JPH0448421B2 - - Google Patents

Info

Publication number
JPH0448421B2
JPH0448421B2 JP54173172A JP17317279A JPH0448421B2 JP H0448421 B2 JPH0448421 B2 JP H0448421B2 JP 54173172 A JP54173172 A JP 54173172A JP 17317279 A JP17317279 A JP 17317279A JP H0448421 B2 JPH0448421 B2 JP H0448421B2
Authority
JP
Japan
Prior art keywords
calcium
malate
citrate
water
calcium citrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP54173172A
Other languages
Japanese (ja)
Other versions
JPS5697248A (en
Inventor
Sadao Kawai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP17317279A priority Critical patent/JPS5697248A/en
Publication of JPS5697248A publication Critical patent/JPS5697248A/en
Publication of JPH0448421B2 publication Critical patent/JPH0448421B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はリンゴ酸カルシウム・クエン酸カルシ
ウム複合組成物および同製造法に関する。更に詳
述すれば、一定比率のクエン酸(又は同ナトリウ
ム塩)とリンゴ酸(又は同ナトリウム塩)に一定
のカルシウム塩を反応させて、リンゴ酸カルシウ
ム・クエン酸カルシウム複合組成物を製造する方
法に関する。 吾国の食糧事情は経済の発展と共に年々良くな
り、一般の栄養状態も改善されつつあるにかかわ
らず、カルシウムだけは栄養的バランスを欠き、
最近の厚生省の国民栄養調査成績結果、特にカル
シウム平均摂取量不足が目立ち亦ビタミンB1
不足勝である。これら事情に鑑み、発明者はこの
対策として栄養を兼ねたカルシウム補給食品の研
究開発を目的として幾多研究の結果終局的にクレ
ブスクエン酸サイクル系列の有機酸のカルシウム
体が理想的条件を具備してなるものとし選考する
こととなり、勿論他にもカルシウム補給源として
の数多くの物質があるが、カルシウム補給と同時
に直接熱カロリ代謝に関与するものはクレブスク
エン酸サイクル系の有機酸のみとみるべきで他に
は無く、特にクエン酸は摂取後直ちに吸収されク
レブスクエン酸サイクルに直ちに入り熱エネルギ
代謝に関与するものである。厚生省国民栄養調査
成績結果における国民一人平均において、厚生省
白書のカルシウムの栄養学的基準必要量を成人一
人一日平均600mgを下廻り平均300mg前後であるこ
とは、国民健康上大いなる問題である。 厚生省白書による大人一人一日カルシウム600
mg摂取量は至つて妥当性とみるべきでこれらは一
つの栄養学的根拠に基く一日所要量の決定を、生
体のカルシウム代謝に因る排泄量より検討された
数値であり、即ち糞中の内因性カルシウム損失量
100mg、尿中排泄量130mg前後、汗中の排泄量を30
mgとすれば合計260mgが排泄されることになる。 食品中のカルシウム消化吸収率を50%とみれ
ば、520mgを摂ればよい計算となり、従つてこれ
らよりみて所要量600mg/日は排泄量よりみて妥
当であることが判る(過去はカルシウム摂取量は
一日大人一人1gとされていた)。 現代の日本人一般がカルシウム摂取量不足に関
しての原因を検討すると、 (1) 日本国土が火山国特有酸性台地上に日本人は
生活している関係上欧米の土壤に比較してカル
シウムは少く、従つて地上耕作物、其他の物の
カルシウム量はとくに少く日本人はこれらカル
シウム含量の少い一般食物に依存する食生活を
営んでいることが根本的、宿命的原因である。 (2) カルシウムは最も重要の栄養素の一つであ
り、その摂取所要量が不足し、不充分であつて
も、他の三大栄養の如く摂取量不足、断食等に
因る空腹感、飢餓状態等の自覚症状が全くな
く、従つてその点危険である。カルシウム欠乏
の早期発見の方法は現在なく、単独カルシウム
欠乏症というものも判つていない。これらによ
りカルシウム摂取が放慢となる傾向が多い。 (3) 一般社会人はカルシウムに関しての認識は
歯、骨以外生理的作用の主要性に関しては認識
を欠くため、例えばカルシウム代謝による外部
排泄量260mgは外部よりカルシウム補給皆無の
時と雖排泄量には変りなく毎日排泄され、これ
らに対する特に生理的作用に関与しているカル
シウム所要量は自己のカルシウム貯蔵庫たる骨
の融解によつて補なわれることになるが、この
ようなことが骨胞弱化による骨折骨多孔症の原
因となる。以上の通り日本人のカルシウム摂取
