熱抵抗を測定した
ところ、該接触熱抵抗は10”[deg−cm”/ W
]であった。この接触熱抵抗値は、前記保持台101の
温度が一定であるとしても、X線露光で100 [mW
/cm21のエネルギーが投入されると、前記基板の温
度が数度上昇する値であり、該基板の温度上昇に伴なっ
て生じるマスクの熱歪によりパターンの位置ずれが生じ
てパターン転写精度が悪化する。
For example, when the holding stand +01 and each protrusion 102 shown in FIG. Thermal resistance is 10” [deg-cm”/W
]Met. Even if the temperature of the holding table 101 is constant, this contact thermal resistance value is 100 [mW
When energy of /cm21 is input, the temperature of the substrate rises by several degrees, and thermal distortion of the mask caused by the rise in temperature of the substrate causes pattern positional deviation, deteriorating pattern transfer accuracy. do.

本発明の目的は、接触熱抵抗が小さくでき、パターン転
写精度の向上が図れる基板保持装置および該装置を有す
る露光装置を提供することにある。
An object of the present invention is to provide a substrate holding device that can reduce contact thermal resistance and improve pattern transfer accuracy, and an exposure apparatus having the device.

〔課題を解決するための手段] 本発明の基板保持装置は、 基板の裏面を真空吸着することにより該基板を保持する
ピンチャック方式の基板保持装置であって、 保持台のチャック面に設けられた複数の吹出口と、 該複数の吹出口と外部空間またはボンベとを接続する吹
出管と、 該吹出管の途中に設けられた吹出量調節弁と、前記保持
台のチャック面の前記各吹出口からそれぞれ吹出された
気体を吸収できる部位にそれぞれ設けられた複数の吸引
口と、 該複数の吸引口と真空発生源とを接続する吸引管と、 該吸引管の途中に設けられた吸引量調節弁と、前記基板
の裏面と前記保持台のチャック面との間に形成される微
小空間の圧力を検出する圧力センサと、 該圧力センサの出力信号より前記吹出量調節弁および前
記吸引量調節弁の開閉を制御する制御手段とを有する。
[Means for Solving the Problems] The substrate holding device of the present invention is a pin chuck type substrate holding device that holds the substrate by vacuum suction on the back side of the substrate, and includes: a plurality of blow-off ports, a blow-off pipe that connects the plurality of blow-off ports with an external space or a cylinder, a blow-out amount control valve provided in the middle of the blow-off pipe, and each blow-off port on the chuck surface of the holding base. A plurality of suction ports each provided at a portion capable of absorbing gas blown out from the outlet, a suction pipe connecting the plurality of suction ports and a vacuum generation source, and a suction amount provided in the middle of the suction pipe. a control valve; a pressure sensor that detects the pressure in a microspace formed between the back surface of the substrate and the chuck surface of the holding base; and the control valve and the suction amount control based on the output signal of the pressure sensor. and control means for controlling opening and closing of the valve.

また、前記制御手段は、前記微小空間の圧力が50 [
Torr1以上となるように前記吹出量調節弁および前
記吸引量調節弁の開閉を制御してもよい。
Further, the control means is configured such that the pressure in the micro space is 50 [
The opening and closing of the blowout amount regulating valve and the suction amount regulating valve may be controlled so that Torr is greater than or equal to Torr1.

さらに、前記微小空間の隣り合う4個の突起部に囲まれ
た空間ごとに、前記吹出口と前記吸引口とが設けられて
おり、 該吹出口の位置が該吸引口の位置よりも高くされていて
もよい。
Furthermore, the air outlet and the suction port are provided in each space surrounded by the four adjacent protrusions of the microspace, and the position of the air outlet is higher than the position of the suction port. You can leave it there.

本発明の露光装置は、請求項第1項乃至第3項いずれか
に記載の基板保持装置を有する。
An exposure apparatus of the present invention includes a substrate holding device according to any one of claims 1 to 3.

[作用] 本発明の基板保持装置では、保持台のチャック面に複数
の吹出口と複数の吸引口とが設けられており、基板の裏
面と前記保持台のチャック面との間に形成される微小空
間の圧力を圧力センサで検出し、該検出した圧力に応じ
て、前記複数の吹出口と外部空間またはボンベとを接続
する吹出管の途中に設けられた吹出量調節弁および前記
複数の吸引口と真空発生源とを接続する・吸引管の途中
に設けられた吸引量調節弁の開閉を制御手段が行うこと
により、前記微小空間の圧力を一定の値以上に保てるた
め、前記基板と前記保持台間の接触熱抵抗を一定の値以
下にすることができる。
[Function] In the substrate holding device of the present invention, a plurality of air outlets and a plurality of suction ports are provided on the chuck surface of the holding table, and the suction ports are formed between the back surface of the substrate and the chuck surface of the holding table. The pressure in the micro space is detected by a pressure sensor, and according to the detected pressure, a blowout amount control valve provided in the middle of a blowout pipe connecting the plurality of blowout ports and the external space or the cylinder and the plurality of suction The control means opens and closes the suction amount adjustment valve provided in the middle of the suction tube that connects the mouth and the vacuum source, so that the pressure in the microspace can be maintained at a certain value or higher. The contact thermal resistance between the holding stands can be kept below a certain value.

また、前記微小空間の圧力が50 [Torr1以上と
なるように、前記制御手段が前記吹出量調節弁および前
記吸引量調節弁の開閉を制御することにより、Xa*光
装置などで用いられるプロキシミティ方式による露光装
置用の基板保持装置において、パターン転写精度が悪化
しない程度に前記接触熱抵抗を小さくすることができる
Further, the control means controls opening and closing of the blowout amount control valve and the suction amount control valve so that the pressure in the microspace becomes 50 [Torr1 or more], thereby controlling the proximity In the substrate holding device for an exposure apparatus according to this method, the contact thermal resistance can be made small to the extent that pattern transfer accuracy does not deteriorate.

さらに、前記吹出口の位置が前記吸引口の位置よりも高
くされて、前記吹出口と前記吸引口とが前記微小空間の
隣り合う4個の突起部に囲まれた空間ごとに設けられて
いることにより、前記吹出口より吹出される気体を滞り
なく前記吸引口から吸引することができるので、前記微
小空間内の圧力をより一定に保つことができる。
Furthermore, the position of the air outlet is set higher than the position of the suction port, and the air outlet and the suction port are provided in each space surrounded by four adjacent protrusions of the microspace. As a result, the gas blown out from the air outlet can be sucked from the suction port without any delay, so that the pressure in the microspace can be kept more constant.