量不足対策として食生活改善によるカルシウム
の補給が最も理想的であるが、それには適切な
カルシウム補給物が必要となる。現在食生活に
おいて厚生省白書一日本人一人600mgのカルシ
ウム摂取は至つて困難であることは「日本食品
成分表、科学技術庁資源調査会編」を参考とし
ても理想がつく。家庭の主婦は勿論、集団給
食、学校給食等直接その献立表作製担当者は一
定の経済的枠内においてバランスのとれた、特
にカルシウム所要量を満足さすためには食物の
選択献立を嗜好面と経済面とを窺いつつなくこ
とは、カルシウム不足勝の食物材料に依存する
場合最も困難とされる。以上実情を鑑み、飽く
まで栄養学的立場に立脚して、理想的なものと
してクレブスサイクル(クエン酸サイクル又は
TCAサイクル)系列の有機酸代表クエン酸カ
ルシウム塩を先に述べた通り選考したことであ
り、勿論他にもカルシウム補給物質は数多く実
在しているが、直接カルシウム補給と同時に直
接新陳代謝に関与するものはクレブスサイクル
系列の有機酸以外はなく、特にクエン酸はクレ
ブスサイクルに直ちに入りより回転すること
で、摂取栄養素の最終分解産物を活性錯酸でも
生体組織中にある、オキザロ錯酸と結合してク
エン酸となり始めて、クレブスサイクルに入り
得ることで、従つてクエン酸は生理的成分であ
り異種特異性は全くなく容易に吸収され、直接
クレブス・クエン酸サイクルに入り得る熱エネ
ルギ代謝基礎因子であり、またクレブス博士の
生体実験において「クエン酸が少量で著しく細
胞呼吸を促進する」クエン酸サイクル中のクエ
ン酸は段階的に筋肉内において変移しその中間
産物を筋肉によつて速に酸化されることを確認
し、これらの実験事実よりクレブスクエン酸サ
イクル理論説を1937発表し、1952ノーベル賞を
受与された。摂取栄養素が消化分解された後、
これらが最終段階で酸化分解熱エネルギ発生に
至るまでの経路を解明した理論である。以上の
如く、クレブス・クエン酸サイクル系列の有機
酸は生体内における熱エネルギ代謝には絶対不
可欠の有機酸でこれにより生体は生命を保持し
ていることは否定出来ない事実であるだけ栄養
学的に最も重要視されている。従つてこれら有
機酸結合体はカルシウム補給と同時に体内代謝
をより円滑増強することは健康増進上理想に近
いことである。 然しながら、クエン酸サイクル系列の有機酸の
カルシウム塩、特にクエン酸カルシウムは水難溶
性であり、食品面における活用範囲が至つて狭隘
にして特に透明度を競う飲料系のものには適用不
可能とされている。本発明者はカルシウム補給源
としてのクエン酸カルシウムを広く食品部門の適
用することを目的とし、これにはクエン酸カルシ
ウムの水可溶性傾向の増大を来たくべきことに関
して研究を重ねた結果その目的に到達した。 水難溶性クエン酸カルシウムにリンゴ酸カルシ
ウムを共存させることに因り、従来のクエン酸カ
ルシウムの三倍以上(PH6〜6.5)水に溶解する
に至り複合体全体よりみて5.9倍も溶解すること
になり、従つてクエン酸カルシウムとして活用範
囲が食品部門に広く進出し得ることとなり特に透
明度を競い飲料にも楽に中性状態において適用可
能となつた。 リンゴ酸カルシウム分子がクエン酸カルシウム
分子に共存することに因り、クエン酸カルシウム
分子の水溶解率が増大する物性変化について、ク
エン酸カルシウム分子に対しリンゴ酸カルシウム
分子の共存作用により、クエン酸カルシウム分子
として水に対し、溶解率増大する物性変化を来た
す事実を実験的に研究発見確認した。この事実に
因りクエン酸カルシウム分子に対するリンゴ酸分
子との相対的最適共存比率量は水に対するクエン
酸カルシウム分子の最大溶解率に関連するものと
推定し得る端緒となり、従つて予めクエン酸カル
シウム量に対しリンゴ酸カルシウムの量的比率変
化を系統的に順次倍率変化させ、各種試験試料の
各々につき、水に対する溶解度比較試験の結果を
追求検討した。その溶解最高率を示したクエン酸
カルシウム・リンゴ酸カルシウムの共存比率量 クエン酸カルシウム 59.14% リンゴ酸カルシウム 40.8% 亦クエン酸カルシウム・リンゴ酸カルシウム中
の各々カルシウム量に対する相対比率量の各々は クエン酸カルシウム 60% リンゴ酸カルシウム 40% リンゴ酸カルシウムによりクエン酸カルシウム
の水可溶化が増大する理由不祥だが、次のことが
考えられる。 クエン酸カルシウムの水に対する物性変化: クエン酸カルシウム単独の水に対する溶解率と
クエン酸カルシウムリンゴ酸カルシウム複合体の
溶解率との比較 クエン酸カルシウムの溶解率 クエン酸カルシウ
ム・リンゴ酸カルシウム複合体 18℃水100ml中0.0849g 20℃水100ml中0.5g クエン酸カルシウム・リンゴ酸カルシウム複合
体のクエン酸カルシウムの溶解比率は 複合体溶解率0.5g×0.59=0.259g …複合体中のクエン酸カルシウム溶解量となり、
共存体中のクエン酸カルシウムは単独クエン酸
カルシウムの3.47倍溶解する(0.295÷0.085=
3.47倍)。 クエン酸カルシウムに対するリンゴ酸カルシウ
ムの機作に関して基本水溶解試験によりクエン酸
カルシウムに対してリンゴ酸カルシウム40.8%共
存比が最大の水溶解率を示すことを実験的に確認
した。この事実に関して両者の相対的分子量より
の計算数値がクエン酸カルシウムとリンゴ酸カル
シウムとの推定分子結合体としての両者の相対化
学構造式上においても一致する。 クエン酸カルシウム・リンゴ酸カルシウム中の
各カルシウム量 クエン酸カルシウム分子量(無水) = 498.4中カルシウム120=3原子 リンゴ酸カルシウム分子量=172.中カルシウム
40=1原子これにより各塩中のカルシウム1gに
対するクエン酸カルシウム塩量及びリンゴ酸カル
シウム塩量は クエン酸カルシウム=498÷120=4.154 リンゴ酸カルシウム=172÷40=4.300 である。 基本水溶解試験結果より、クエン酸カルシウム
60%リンゴ酸カルシウム40%の共存比率がクエン
酸カルシウムの最大水溶解現象を示したことによ
り クエン酸カルシウム4.154×0.6=2.4924 リンゴ酸カルシウム4.3×0.4=1.72 となる。 従つてこれら数値を各自の分子量と比較し、そ
の量的関連をみれば、両者間の相互分子間関連の
状態も知り得ることが出来る。 クエン酸カルシウムは60%=2.492×100 ÷498.4=1/2分子 リンゴ酸カルシウムは40%=1.72×100 ÷172=1分子 1/2:1=は相互分子構造と実在的数値とすれ
ば、リンゴ酸カルシウム2分子 クエン酸カルシ
ウム1分子とみるべきである。 また別に、既に記述せるごとく、クエン酸カル
シウム・リンゴ酸カルシウムの各カルシウム量に
対する相対比率量はクエン酸カルシウム60%、リ
ンゴ酸カルシウム40%であることは純カルシウム
原子数に換算すれば、クエン酸カルシウムの方は
3原子となり、リンゴ酸カルシウムの方は2原子
となる。故にこれを各クエン酸カルシウム、リン
ゴ酸カルシウムの一分子組成中結合カルシウム原
子数をみれば、 クエン酸カルシウム→分子組成中カルシウムは
3原子 リンゴ酸カルシウム→分子組成中カルシウムは
1原子 リンゴ酸カルシウムの方は2原子の配率が故に
二分子のリンゴ酸カルシウムの共存を意味する。
従つて、クエン酸カルシウム1分子とリンゴ酸カ
ルシウム2分子との共存していることがこれで判
る。これらの相互比率において水難溶性のクエン
酸カルシウムが水に対する溶解率を増大する事実
は、クエン酸カルシウムがリンゴ酸カルシウムの
共存下でおこる物性変化によることと推定しう
る。既に記述したカルシウム原子各酸の方の分配
数により クエン酸カルシウム 1分子 リンゴ酸カルシウム 2分子 の共存していることにより、クエン酸カルシウム
の水に対する物性変化の来たしたことは、クエン
酸カルシウムとリンゴ酸カルシウムとのなんらか
の分子間結合によるものと考えられる。よつて、
本発明の複合組成物は単に有機酸カルシウムの混
合物ではない。 クエン酸カルシウム1分子、リンゴ酸カルシウ
ム2分子の共存は明とされていることでこれらを
各分子構造式面より両者間の関連を論及検討すれ
ば、次のような分子間の結合状態を推定し得る。
クエン酸カルシウムは二分子のクエン酸と三原子
のカルシウムとよりなり、リンゴ酸カルシウムは
二分子のリンゴ酸と2原子のカルシウムよりなつ
ている、ことになる。分子水素結合の推定要因は
クエン酸カルシウム1分子とリンゴ酸カルシウム
2分子との各分子構造面における関連によるもの
である。 上に示す通り、クエン酸カルシウム一分子に対
しリンゴ酸カルシウム二分子が附加的分子水素結
合にあるのではないかと推定し得る。これら分子
構造式よりクエン酸リンゴ酸の各カルシウム塩の
相対比に換算すれば 172×2×100/172×2+498=4.85% リンゴ酸カルシ
ウム共 存比 498×100/172×2+498=59.14% クエン酸カルシウ
ム共 存比 (リンゴ酸カルシウム分子量172、クエン酸カル
シウム分子量498(無水物として)) 各カルシウム塩のカルシウムの相対比はクエン酸
カルシウム=3原子、リンゴ酸カルシウム1原子
×2=2原子∴3:2であり、これは基本溶解試
験実験結果の計算数値と全く同一である。以上こ
れらは実験による結果よりの推定的分子式であり
推論であり、これらの確認の裏附は今後の物理化
学試験に由り確認されよう。然しながら実際問題
として水難溶性クエン酸カルシウム(18℃水100
ml中0.085g溶解)、クエン酸カルシウム60%、リ
ンゴ酸カルシウム40%の複合体は20℃水100ml中
0.5g溶解する実際現象はクエン酸カルシウム単
独の溶解率0.085g/100mlの3倍以上(複合体中
のクエン酸カルシウムは60%=0.3g)となる。 クエン酸カルシウムの物性変化による水可溶化
傾向の増大は各面に広く利用価値があり、特に中
性状態において透明度を競う食品特に飲料食品等
に対し栄養カルシウム塩として強化利用出来勿論
他の食品一切に栄養カルシウムとして食品の本来
の風味を豪も変えることはなく炊飯時における強
化適用は試験済で特に米飯に対する鑑別感覚の強
い日本人が全々異議なく摂取したことに依つても
名の如何なる食物にも添加することが出来よう。
クエン酸カルシウム・リンゴ酸カルシウムとの複
合体内容組成物及物性 1 物性 白色結晶性微細粉末無味無臭水には20
℃100ml中0.5g溶解する(中性状態で溶解PH6