本発明の露光装置は、請求項第1項乃至第3項いずれか
に記載の基板保持装置を有することにより、前記接触熱
抵抗を一定の値以下した状態で露光を行うことができる
ので、パターン転写精度の向上が図れる。
By having the substrate holding device according to any one of claims 1 to 3, the exposure apparatus of the present invention can perform exposure while keeping the contact thermal resistance below a certain value. Transfer accuracy can be improved.

[実施例] 次に、本発明の実施例について図面を参照して明する。[Example] Next, embodiments of the present invention will be explained with reference to the drawings.

第1図は本発明の基板保持装置の第1の実施例を示す概
略構成図である。
FIG. 1 is a schematic diagram showing a first embodiment of the substrate holding device of the present invention.

本実施例の基板保持装置は、外周壁1aを有する保持台
1と、該保持台1のチャック面6に対称性よく設けられ
た複数(同図に示す断面には9個)の円柱状の突起部2
と、該各突起部2の下を通るように配管された水路5と
、該水路5に温調水を循環させる恒温槽12とを有する
点については第9図に示した従来のものと同様であるが
、前記保持台1のチャック面6に設けられた複数(同図
に示す断面には5個)の吹出ロアと、該各吹出ロアと外
部空間とを接続する吹出管8と、該吹出管8の途中に設
けられた吹出量調節弁14と、前記各吹出ロアからそれ
ぞれ吹出された気体を吸収できるよう該各吹出ロアと交
互に前記保持台1のチャック面6に設けられた複数(同
図に示す断面には5個)の吸引口3と、該各吸引口3と
真空発生源9とを接続する吸引管4と、該吸引管4の途
中に設けられた吸引量調節弁10と、真空吸着された基
板の裏面と前記保持台1のチャック面6との間に形成さ
れる微小空間の圧力を検出する圧力センサとして、前記
吸引管4の前記吸引量調節弁lOと前記各吸引口3との
間に設けられた、前記吸引管4内の圧力を検出する圧力
センサ11と、該圧力センサ11の出力信号より前記吹
出量調節弁14および前記吸引量調節弁1oの開閉を制
御する制御手段としてのマイクロプロセッサ(以下、r
cPUJと称する。)15およびコントローラ16とを
有する点については、従来のものと異なる。
The substrate holding device of this embodiment includes a holding table 1 having an outer circumferential wall 1a, and a plurality of cylindrical columns (nine in the cross section shown in the figure) provided symmetrically on the chuck surface 6 of the holding table 1. Protrusion 2
It is similar to the conventional one shown in FIG. 9 in that it has a water channel 5 piped to pass under each of the protrusions 2, and a constant temperature bath 12 for circulating temperature-controlled water in the water channel 5. However, a plurality of blow-off lowers (five in the cross section shown in the figure) provided on the chuck surface 6 of the holding table 1, a blow-off pipe 8 connecting each blow-off lower with the external space, A blowout amount adjusting valve 14 provided in the middle of the blowout pipe 8, and a plurality of blowout control valves provided on the chuck surface 6 of the holding base 1 alternately with each blowout lower so as to absorb the gas blown out from each blowout lower. A suction port 3 (five in the cross section shown in the figure), a suction pipe 4 connecting each suction port 3 and a vacuum generation source 9, and a suction amount adjustment valve provided in the middle of the suction pipe 4. 10, the suction amount adjusting valve lO of the suction pipe 4 and the A pressure sensor 11 is provided between each suction port 3 and detects the pressure inside the suction pipe 4, and the output signal of the pressure sensor 11 is used to open/close the blowout amount control valve 14 and the suction amount control valve 1o. A microprocessor (hereinafter referred to as r
It is called cPUJ. ) 15 and a controller 16, which is different from the conventional one.

次に、本実施例の動作を説明する前に、プロキシミティ
方式による露光装置における露光中のマスクの温度上昇
について、第3図〜第5図を用いて詳しく説明する。
Next, before explaining the operation of this embodiment, the temperature rise of the mask during exposure in the exposure apparatus using the proximity method will be explained in detail with reference to FIGS. 3 to 5.

簡単化のために第4図に示すように、形状が板状である
厚さtcの保持台5oの反チャック面52側の面が温調
水により温度が一定に保たれ、前記保持台50のチャッ
ク面52に厚さtwの基板51の裏面が吸着され、該基
板51の表面とブロキシミティギャップgだけ離れた位
置にマスク53が設置されているとする。
For simplification, as shown in FIG. 4, the temperature of the surface on the side opposite to the chuck surface 52 of the holding table 5o, which is plate-shaped and has a thickness of tc, is kept constant with temperature-controlled water. Assume that the back surface of a substrate 51 having a thickness tw is attracted to the chuck surface 52 of the substrate 51, and a mask 53 is placed at a position separated from the front surface of the substrate 51 by a broximity gap g.

ここで、前記保持台50の反チャック面52側の面を原
点にして前記マスク53に向って位置Xをとり、前記保
持台50のチャック面52の位置をxl、前記基板51
の表面の位置をX2.前記マスク53の前記基板51側
の面の位置をx3として、露光中の温度Tと位置Xとの
関係を求めたグラフを第3図に示す。
Here, a position X is taken toward the mask 53 with the surface on the side opposite to the chuck surface 52 of the holding table 50 as the origin, a position of the chuck surface 52 of the holding table 50 is xl, and the position of the substrate 51 is
The position of the surface of X2. FIG. 3 shows a graph showing the relationship between the temperature T during exposure and the position X, assuming that the position of the surface of the mask 53 on the substrate 51 side is x3.

第3図により、次のことがわかる。The following can be seen from Figure 3.

(1)位置x=0では前記保持台50の温度が温調水に
より一定に保たれているので、温度T=T0となる。
(1) At position x=0, the temperature of the holding table 50 is kept constant by temperature-controlled water, so the temperature T=T0.

(2)前記保持台50内部では温度Tは位置Xに比例し
て増加し、該保持台5oのチャック面52の位置X=X
、では温度T=T、どなるが、同じ位置X=X、にある
前記基板51の裏面は前述した接触熱抵抗により温度T
 = T 、。
(2) Inside the holding table 50, the temperature T increases in proportion to the position X, and the position X of the chuck surface 52 of the holding table 5o is
, the temperature T=T, but the back surface of the substrate 51 at the same position X=X has a temperature T due to the contact thermal resistance mentioned above.
= T,.

(T ++> T r )となる。(T++>Tr).

(3)前記基板51内では温度Tは位置Xに比例して増
加し、該基板51の表面の位置X = X zでは温度
T ” T tとなる。
(3) Inside the substrate 51, the temperature T increases in proportion to the position X, and at a position X=Xz on the surface of the substrate 51, the temperature T'' Tt.