〜6.5) 理論的内容組成 クエン酸カルシウム 54.42% リンゴ酸カルシウム 37.60% 純カルシウム(Ca) 21.7% 水 分 8% 日本食品分析センター第11120588号分析試験
成績昭和53−12−23日 クエン酸 42.1% リンゴ酸 26.7% カルシウム 19.5% 水 分 11,4% クエン酸及リンゴ酸はガスクロマト法によるこ
の分析結果も理論的内容組成に程ど一致してい
る。 実験例 クエン酸カルシウム、リンゴ酸カルシウム及び
エイカルの熱重量分析(TG)、示差熱分析
(DTA)の結果について、 使用機器:セイコウ電子製熱分析装置G−5000 測定条件:加熱速度:5deg/min.、 昇温限界:300deg.、 試験乾燥温度:35deg.、 試料容器:Al 試料 1 クエン酸カルシウム(試薬特級) 2 リンゴ酸カルシウム(リンゴ酸ナトリウム溶
液に塩化カルシウムを加え、生じた沈澱をろ取
し、温湯で塩素イオンが検出されなくなるまで
洗浄した後、室温で風乾する) 3 エイカル(商品名、本発明品) 4 エイカル(MIX−1)(本発明の製法にした
がつて製した、但し110−120℃の乾燥は行わず
風乾した) 5 エイカル(MIX−2)(MIX−1と同一バル
クであるが、漉過洗浄が異なつた為別サンプル
とした) 6 クエン酸リンゴ酸カルシウム−1.(試料1.ク
エン酸カルシウムと試料2.リンゴ酸カルシウム
をモル比1:2に量り取り、メノウ乳鉢を用い
て良く混和したもの) 7 クエン酸リンゴ酸カルシウム−2(試料1.ク
エン酸カルシウムと試料2.リンゴ酸カルシウム
をモル比1:2に量り取り、メノウ乳鉢を用い
て良く混和し、水を加えて泥状として更にかき
混ぜ、風乾する) 結果及び考察 クエン酸カルシウム(Cit2−Ca3−4H2O)の結
晶水は107℃迄に2分子を失い、154℃迄に更に2
分子の水を失い無水物となる。 リンゴ酸カルシウム(Mal−Ca−3H2O)では
116℃迄に2分子の水を失つて1水塩となり、1
分子の水は257℃迄に失う。 エイカル(商品)は一度乾燥されたものであり
加熱による水の脱離は定量性がないが、リンゴ酸
カルシウムの1分子の水よりも低い温度の230℃
迄に完全に乾燥している。この脱離過程はクエン
酸カルシウム及びリンゴ酸カルシウムのものとは
全く異なつている。 エイカル(MIX−1)は風乾したものであり
クエン酸カルシウム(Cit2−Ca3−4H2O)とリン
ゴ酸カルシウム(Mal−Ca−3H2O)の組成から
なると予想される。結晶に含まれる7分子の水は
連続的に脱離し211℃で無水物となつている。こ
の脱離過程はエイカル(商品)と同様であつた。 エイカル(MIX−2)もエイカル(MIX−1)
と同様な結果を与えた。 クエン酸リンゴ酸カルシウム−1は取扱中に若
干脱水した可能性があり考察の対象とはできない クエン酸リンゴ酸カルシウム−2はリンゴ酸の
水2分子の脱離温度の116℃ではクエン酸による
2分子の水、リンゴ酸による2分子の水としては
やや多いが、次のクエン酸の2分子の水が脱離す
る168℃迄に全部で水6分子が脱離するのみであ
り、リンゴ酸の最後の1分子中の水は250℃にな
らないと脱離しないことがわかる。即ち、クエン
酸リンゴ酸カルシウム−2の結晶水の脱離過程は
クエン酸カルシウム(Cit2−Ca3−4H2O)とリン
ゴ酸カルシウム(Mal−Ca−3H2O)のそれが独
立して重なり合つたものとして考えられる。 従つて、エイカル結晶中における結晶水の構造
とクエン酸カルシウム、リンゴ酸カルシウム及び
これらの混合物の結晶中における結晶水の構造と
は異なるものであると言える。 結 論 エイカルはクエン酸カルシウムとリンゴ酸カル
シウムの単純な混合物とは言えない。エイカルを
水に溶解した状態については上述の結果からは結
論できない。 エイカルは共沈による混晶の可能性が高い。仮
に混晶ならば、水溶液中では混合物と同様な挙動
を示すと考えられる。
The present invention relates to a calcium malate/calcium citrate composite composition and a method for producing the same. More specifically, a method for producing a calcium malate/calcium citrate composite composition by reacting a certain ratio of citric acid (or its sodium salt) and malic acid (or its sodium salt) with a certain calcium salt. Regarding. Although the food situation in our country is improving year by year with economic development and the general nutritional status is also improving, only calcium is lacking in nutritional balance.
Recent results of the National Nutrition Survey conducted by the Ministry of Health and Welfare show that the average intake of calcium is insufficient, and vitamin B1 is also insufficient. In view of these circumstances, the inventor has conducted numerous studies with the aim of researching and developing a calcium supplementary food that also serves as nutrition as a countermeasure to this problem, and has finally determined that the calcium form of organic acids in the Kreb's citric acid cycle series has ideal conditions. Of course, there are many other substances that can be used as sources of calcium supplementation, but organic acids of the Kreb's citric acid cycle system should be considered as the only substances that are directly involved in heat calorie metabolism at the same time as calcium supplementation. Citric acid, in particular, is absorbed immediately after ingestion, immediately enters the Kreb's citric acid cycle, and is involved in heat energy metabolism. The fact that the average per person in the results of the Ministry of Health and Welfare's national nutrition survey is around 300 mg per day, which is below the nutritional standard requirement for calcium set out in the Ministry of Health and Welfare White Paper, is 600 mg per day for each adult, which is a major problem in terms of national health. Calcium 600 per day per adult according to the Ministry of Health and Welfare White Paper
mg intake should be considered to be very reasonable, and these are values determined by determining the daily required amount based on one nutritional basis, and considering the amount excreted by the body's calcium metabolism, that is, the amount in feces. Endogenous calcium loss of
100mg, the amount excreted in urine is around 130mg, the amount excreted in sweat is 30
mg, a total of 260 mg will be excreted. If we assume that the calcium digestion and absorption rate in food is 50%, we can calculate that it is sufficient to take in 520mg of calcium, and based on these results, we can see that the required amount of 600mg/day is reasonable considering the amount of excretion (in the past, calcium intake was (1g per adult per day). When we consider the causes of the lack of calcium intake among the Japanese people today, we find that: (1) Japanese people live on an acidic plateau, which is characteristic of volcanic countries, so they have less calcium than their European and American soils; Therefore, the fundamental and fateful cause is that the amount of calcium in ground crops and other foods is particularly low, and that Japanese people have a diet that relies on general foods with low calcium content. (2) Calcium is one of the most important nutrients, and even if its intake is insufficient or inadequate, like the other three major nutrients, it can cause hunger and starvation due to insufficient intake, fasting, etc. There are no subjective symptoms such as a condition, and therefore it is dangerous. There is currently no method for early detection of calcium deficiency, and there is no known isolated calcium deficiency. Due to these factors, there is a tendency for calcium intake to be neglected. (3) General members of society lack awareness regarding the importance of calcium in physiological functions other than teeth and bones. are excreted unchanged every day, and the calcium requirement for these, which is particularly involved in physiological effects, is compensated for by the dissolution of the bone, which is an autologous calcium store; Fractures cause osteoporosis. As mentioned above, the most ideal way to counter the lack of calcium intake in Japanese people is to supplement calcium through dietary improvements, but this requires an appropriate calcium supplement. The fact that it is extremely difficult for each Japanese person to consume 600 mg of calcium in their current dietary habits according to the Ministry of Health and Welfare's white paper can be idealized by referring to the ``Japanese Food Composition Tables, compiled by the Science and Technology Agency Resources Investigation Committee.'' Not only housewives at home, but also people in charge of preparing menus for group lunches and school lunches, need to create food selection menus that are well-balanced within a certain economic framework, especially in order to satisfy calcium requirements. The economic aspect is most difficult to overcome when relying on calcium-deficient food ingredients. In view of the above-mentioned circumstances, and based on a nutritional standpoint, the ideal system is the Krebs cycle (citric acid cycle or
As mentioned above, we selected calcium citrate, which is a representative organic acid of the TCA cycle) series.Of course, there are many other calcium supplements, but those that are directly involved in metabolism as well as direct calcium supplements. There are only organic acids in the Krebs cycle series, especially citric acid, which immediately enters the Krebs cycle and rotates, so that the final decomposition products of ingested nutrients are combined with oxalo complex acids, which are active complex acids and are present in living tissues. It starts to become citric acid and can enter the Krebs cycle. Therefore, citric acid is a physiological component, has no heterospecificity, is easily absorbed, and is a basic factor of heat energy metabolism that can directly enter the Krebs-citric acid cycle. Also, in Dr. Krebs' biological experiments, ``a small amount of citric acid significantly promotes cellular respiration.'' During the citric acid cycle, citric acid is gradually transferred into the muscles, and its intermediate products are rapidly oxidized by the muscles. Based on these experimental facts, he published the Kreb's citric acid cycle theory in 1937, and was awarded the 1952 Nobel Prize. After the ingested nutrients are digested and broken down,
These are the theories that elucidate the pathway leading to the generation of oxidative decomposition thermal energy at the final stage. As mentioned above, the organic acids of the Krebs-citric acid cycle are absolutely indispensable for heat energy metabolism in living organisms, and it is an undeniable fact that living organisms sustain life through these organic acids. is considered most important. Therefore, it is close to ideal in terms of health promotion that these organic acid binders can supplement calcium and at the same time enhance internal metabolism more smoothly. However, calcium salts of organic acids in the citric acid cycle series, especially calcium citrate, are sparingly soluble in water, and their range of use in food products is extremely narrow, making them particularly inapplicable to beverage products that compete for transparency. There is. The present inventor aims to widely apply calcium citrate as a calcium supplement source in the food sector, and as a result of repeated research on the increase in the water-soluble tendency of calcium citrate, Reached. By allowing calcium