(4)前記基板51と前記マスク53との間の空間(以
下、「ギャップ」と称する。)においても、熱媒体であ
る気体が存在するため温度Tは位置Xに比例して増加し
、前記マスク53の前記基板51側の面の位置X=X3
での温度T=T、となる。
(4) Also in the space between the substrate 51 and the mask 53 (hereinafter referred to as the "gap"), since gas as a heat medium exists, the temperature T increases in proportion to the position Position of the surface of the mask 53 on the substrate 51 side X=X3
The temperature at T=T.

したがって、前記保持台50.前記基板51および前記
ギャップ間に存在する気体の熱伝導率をそれぞれλ。、
λ、およびλ1とし、前記接触熱抵抗なR1前記保持台
50と前記基板51との単位面積当りの接触面積をSと
し、単位時間、単位面積当りの前記マスク53に照射さ
れるX線の強度を0丁とすると、 Ts  Tt=  ’−・Qy λ。
Therefore, the holding table 50. The thermal conductivity of the substrate 51 and the gas existing between the gap is λ. ,
λ and λ1, the contact thermal resistance is R1, the contact area per unit area between the holding table 50 and the substrate 51 is S, and the intensity of X-rays irradiated to the mask 53 per unit area per unit time. If it is 0, then Ts Tt='-Qy λ.

となるため、露光中の前記マスク53の温度上昇ΔT 
(=73 To )は、次式で表わされる。
Therefore, the temperature rise ΔT of the mask 53 during exposure is
(=73 To ) is expressed by the following equation.

ΔT=(エニー+・ニー+1シー十旦−→・Qア (1
)ね S λ、 λ6 また、該温度上昇6丁に伴なう前記マスク53の熱歪Δ
ρは、線膨張係数をαとし、露光画角を24とすると、 Δ12=a・ΔT−ε         (2)で表わ
される。
ΔT=(any + ・nee + 1 sea tendan − → ・Qa (1
)ne S λ, λ6 Also, the thermal strain Δ of the mask 53 due to the temperature increase
ρ is expressed as Δ12=a·ΔT−ε (2), where α is the linear expansion coefficient and 24 is the exposure angle of view.

ここで、ヘリウムガス(以下、rHeガス」と称する。Here, helium gas (hereinafter referred to as rHe gas).

)雰囲気中の露光条件を、 tc =0.2  [cml λ、 ==0.245 (W/cm−degltw =
=0.05  [cml λw =0.84  [W/cm−deg1g=lo[
μml λg = 1.42X 10−’  [W/cm−de
glS = 0.5  [cm”l Qy =0.1  [W/cm”l とし、線膨張係数a = 2.7 X 10−’(1/
deglおよび露光画角2 I2= 30mmの窒化シ
リコン(SisNJマスクを用いた場合の露光中の前記
マスク53の熱歪△βを求めてみる。
) The exposure conditions in the atmosphere are tc = 0.2 [cml λ, ==0.245 (W/cm-degltw =
=0.05 [cml λw =0.84 [W/cm-deg1g=lo[
μml λg = 1.42X 10-' [W/cm-de
glS = 0.5 [cm"l Qy = 0.1 [W/cm"l, linear expansion coefficient a = 2.7 x 10-' (1/
Thermal strain Δβ of the mask 53 during exposure using a silicon nitride (SisNJ mask) with degl and exposure angle of view 2 I2 = 30 mm will be determined.

第5図は、前記基板51と前記保持台50のチャック面
との間に形成される微小空間に、)Ieガスまたは空気
を閉じ込めたときの該微小空間の圧力と接触熱抵抗Rと
の関係を測定した一例を示すグラフである。ただし、前
記基板51の表面と裏面との圧力差が150 [Tor
rl一定となるように、該基板51の表面側の空間の圧
力を制御している。
FIG. 5 shows the relationship between the pressure of the microspace and the contact thermal resistance R when Ie gas or air is confined in the microspace formed between the substrate 51 and the chuck surface of the holding table 50. It is a graph showing an example of measurement. However, the pressure difference between the front and back surfaces of the substrate 51 is 150 [Tor].
The pressure in the space on the surface side of the substrate 51 is controlled so that rl is constant.

第5図より、Heガス雰囲気中では、第9図に示した従
来例のように前記微小空間を真空(すなわち、圧力Jv
 O[Torrl )にしたときの接触熱抵抗Rは10
” [deg−cm”/Wl となるため、この値を(
1)式に代入して露光中の前記マスク53の温度上昇Δ
Tを求めると、 ΔT〜20  [deg] となり、このときの前記マスク53の露光中の熱歪Δρ
は(2)式より、 Δβ=0.81 [μm] となる。
From FIG. 5, it can be seen that in a He gas atmosphere, the microspace is vacuumed (that is, the pressure Jv
The contact thermal resistance R when set to O[Torrl] is 10
” [deg-cm”/Wl, so this value is (
1) Temperature rise Δ of the mask 53 during exposure by substituting into the equation
When T is calculated, ΔT ~ 20 [deg], and the thermal strain Δρ of the mask 53 during exposure at this time
From equation (2), Δβ=0.81 [μm].

X線露光装置におけるアライメント精度を、たとえば0
.(16[μml程度とすると、前記熱歪△4の最大許
容値Δβ。は0.025 [μml程度となるので、前
記熱歪△β=0.81 [μmlは前記最大許容値Δt
2oを大幅に超えてしまう。
For example, if the alignment accuracy in the X-ray exposure device is set to 0,
.. (If it is about 16 μml, the maximum allowable value Δβ of the thermal strain Δ4 is about 0.025 μml, so the thermal strain Δβ=0.81 [μml is the maximum allowable value Δt
It significantly exceeds 2o.

そこで、(1)式および(2)式より、前記熱歪Δβが
最大許容値Δ℃。以下となる接触熱抵抗Rを求めると、 で表わされるため、前記露光条件を(3)式に代入する
と、 R≦2.3  [deg−cn”/Wlとなる。
Therefore, from equations (1) and (2), the thermal strain Δβ is the maximum allowable value Δ°C. When the following contact thermal resistance R is calculated, it is expressed as follows. Therefore, when the above exposure conditions are substituted into equation (3), R≦2.3 [deg-cn''/Wl.

したがって、接触熱抵抗Rが2.3 [deg−cm”
/w3となる前記微小空間の圧力を第5図より求めると
、該圧力は50 [Torr1以上であることがわかる
Therefore, the contact thermal resistance R is 2.3 [deg-cm”
When the pressure in the minute space, which is /w3, is determined from FIG. 5, it is found that the pressure is 50 Torr or more.