malate to coexist with poorly water-soluble calcium citrate, it is more than three times more soluble in water than conventional calcium citrate (PH6-6.5), and 5.9 times more soluble than the entire complex. Therefore, calcium citrate can be widely used in the food sector, and can be easily applied to beverages in a neutral state, especially in terms of transparency. Due to the coexistence of calcium malate molecules with calcium citrate molecules, the physical property change in which the water solubility of calcium citrate molecules increases is due to the coexistence effect of calcium malate molecules on calcium citrate molecules. We experimentally researched and confirmed the fact that physical properties change as the dissolution rate increases in water. Based on this fact, it can be assumed that the relative optimal coexistence ratio of malic acid molecules to calcium citrate molecules is related to the maximum dissolution rate of calcium citrate molecules in water. On the other hand, the quantitative ratio change of calcium malate was systematically and sequentially changed in magnification, and the results of a water solubility comparison test were investigated for each of the various test samples. The coexistence ratio of calcium citrate and calcium malate that showed the highest dissolution rate was 59.14% for calcium citrate and 40.8% for calcium malate. Calcium 60% Calcium malate 40% The reason why calcium malate increases the water solubilization of calcium citrate is unfortunate, but the following may be considered. Changes in physical properties of calcium citrate in water: Comparison of dissolution rate of calcium citrate alone in water and dissolution rate of calcium citrate/calcium malate complex Dissolution rate of calcium citrate Calcium citrate/calcium malate complex 18℃ 0.0849 g in 100 ml of water 0.5 g in 100 ml of water at 20°C The dissolution ratio of calcium citrate in the calcium citrate/calcium malate complex is the dissolution rate of the complex: 0.5 g x 0.59 = 0.259 g ... Amount of calcium citrate dissolved in the complex Then,
Calcium citrate in the coexisting body is 3.47 times more soluble than calcium citrate alone (0.295÷0.085=
3.47 times). Regarding the mechanism of calcium malate relative to calcium citrate, it was experimentally confirmed by a basic water solubility test that a 40.8% coexistence ratio of calcium malate to calcium citrate showed the maximum water solubility. Regarding this fact, the numerical values calculated from the relative molecular weights of both calcium citrate and calcium malate as a presumed molecular bond also match in terms of their relative chemical structural formulas. Amount of each calcium in calcium citrate and calcium malate Calcium citrate molecular weight (anhydrous) = 498.4 Calcium 120 = 3 atoms Calcium malate molecular weight = 172. Calcium medium
40 = 1 atom Therefore, the amount of calcium citrate salt and calcium malate salt per 1 g of calcium in each salt is calcium citrate = 498 ÷ 120 = 4.154 Calcium malate = 172 ÷ 40 = 4.300. Based on the basic water solubility test results, calcium citrate
Since the coexistence ratio of 60% calcium malate and 40% showed the maximum water solubility phenomenon of calcium citrate, calcium citrate 4.154 x 0.6 = 2.4924 calcium malate 4.3 x 0.4 = 1.72. Therefore, by comparing these numerical values with their respective molecular weights and looking at their quantitative relationship, it is possible to know the state of the mutual intermolecular relationship between the two. Calcium citrate is 60% = 2.492 x 100 ÷ 498.4 = 1/2 molecule Calcium malate is 40% = 1.72 x 100 ÷ 172 = 1 molecule If 1/2:1 = is the mutual molecular structure and real value, It should be considered as 2 molecules of calcium malate and 1 molecule of calcium citrate. Separately, as already stated, the relative proportions of calcium citrate and calcium malate to each calcium amount are 60% calcium citrate and 40% calcium malate, which means that if converted to the number of pure calcium atoms, citric acid Calcium has 3 atoms, and calcium malate has 2 atoms. Therefore, if we look at the number of calcium atoms bound in each molecule of calcium citrate and calcium malate, we can see that: Calcium citrate → 3 atoms of calcium in the molecule Calcium malate → 1 atom of calcium in the molecule Calcium malate This means that two molecules of calcium malate coexist due to the arrangement of two atoms.
Therefore, it can be seen that one molecule of calcium citrate and two molecules of calcium malate coexist. The fact that calcium citrate, which is poorly water-soluble, increases its solubility in water at these mutual ratios can be presumed to be due to changes in physical properties of calcium citrate that occur in the coexistence of calcium malate. Due to the already described distribution number of calcium atoms for each acid, the coexistence of 2 molecules of calcium citrate and 1 molecule of calcium malate caused the change in the physical properties of calcium citrate with respect to water. This is thought to be due to some kind of intermolecular bond with calcium malate. Then,
The composite composition of the present invention is not simply a mixture of calcium organic acids. Since it is clear that one molecule of calcium citrate and two molecules of calcium malate coexist, if we discuss and examine the relationship between them from the perspective of each molecular structure, we can find the bonding state between the molecules as follows. It can be estimated.
Calcium citrate consists of two molecules of citric acid and three atoms of calcium, and calcium malate consists of two molecules of malic acid and two atoms of calcium. The probable cause of molecular hydrogen bonding is due to the relationship between one molecule of calcium citrate and two molecules of calcium malate in terms of their respective molecular structures. As shown above, it can be assumed that two molecules of calcium malate exist in an additional molecular hydrogen bond with one molecule of calcium citrate. Based on these molecular structural formulas, the relative ratio of each calcium salt of malic acid citrate is 172 x 2 x 100/172 x 2 + 498 = 4.85% Calcium malate coexistence ratio 498 x 100/172 x 2 + 498 = 59.14% Calcium citrate Coexistence ratio (calcium malate molecular weight 172, calcium citrate molecular weight 498 (as anhydrous)) The relative ratio of calcium in each calcium salt is calcium citrate = 3 atoms, calcium malate 1 atom x 2 = 2 atoms ∴ 3:2 This is exactly the same as the calculated value of the basic dissolution test experimental result. These are estimated molecular formulas and inferences based on experimental results, and the basis for these confirmations will be confirmed through future physical and chemical tests. However, as a practical matter, poorly water-soluble calcium citrate (18°C water 100%
0.085g dissolved in ml), a complex of 60% calcium citrate and 40% calcium malate in 100ml of water at 20°C.