また、第5図より、空気中においても、前記微小空間の
圧力を50 [Torr1以上とすることにより、前記
接触熱抵抗Rを2.3 [deg−cm”/W]以下に
することができることがわかる。
Furthermore, from FIG. 5, even in air, the contact thermal resistance R can be reduced to 2.3 [deg-cm"/W] or less by setting the pressure in the microspace to 50 [Torr1 or more]. I understand.

次に、本実施例の基板保持装置の動作について第1図を
用いて説明する。
Next, the operation of the substrate holding device of this embodiment will be explained using FIG. 1.

この基板保持装置では、真空吸着される基板(不図示)
は、該基板が保持台1の外周壁1aおよび各突起部2の
接触面と接触する位置まで公知の搬送ハンド(不図示)
により搬送されてくる。
This substrate holding device uses a vacuum suction substrate (not shown).
is a known transfer hand (not shown) until the substrate contacts the outer peripheral wall 1a of the holding table 1 and the contact surface of each protrusion 2.
It is transported by.

その後、CPU15は吸引量調節弁10を開くようにコ
ントローラ16を制御する。該吸引量調節弁10が開か
れると、吸引管4が真空発生源9に連通され、前記基板
の裏面と前記保持台1のチャック面6との間に形成され
る微小空間に存在する気体が吸引されて該微小空間の圧
力が減少し、これによりて生じる前記基板の表面と裏面
との圧力差によって該基板は前記保持台1に吸着・保持
される。また、露光中の前記基板の温度管理は、恒温槽
12により水路5に温調水を循環させて前記保持台1(
特に、前記各突起部2)の温度を一定に保つことにより
行われる。
Thereafter, the CPU 15 controls the controller 16 to open the suction amount control valve 10. When the suction amount control valve 10 is opened, the suction pipe 4 is communicated with the vacuum source 9, and the gas existing in the microspace formed between the back surface of the substrate and the chuck surface 6 of the holding table 1 is removed. The pressure in the microspace is reduced by suction, and the resulting pressure difference between the front and back surfaces of the substrate causes the substrate to be attracted and held on the holding table 1. Further, the temperature of the substrate during exposure is controlled by circulating temperature-controlled water in the water channel 5 using a constant temperature bath 12 to control the temperature of the substrate during exposure.
In particular, this is done by keeping the temperature of each of the protrusions 2) constant.

このようにして前記基板の真空吸着が開始されると、前
記接触熱抵抗Rを2.3 [deg−cm2/W]以下
にするため、前記CPU15は、所定のタイミングで前
記圧力センサ11の8力信号を取り込んで該出力信号が
示す前記吸引管4内の圧力(すなわち、前記微小空間内
の圧力)を監視するとともに、該微小空間の圧力が常に
50 [Torr1以上となるように、吸引量調節弁1
0および吹出量調節弁14の開閉を行う前記コントロー
ラ16を制御する。
When the vacuum suction of the substrate is started in this way, the CPU 15 controls the pressure sensor 11 at a predetermined timing to reduce the contact thermal resistance R to 2.3 [deg-cm2/W] or less. The pressure within the suction tube 4 (that is, the pressure within the microspace) indicated by the output signal is monitored by capturing the force signal, and the suction amount is adjusted such that the pressure in the microspace is always 50 Torr or more. Control valve 1
0 and the controller 16 which opens and closes the blowout amount control valve 14.

なお、本実施例においては、吹出管8により各吹出ロア
と外部空間(真空吸着された前記基板の表面側の空間)
とを接続し、該外部空間と前記微小空間との間に生じる
圧力差を利用することにより、該微小空間に気体を送り
込んでいるが、前記外部空間に存在する気体と異なる気
体を前記微小空間に送り込む場合などには、送り込む気
体が充填されたボンベと各吹出ロアとを前記吹出管8に
より接続するようにしてもよい。
In this embodiment, the blow-off pipe 8 connects each blow-off lower to the external space (the space on the surface side of the substrate vacuum-adsorbed).
By connecting a For example, when the gas is to be sent to a gas cylinder, a cylinder filled with the gas to be sent and each blow-off lower may be connected through the blow-off pipe 8.

第6図(A)、(B)はそれぞれ本発明の基板保持装置
の第2の実施例における保持台61の中央部を示す概略
構成図である。
FIGS. 6A and 6B are schematic configuration diagrams showing the central portion of a holding table 61 in a second embodiment of the substrate holding device of the present invention.

本実施例の基板保持装置では、吹出口67と吸引口63
とが、基板(不図示ンの裏面と保持台61のチャック面
66との間に形成される微小空間の隣り合う4個の突起
部62に囲まれた空間ごとに設けられており、かつ前記
吹出口67の位置が前記吸引口63の位置よりも高くさ
れて設けられている点が、第1図に示したものと異なる
In the substrate holding device of this embodiment, the air outlet 67 and the suction port 63
are provided in each space surrounded by four adjacent protrusions 62 in a microspace formed between the back surface of the substrate (not shown) and the chuck surface 66 of the holding table 61, and This differs from the one shown in FIG. 1 in that the blow-off port 67 is located higher than the suction port 63.

すなわち、吸引口63は、前記囲まれた空間ごとに、チ
ャック面66の該囲まれた空間の中央部に設けられてい
る。また、吹出口67は、各突起部62の第6図(A)
図示上下左右の側面に、該各突起部62と前記チャック
面66との中間の高さにそれぞれ4個ずつ設けられてい
る。
That is, the suction port 63 is provided at the center of the chuck surface 66 for each of the enclosed spaces. In addition, the air outlet 67 is connected to each protrusion 62 as shown in FIG. 6(A).
Four protrusions are provided on the top, bottom, left and right sides of the figure at intermediate heights between each of the protrusions 62 and the chuck surface 66.

本実施例においても、前記微小空間内の圧力を常に50
 [Torr1以上とするように、前記吹出口67から
吹出す気体の量と前記吸引口63から吸引する気体の量
とを調節することにより、第1図に示したものと同じ効
果が得られる。また、前記吹出口67と前記吸引口63
とを前記囲まれた空間ごとに、かつ前記吹出口67の高
さを前記吸弓口63の高さよりも高くして設けることに
より、前記各吹出口67より吹出した気体を滞りなく前
記吸引口63から吸引することができるため、前記各微
小空間内の圧力をより一定に保つことができるので、真
空吸着される基板の冷却効率をさらによくすることがで
きる。
In this embodiment as well, the pressure in the microspace is always maintained at 50%.
[By adjusting the amount of gas blown out from the blow-off port 67 and the amount of gas sucked in from the suction port 63 so that Torr is 1 or more, the same effect as shown in FIG. 1 can be obtained. In addition, the air outlet 67 and the suction port 63
By providing the air outlet 67 for each of the enclosed spaces and the height of the air outlet 67 being higher than the height of the suction port 63, the gas blown out from each air outlet 67 can be smoothly transferred to the suction port. Since the suction can be performed from 63, the pressure in each of the microspaces can be kept more constant, so that the cooling efficiency of the vacuum-adsorbed substrate can be further improved.

なお、前記囲まれた空間ごとに形成される吹出口67の
数は4個以外(たとえば、2個)であってもよい。
Note that the number of air outlets 67 formed in each of the enclosed spaces may be other than four (for example, two).

第7図は本発明の基板保持装置の第3の実施例における
保持台71の中央部を示す断面図である。
FIG. 7 is a sectional view showing the central portion of a holding table 71 in a third embodiment of the substrate holding device of the present invention.

本実施例の基板保持装置では、各突起部72の形状をき
のこ状、すなわち該各突起部72の上端部の幅を他の部
分の幅よりも広くしている点が、第6図に示した第2の
実施例と異なる。
In the substrate holding device of this embodiment, the shape of each protrusion 72 is mushroom-shaped, that is, the width of the upper end of each protrusion 72 is wider than the width of the other part, as shown in FIG. This is different from the second embodiment.

したがって、第1図に示した第1の実施例および第6図
に示した第2の実施例では、各吹出ロア、67から吹出
される気体が直接基板に当り該基板を振動させることが
あったが、本実施例では、各吹出ロア7から前記基板の
方向に吹出される気体は前記各突起部72の上端部に当
って案内されるため、該気体が直接前記基板に当ること
を防ぐことができるので、前記基板の振動を防止するこ
とができる。
Therefore, in the first embodiment shown in FIG. 1 and the second embodiment shown in FIG. However, in this embodiment, the gas blown out in the direction of the substrate from each blow-off lower 7 is guided by hitting the upper end of each projection 72, so that the gas is prevented from hitting the substrate directly. Therefore, vibration of the substrate can be prevented.

なお、前記囲まれた空間ごとに形成される吹出ロア7と
吸引ロア3の数は、4個以外(たとえば、2個)であっ
てもよい。
Note that the number of blowing lowers 7 and suction lowers 3 formed in each of the enclosed spaces may be other than four (for example, two).

第8図は本発明の基板保持装置の第4の実施例における
保持台81の中央部を示す断面図である。
FIG. 8 is a sectional view showing the central portion of a holding table 81 in a fourth embodiment of the substrate holding device of the present invention.

本実施例では、基板(不図示)の裏面と保持台81のチ
ャック面86との間に形成される微小空間の隣り合う4
個の突起部82に囲まれた空間ごとに、突起部82より
も高さの低い吹出口87用の突起80が設けられており
、該各突起80に4個の吹出口87(同図左右と紙面前
方および後方)がそれぞれ設けられているとともに、前
記囲まれた空間内の前記突起80の回りに4個の吸弓口
83(同図左右と紙面前方および後方)が設けられてい
る点が、前述した第1.第2.第3の実棒例と異なる。
In this embodiment, adjacent 4
A protrusion 80 for an air outlet 87 whose height is lower than that of the protrusion 82 is provided in each space surrounded by four protrusions 82, and each protrusion 80 has four air outlets 87 (left and right in the figure). and four bow openings 83 (left and right in the figure and front and rear in the drawing) around the protrusion 80 in the enclosed space. However, the above-mentioned 1. Second. This is different from the third real bar example.

本実施例においても、各吹出口87がら吹出される気体
は基板の裏面と平行する方向に吹出されるため、気体が
直接該基板に当ることを防ぐことができ、該基板の振動
を防止することができる。
In this embodiment as well, since the gas blown out from each outlet 87 is blown out in a direction parallel to the back surface of the substrate, it is possible to prevent the gas from directly hitting the substrate, thereby preventing vibration of the substrate. be able to.

なお、前記口まれた空間ごとに形成される吹出口87と
吸引口83の数は、4個以外(たとえば、2個)であっ
てもよい。
Note that the number of air outlets 87 and suction ports 83 formed in each of the opened spaces may be other than four (for example, two).

第2図は本発明の基板保持装置を有する露光装置の一実
施例を示す概略構成図である。
FIG. 2 is a schematic diagram showing an embodiment of an exposure apparatus having a substrate holding device of the present invention.

本実施例の露光装置は、保持台21.吸引管24、水路
25.吹出管28.真空発生源29゜吸引量調節弁30
.圧力センサ31.恒温槽32、吹出量調節弁34.C
PU35およびコントローラ36を具備する第1図に示
した基板保持装置を有するX線露光装置である。
The exposure apparatus of this embodiment has a holding table 21. Suction pipe 24, waterway 25. Blowout pipe 28. Vacuum source 29゜Suction amount control valve 30
.. Pressure sensor 31. Constant temperature bath 32, blowout amount control valve 34. C
This is an X-ray exposure apparatus having the substrate holding device shown in FIG. 1, which includes a PU 35 and a controller 36.

また、本実施例の露光装置は前記基板保持装置のほか、
蓄積リングなどにより発生されたX線を透過するヘリウ
ム(He)ガスで内部が満たされているチャンバ41と
、該チャンバ41の一部に設けられているX線透過用の
ベリリウム窓(以下、「Be窓」と称する。)42と、
前記チャンバ41内の圧力を検出するチャンバ内圧力セ
ンサ43と、前言己チャンバ41内にHeガスを供給す
るHeボンベ44と、前記チャンバ41内へのHeガス
の供給量を調節するHe調節弁45と、該He調節弁4
5の開閉を行うHeコントローラ46とを有する。
In addition to the substrate holding device, the exposure apparatus of this embodiment also includes:
A chamber 41 whose interior is filled with helium (He) gas that transmits X-rays generated by a storage ring, etc., and a beryllium window (hereinafter referred to as " ) 42,
A chamber pressure sensor 43 that detects the pressure inside the chamber 41, a He cylinder 44 that supplies He gas into the chamber 41, and a He control valve 45 that adjusts the amount of He gas supplied into the chamber 41. and the He control valve 4
5, and a He controller 46 for opening and closing.

なお、前記CPU35は、前記吸引量調節弁30と前記
吹出量調節弁34との開閉を行う前記コントローラ36
の制御のほかに、前記Heコントローラ46の制御も行
う、また、マスクパターンの転写を行うための基板47
は前記基板保持装置の保持台21に真空吸着されており
、マスク48は、前記基板47から一定のギャップ(間
隙)をもって前1己チヤンバ41内に設置されている。
Note that the CPU 35 controls the controller 36 that opens and closes the suction amount adjustment valve 30 and the blowout amount adjustment valve 34.
In addition to controlling the He controller 46, it also controls the substrate 47 for transferring the mask pattern.
is vacuum-adsorbed to the holding table 21 of the substrate holding device, and the mask 48 is placed in the chamber 41 with a certain gap from the substrate 47.