The actual phenomenon of dissolving 0.5g is more than three times the dissolution rate of calcium citrate alone, which is 0.085g/100ml (calcium citrate in the complex is 60% = 0.3g). The increased water solubilization tendency due to changes in the physical properties of calcium citrate has wide application value in various fields, and it can be used as a nutritional calcium salt to strengthen foods, especially beverages, that compete for transparency in a neutral state, as well as all other foods. As nutritional calcium, it does not change the original flavor of the food, and its fortification application when cooking rice has been tested, and the Japanese people, who have a strong sense of discrimination when it comes to cooked rice, ingest it without any objections. It could also be added.
Content composition and physical properties of complex with calcium citrate and calcium malate 1 Physical properties 20% for white crystalline fine powder tasteless and odorless water
℃Dissolve 0.5g in 100ml (dissolved in neutral pH 6)
~6.5) Theoretical content composition Calcium citrate 54.42% Calcium malate 37.60% Pure calcium (Ca) 21.7% Moisture 8% Japan Food Research Center No. 11120588 Analysis test results 1978-12-23 Citric acid 42.1% Apple Acid: 26.7% Calcium: 19.5% Water: 11.4% The analysis results of citric acid and malic acid by gas chromatography are also in good agreement with the theoretical content composition. Experimental example Regarding the results of thermogravimetric analysis (TG) and differential thermal analysis (DTA) of calcium citrate, calcium malate, and ACAL, Equipment used: Seiko Electronics thermal analyzer G-5000 Measurement conditions: Heating rate: 5deg/min ., Temperature increase limit: 300deg., Test drying temperature: 35deg., Sample container: Al Sample 1 Calcium citrate (special grade reagent) 2 Calcium malate (add calcium chloride to sodium malate solution and collect the resulting precipitate by filtration) and then washed with warm water until no chlorine ions are detected, and then air-dried at room temperature.) 3. ACAL (trade name, product of the present invention) 4. ACAL (MIX-1) (manufactured according to the manufacturing method of the present invention, provided that (It was air-dried without drying at 110-120℃) 5 ACAL (MIX-2) (same bulk as MIX-1, but different samples were used because filtration and washing were different) 6 Calcium citrate malate-1 (Sample 1. Calcium citrate and Sample 2. Calcium malate were weighed out at a molar ratio of 1:2 and mixed well using an agate mortar.) 7 Calcium citrate malate-2 (Sample 1. Calcium citrate and sample 2. Weigh out calcium malate at a molar ratio of 1:2, mix well using an agate mortar, add water to form a slurry, stir further, and air dry) Results and discussion Calcium citrate (Cit 2 -Ca The crystallization water of 3 −4H 2 O) loses two molecules by 107℃, and loses two more molecules by 154℃.
It loses molecular water and becomes anhydrous. In calcium malate (Mal−Ca−3H 2 O)
By the time it reaches 116℃, it loses two molecules of water and becomes a monohydrate salt.
Molecular water is lost up to 257°C. ACAL (product) has been dried once, so the amount of water released by heating is not quantitative, but it is heated at 230℃, which is lower than the temperature of one molecule of water in calcium malate.
It's completely dry by now. This elimination process is quite different from that of calcium citrate and calcium malate. Eical (MIX-1) is air-dried and is expected to have a composition of calcium citrate ( Cit2 -Ca3-4H2O ) and calcium malate (Mal-Ca - 3H2O ). Seven molecules of water contained in the crystal are continuously eliminated and become anhydrous at 211℃. This desorption process was similar to that of Eikal (product). Eikal (MIX-2) and Eikal (MIX-1)
gave similar results. Calcium citrate malate-1 may have been slightly dehydrated during handling and cannot be considered. Calcium citrate malate-2 is dehydrated by citric acid at 116°C, the desorption temperature of two water molecules from malic acid. The number of molecules of water, two molecules of water due to malic acid, is somewhat large, but by the time the next two molecules of water from citric acid are released, at 168°C, only 6 molecules of water are released in total, and the number of water molecules from malic acid is It can be seen that the water in the last molecule does not desorb until the temperature reaches 250°C. In other words, the process of desorption of crystal water from calcium citrate-malate-2 is that of calcium citrate (Cit 2 -Ca 3 -4H 2 O) and calcium malate (Mal-Ca-3H 2 O) independently. They can be thought of as overlapping. Therefore, it can be said that the structure of water of crystallization in Eical crystals is different from the structure of water of crystallization in crystals of calcium citrate, calcium malate, and mixtures thereof. Conclusion ACAL cannot be said to be a simple mixture of calcium citrate and calcium malate. No conclusion can be drawn from the above results regarding the state of Eical dissolved in water. Eical is likely to be a mixed crystal due to coprecipitation. If it is a mixed crystal, it is thought that it will behave in the same way as a mixture in an aqueous solution.