次に、本実施例の露光装置の動作について説明する。Next, the operation of the exposure apparatus of this embodiment will be explained.

基板47へのマスクパターンの転写を行う前に、CPU
35はチャンバ内圧力センサ43の出力信号を取り込み
、該出力信号に応じて)Heコントローラ46を制御し
てHe調節弁45を開閉させることにより、チャンバ4
1内の圧力を200 [Torrlに保つ。その後、真
空吸着される基板47が公知の搬送ハント(不図示)に
より図示の位置まで搬送されてくると、前記CPU35
は吸引量調節弁30を開くようにコントローラ36を制
御する。
Before transferring the mask pattern to the substrate 47, the CPU
35 takes in the output signal of the chamber internal pressure sensor 43, and controls the He controller 46 (according to the output signal) to open and close the He control valve 45, thereby controlling the chamber 4.
Maintain the pressure inside 1 at 200 Torrl. Thereafter, when the substrate 47 to be vacuum-adsorbed is transported to the illustrated position by a known transport hunt (not shown), the CPU 35
controls the controller 36 to open the suction amount control valve 30.

該吸引量調節弁30が開かれると、吸引管24が真空発
生源29に連通され、前記基板47の裏面と保持台21
のチャック面との間に形成される微小空間に存在するH
eガスが吸引されて該微小空間の圧力が減少し、これに
よって生じる前記基板47の表面と裏面との圧力差によ
って該基板47、は保持台21に吸着・保持される。
When the suction amount adjusting valve 30 is opened, the suction pipe 24 is communicated with the vacuum source 29, and the back surface of the substrate 47 and the holding table 21 are connected to each other.
H existing in the microspace formed between the chuck surface and the chuck surface of
The e-gas is sucked and the pressure in the microspace is reduced, and the resulting pressure difference between the front and back surfaces of the substrate 47 causes the substrate 47 to be attracted and held by the holding table 21 .

このようにして前記基板47の真空吸着が開始されると
、該基板47と前記保持台21間の接触熱抵抗Rを2.
3 [deg−cm”/W]以下にするため、前記CP
t135は、所定のタイミングで圧力センサ31の出力
信号を取り込んで該出力信号が示す前記吸引管24内の
圧力(すなわち、前記微小空間内の圧力)を監視すると
ともに、該微小空間の圧力が常に50 [Torrl 
となるように、吸引量調節弁30および吹出量調節弁3
4の開閉を行う゛前記コントローラ36を制御する。
When the vacuum suction of the substrate 47 is started in this way, the contact thermal resistance R between the substrate 47 and the holding table 21 is increased to 2.
3 [deg-cm”/W] or less, the CP
At t135, the output signal of the pressure sensor 31 is taken in at a predetermined timing, and the pressure in the suction tube 24 (that is, the pressure in the microspace) indicated by the output signal is monitored, and the pressure in the microspace is always maintained. 50 [Torrl
The suction amount control valve 30 and the blowout amount control valve 3
4. Controls the controller 36 that opens and closes 4.

前記微小空間内の圧力を一定に保ったのち、X線をBe
窓42およびマスク48を介して前記基板47に照射す
ることにより、マスクパターンの転写が行われる。この
とき、露光中の前記基板47の温度管理は、恒温槽32
により水路25に温調水を循環させて前記保持台21の
温度を一定に保つことにより行われる。
After keeping the pressure in the microspace constant, the X-rays are
By irradiating the substrate 47 through the window 42 and the mask 48, the mask pattern is transferred. At this time, the temperature of the substrate 47 during exposure is controlled by a constant temperature bath 32.
This is done by circulating temperature-controlled water through the water channel 25 to keep the temperature of the holding table 21 constant.

本実施例においては、前記チャンバ41内の圧力が20
0 [Torrlとなり、前記微小空間内の圧力が50
 [Torrl となるようにしたが、前記チャンバ4
1内の圧力と前記微小空間内の圧力との差が前記基板4
7を真空吸着するのに十分な値であれば、前記チャンバ
41内の圧力および前記微小空間内の圧力はそれ以外の
圧力(ただし、前記微小空間内の圧力は50 [Tor
r]以上)であってもよい。
In this embodiment, the pressure inside the chamber 41 is 20
0 [Torrl, and the pressure in the microspace becomes 50 Torrl.
[Torrl], but the chamber 4
The difference between the pressure inside the substrate 4 and the pressure inside the microspace is the difference between the pressure inside the substrate 4
7, the pressure in the chamber 41 and the pressure in the microspace are other than that (however, the pressure in the microspace is 50 [Tor]).
r] or more).

以上説明した本発明の露光装置の実施例では、基板保持
装置として第1図に示したものを用いたが、該基板保持
装置の代わりに、第6図、第7図または第8図に示した
実施例の基板保持装置を用いてもよい。
In the embodiment of the exposure apparatus of the present invention described above, the one shown in FIG. 1 is used as the substrate holding device, but the substrate holding device shown in FIG. 6, FIG. 7, or FIG. The substrate holding device of the embodiment described above may also be used.

また、本発明の露光装置の実施例としてX線露光装置を
示したが、たとえば光を用いた露光装置のように基板を
一定温度に保ちかつ該基板の表面と裏面との圧力差によ
り該基板を保持する基板保持装置を有するすべての露光
装置に適用可能である。
Furthermore, although an X-ray exposure apparatus is shown as an embodiment of the exposure apparatus of the present invention, for example, in an exposure apparatus that uses light, the substrate is kept at a constant temperature and the pressure difference between the front and back surfaces of the substrate is used. It is applicable to all exposure apparatuses that have a substrate holding device that holds the substrate.

[発明の効果] 本発明は、上述のとおり構成されているので、次に記載
する効果を奏する。
[Effects of the Invention] Since the present invention is configured as described above, it produces the following effects.

本発明の基板保持装置では、保持台のチャック面に複数
の吹出口と複数の吸引口とが設けられており、基板の裏
面と前記保持台のチャック面との間に形成される微小空
間の圧力を圧力センサで検出し、該検出した圧力に応じ
て、前記複数の吹出口と外部空間またはボンベとを接続
する吹出管の途中に設けられた吹出量調節弁および前記
複数の吸引口と真空発生手段とを接続する吸引管の途中
に設けられた吸引量調節弁の開閉を制御手段が行うこと
により、前記基板と前記保持台間の接触熱抵抗を一定の
値以下にすることができるため、前記基板の温度上昇に
よるマスクの熱歪を防ぐことができるので、パターン転
写精度の向上が図れるという効果がある。
In the substrate holding device of the present invention, a plurality of air outlets and a plurality of suction ports are provided on the chuck surface of the holding table, and a micro space formed between the back surface of the substrate and the chuck surface of the holding table is provided. Pressure is detected by a pressure sensor, and according to the detected pressure, a blowout amount control valve provided in the middle of a blowout pipe connecting the plurality of blowout ports and an external space or a cylinder, and a vacuum between the plurality of suction ports and The contact thermal resistance between the substrate and the holding table can be kept below a certain value by the control means opening and closing a suction amount regulating valve provided in the middle of the suction pipe connecting the generating means. Since thermal distortion of the mask due to the temperature rise of the substrate can be prevented, pattern transfer accuracy can be improved.

本発明の露光装置は、請求項第1項乃至第3項いずれか
に記載の基板保持装置を有することにより、前記接触熱
抵抗を一定の値以下した状態で露光を行うことができる
ので、パターン転写精度の向上が図れるという効果があ
る。
By having the substrate holding device according to any one of claims 1 to 3, the exposure apparatus of the present invention can perform exposure while keeping the contact thermal resistance below a certain value. This has the effect of improving transfer accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基板保持装置の第1の実施例を示す概
略構成図、第2図は本発明の基板保持装置を有する露光
装置の一実施例を示す概略構成図、第3図は露光中の温
度と位置との関係を求めたグラフ、第4図は第3図に示
したグラフの横軸である位置Xの意味を示す図、第5図
は基板と保持台のチャック面との間に形成される微小空
間にHeガスまたは空気を閉じ込めたときの該微小空間
の圧力と接触熱抵抗との関係を測定した一例を示すグラ
フ、第6図は本発明の基板保持装置の第2の実施例にお
ける保持台の中央部を示す概略構成図であり、(A)は
その上面図、(B)は(A)のA−A’線に沿う断面図
、第7図は本発明の基板保持装置の第3の実施例におけ
る保持台の中央部を示す断面図、第8図は本発明の基板
保持装置の第4の実施例における保持台の中央部を示す
断面図、第9図はピンチャック方式の基板保持装置の従
来例の一つを示す概略構成図であり、(A)はその上面
図、(B)は(A)のA−A’線に沿う断面図である。 1、21.50.61.71.81・・・保持台、18
・・・ 外周壁、 2.62.72.82・・・ 突起
部、3、63.73.83・・・ 吸引口、42464
7484・・・吸引管、 52565.75.85・・・水路、 6、52.66、76、86・・・チャック面、7、6
7、77、87・・・ 吹出口、8、28.68.78
.88・・・吹出管、9.29・・・ 真空発生源、 0.30・・・ 吸引量調節弁、 131・・・ 圧力センサ、 12.324.34・・
・ 吹出量調節弁、 535・・・ CPU、 6.36・・・ コントローラ、 41 ・・・チャンバ、    42・・・Be窓、4
3・・・チャンバ内圧力センサ、 44・・・Heボンベ、    45・・・He調節弁
、46・・・Heコントローラ、 47.51 ・・・
基板、48、53・・・マスク、    80・・・突
起、g・・・プロキシミテイギャップ、 tc、tw・・・厚さ、 X、X+ 、Xs 、Xs ”・位置、T、T、、T、
、、 T* 、T、・・・温度、・・・ 恒温槽、 R・・・ 接触熱抵抗。
FIG. 1 is a schematic diagram showing a first embodiment of a substrate holding device of the present invention, FIG. 2 is a schematic diagram showing an embodiment of an exposure apparatus having a substrate holding device of the present invention, and FIG. A graph showing the relationship between temperature and position during exposure. Figure 4 shows the meaning of position X, which is the horizontal axis of the graph shown in Figure 3. Figure 5 shows the relationship between the chuck surface of the substrate and the holding table. FIG. 6 is a graph showing an example of the relationship between the pressure of the microspace and the contact thermal resistance when He gas or air is confined in the microspace formed between the substrate holding devices of the present invention. FIG. 7 is a schematic configuration diagram showing the central part of the holding base in Example 2, in which (A) is a top view thereof, (B) is a sectional view taken along line AA' in (A), and FIG. FIG. 8 is a sectional view showing the central part of the holding stand in the third embodiment of the substrate holding apparatus of the present invention; FIG. The figure is a schematic configuration diagram showing one of the conventional examples of a pin chuck type substrate holding device, in which (A) is a top view thereof, and (B) is a sectional view taken along the line AA' in (A). . 1, 21.50.61.71.81... Holding stand, 18
... Outer wall, 2.62.72.82... Projection, 3, 63.73.83... Suction port, 42464
7484...Suction pipe, 52565.75.85...Waterway, 6,52.66,76,86...Chuck surface, 7,6
7, 77, 87... Air outlet, 8, 28.68.78
.. 88...Blowout pipe, 9.29...Vacuum source, 0.30...Suction amount adjustment valve, 131...Pressure sensor, 12.324.34...
・Blowout amount control valve, 535... CPU, 6.36... Controller, 41... Chamber, 42... Be window, 4
3... Chamber pressure sensor, 44... He cylinder, 45... He control valve, 46... He controller, 47.51...
Substrate, 48, 53...Mask, 80...Protrusion, g...Proximity gap, tc, tw...Thickness, X, X+, Xs, Xs''・Position, T, T,, T ,
,, T*, T,...Temperature,... Constant temperature chamber, R... Contact thermal resistance.

Claims (1)

【特許請求の範囲】 1、基板の裏面を真空吸着することにより該基板を保持
するピンチャック方式の基板保持装置において、 保持台のチャック面に設けられた複数の吹出口と、 該複数の吹出口と外部空間またはボンベとを接続する吹
出管と、 該吹出管の途中に設けられた吹出量調節弁と、前記保持
台のチャック面の前記各吹出口からそれぞれ吹出された
気体を吸収できる部位にそれぞれ設けられた複数の吸引
口と、 該複数の吸引口と真空発生源とを接続する吸引管と、 該吸引管の途中に設けられた吸引量調節弁と、前記基板
の裏面と前記保持台のチャック面との間に形成される微
小空間の圧力を検出する圧力センサと、 該圧力センサの出力信号より前記吹出量調節弁および前
記吸引量調節弁の開閉を制御する制御手段とを有するこ
とを特徴とする基板保持装置。 2、制御手段は、微小空間の圧力が50[Torr]以
上となるように吹出量調節弁および吸引量調節弁の開閉
を制御することを特徴とする請求項第1項記載の基板保
持装置。 3、微小空間の隣り合う4個の突起部に囲まれた空間ご
とに、吹出口と吸引口とが設けられており、 該吹出口の位置が該吸引口の位置よりも高いことを特徴
とする請求項第1項または第2項記載の基板保持装置。 4、請求項第1項乃至第3項いずれかに記載の基板保持
装置を有する露光装置。
[Claims] 1. A pin-chuck type substrate holding device that holds a substrate by vacuum suction on the back side of the substrate, comprising: a plurality of air outlets provided on a chuck surface of a holder; and the plurality of air outlets. A blowout pipe that connects the outlet with the external space or the cylinder, a blowout amount control valve provided in the middle of the blowout tube, and a portion on the chuck surface of the holding base that can absorb the gas blown out from each of the blowout ports. a plurality of suction ports respectively provided in the substrate, a suction tube connecting the plurality of suction ports and a vacuum generation source, a suction amount adjustment valve provided in the middle of the suction tube, and a back surface of the substrate and the holding tube. a pressure sensor that detects the pressure in a microspace formed between the chuck surface of the table; and a control means that controls opening and closing of the blowout amount control valve and the suction amount control valve based on the output signal of the pressure sensor. A substrate holding device characterized by: 2. The substrate holding device according to claim 1, wherein the control means controls opening and closing of the blowout amount regulating valve and the suction amount regulating valve so that the pressure in the microspace becomes 50 [Torr] or more. 3. An air outlet and a suction port are provided in each space surrounded by four adjacent protrusions of the microspace, and the position of the air outlet is higher than the position of the suction port. The substrate holding device according to claim 1 or 2. 4. An exposure apparatus comprising the substrate holding device according to any one of claims 1 to 3.
JP2155611A 1990-06-15 1990-06-15 Substrate holder and exposure device with said holder Pending JPH0448716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2155611A JPH0448716A (en) 1990-06-15 1990-06-15 Substrate holder and exposure device with said holder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2155611A JPH0448716A (en) 1990-06-15 1990-06-15 Substrate holder and exposure device with said holder

Publications (1)

Publication Number Publication Date
JPH0448716A true JPH0448716A (en) 1992-02-18

Family

ID=15609809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2155611A Pending JPH0448716A (en) 1990-06-15 1990-06-15 Substrate holder and exposure device with said holder

Country Status (1)

Country Link
JP (1) JPH0448716A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970008470A (en) * 1995-07-18 1997-02-24 제임스 조셉 드롱 Electrostatic chuck with fluid flow regulator
EP1457830A2 (en) * 2003-03-11 2004-09-15 ASML Netherlands B.V. Lithographic apparatus comprising a temperature conditioned load lock
JP2005328051A (en) * 2004-05-11 2005-11-24 Asml Netherlands Bv Lithography apparatus and device manufacturing method
JP2007072267A (en) * 2005-09-08 2007-03-22 Sumitomo Chemical Co Ltd Exposure apparatus
US7394520B2 (en) 2003-03-11 2008-07-01 Asml Netherlands B.V. Temperature conditioned load lock, lithographic apparatus comprising such a load lock and method of manufacturing a substrate with such a load lock
US7576831B2 (en) 2003-03-11 2009-08-18 Asml Netherlands B.V. Method and apparatus for maintaining a machine part
US7878755B2 (en) 2003-03-11 2011-02-01 Asml Netherlands B.V. Load lock and method for transferring objects
WO2024012768A1 (en) * 2022-07-11 2024-01-18 Asml Netherlands B.V. Substrate holder, lithographic apparatus, computer program and method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970008470A (en) * 1995-07-18 1997-02-24 제임스 조셉 드롱 Electrostatic chuck with fluid flow regulator
EP1457830A2 (en) * 2003-03-11 2004-09-15 ASML Netherlands B.V. Lithographic apparatus comprising a temperature conditioned load lock
EP1457830A3 (en) * 2003-03-11 2005-07-20 ASML Netherlands B.V. Lithographic apparatus comprising a temperature conditioned load lock
US7394520B2 (en) 2003-03-11 2008-07-01 Asml Netherlands B.V. Temperature conditioned load lock, lithographic apparatus comprising such a load lock and method of manufacturing a substrate with such a load lock
US7576831B2 (en) 2003-03-11 2009-08-18 Asml Netherlands B.V. Method and apparatus for maintaining a machine part
US7878755B2 (en) 2003-03-11 2011-02-01 Asml Netherlands B.V. Load lock and method for transferring objects
JP2005328051A (en) * 2004-05-11 2005-11-24 Asml Netherlands Bv Lithography apparatus and device manufacturing method
JP2010141342A (en) * 2004-05-11 2010-06-24 Asml Netherlands Bv Lithography apparatus and device manufacturing method
US8749762B2 (en) 2004-05-11 2014-06-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9285689B2 (en) 2004-05-11 2016-03-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2007072267A (en) * 2005-09-08 2007-03-22 Sumitomo Chemical Co Ltd Exposure apparatus
WO2024012768A1 (en) * 2022-07-11 2024-01-18 Asml Netherlands B.V. Substrate holder, lithographic apparatus, computer program and method

Similar Documents

Publication Publication Date Title
EP0408350B1 (en) Method of holding a substrate
US8748780B2 (en) Substrate processing apparatus, substrate processing method, and computer-readable storage medium
US6602348B1 (en) Substrate cooldown chamber
US6635117B1 (en) Actively-cooled distribution plate for reducing reactive gas temperature in a plasma processing system
US7591561B2 (en) Liquid cooled mirror for use in extreme ultraviolet lithography
US9484232B2 (en) Zone temperature control structure
TWI389212B (en) Heat treatment device, heat treatment method, and storage medium
US20100107977A1 (en) Film forming apparatus
US6815647B2 (en) Heat treatment unit and heat treatment method
US20210183669A1 (en) Heating treatment apparatus and heating treatment method
JPH0448716A (en) Substrate holder and exposure device with said holder
JPH02271529A (en) Method and apparatus for treatment of semiconductor wafer
JPH04280619A (en) Wafer retaining method and retaining device
KR970701922A (en) Clampless vacuum heat transfer station
JP2003532842A (en) Small gate valve
US7391498B2 (en) Technique of suppressing influence of contamination of exposure atmosphere
JPH0513350A (en) Substrate processing device
US12040198B2 (en) Inner wall and substrate processing apparatus
JPH1092728A (en) Device for holding substrate and aligner using the same
JP2880264B2 (en) Substrate holding device
JP2647061B2 (en) Semiconductor substrate heating holder
TW201816125A (en) Thermal process device
JPH05343331A (en) Cvd apparatus
US20240321602A1 (en) Inner Wall and substrate Processing Apparatus
JP3099053B2 (en) Vacuum equipment