【表】 実施例 1 クエン酸、リンゴ酸、及炭酸Caは共に局方品
又は食品添加物規定品 クエン酸(結晶水1分子のもの) 2分子量 リンゴ酸 2分子量 を予め1800ml〜2000mlの水に溶解する。完全溶解
後、外部より加温し、内部温度50゜〜60℃となし、
これに炭酸カルシウム500gを内容泡沸を注意し
つつ全部加えた後充分内容を撹拌すると、暫時に
して白色の結晶泥となり殆ど容器を満す。三時間
放置後これを適切な方法により母液を分離乾燥器
中において乾燥し、最後に110゜〜120℃で1〜2
時間滅菌を兼ねる乾燥を実施冷後最終製品とす
る。 実施例 2 クエン酸ナトリウム及リンゴ酸ナトリウム塩溶
液より塩化カルシウムにて交換分離する方法 クエン酸カルシウム588g及びリンゴ酸ナトリ
ウム356gを50℃温水1500ml〜2000mlを以つて溶
解しこの中へ予め別器に塩化カルシウム740gを
1000mlの温水(50℃)に溶解せるものを徐々に加
え、内容は常に撹拌を続けると白色結晶の一部は
析出する。塩化カルシウム液全部加えた後も内容
を充分撹拌した後2〜3時間常温において放置
し、その間も時々内容を撹拌する。更に1〜2時
間静置すると白色結晶は沈降し清澄な上層とに分
れる。適当な方法で上層液と結晶とを分離す(母
液中NaCl460g余り溶存する)。分離結晶は1〜
2回、同容積量の温水で洗滌した後、脱水乾燥す
る。最後に温度110〜120゜において滅菌を兼ねる
乾燥を続ける。冷後これを製品とする。次に化学
交換分離の分子式は次の通りである。各使用原料
量各化分子当量より算出し得るもので化生結晶は
クエン酸カルシウム及リンゴ酸カルシウム59.14
%:40.85%内容組成をもつものとする。 クエン酸カルシウム2C6H5Na3O7・2H2O+3CaCl2 =クエン酸カルシウムC12H10Ca3O14分子量498
だけ化生 +6NaCl リンゴ酸カルシウム2C4H4Na2O5・1/2H2O +塩化カ
ルシウム2CaCl =リンゴ酸カルシウム2C4H4CaO5+2NaCl分
子量172×2=344だけ化生す 化生各カルシウム塩の相対比率は 498+344=842…化生クエン酸カルシウム、リン
ゴ酸カルシウム量 クエン酸カルシウム498/842=59.14% リンゴ酸カルシウムカルシウム344/842=40.85
% となりこれらは所定比率クエン酸カルシウム:リ
ンゴ酸カルシウム3:2となる。 水溶解度試験 本発明の試料を予め1〜2gを小乳鉢中にて研
磨微細粉となしこれに温度20℃水100c.c.を直接乳
鉢中に加えて充分内容を乳棒をもつて崩砕を兼ね
る混和撹拌すること30分間にして、この内容物を
100c.c.のメスシリンダー中に移し3時間静置する
ときは、不溶性過剰量の沈澱物は底部に沈着し無
色透明の上層液とに分離する。この透明の上層液
を20mlホームピペツトにて正確に採取し注意しつ
つ重量既知の小蒸発皿中に移し、重湯煎鍋上にて
蒸発、内容水分の逸散後、蒸発皿中の残留固形物
はその蒸発皿と共に100〜110゜恒温乾燥器中で1
〜2時間乾燥後エキシカートル中において放冷後
秤量し其全重量より重量既知の蒸発皿量を差引く
ことにより20ml中に溶存しおる試料の全量とす
る。皿にその数値を5倍すれば100ml中溶解試料
量とする。 小蒸発皿 18.41g 20c.c.m蒸発後全重量 18.57g 18.57 ∴−18.41 0.16 0.13×5=0.65g…100c.c.水中 0.16×5=0.8g 尚、本発明生成物を日本薬局方に準じて溶解度
試験を行なつた結果は以下の通りである(静岡県
衛生研究所試験成績)。 0.4% 溶解する。 0.5% 完全には溶解しない。 0.6% 同上 溶解度 0.14%(19℃)。
[Table] Example 1 Citric acid, malic acid, and Ca carbonate are all pharmacopeia products or food additive regulations Citric acid (with 1 molecule of crystal water) 2 molecular weight Malic acid 2 molecular weight is added to 1800 ml to 2000 ml of water in advance dissolve. After complete melting, heat from the outside until the internal temperature reaches 50° to 60°C.
Add 500 g of calcium carbonate to this, being careful not to bubble the contents, and stir the contents thoroughly. After a while, it becomes a white crystalline slurry that almost fills the container. After standing for three hours, the mother liquor was separated and dried in a dryer using an appropriate method, and finally dried at 110° to 120°C for 1 to 2 hours.
Drying, which also serves as time sterilization, is performed and the final product is made after cooling. Example 2 Method of exchange separation with calcium chloride from sodium citrate and sodium malate salt solution 588 g of calcium citrate and 356 g of sodium malate were dissolved in 1500 ml to 2000 ml of 50°C warm water, and chlorinated in a separate container in advance. 740g of calcium
Gradually add something that can be dissolved in 1000 ml of warm water (50°C) and keep stirring the contents, and some of the white crystals will precipitate out. After all of the calcium chloride solution has been added, the contents are sufficiently stirred and then left at room temperature for 2 to 3 hours, with occasional stirring during this period. When left to stand for an additional 1 to 2 hours, the white crystals settle and separate into a clear upper layer. Separate the upper layer liquid and crystals by an appropriate method (more than 460 g of NaCl is dissolved in the mother liquid). Separated crystals are 1~
After washing twice with the same volume of warm water, dehydrate and dry. Finally, drying, which also serves as sterilization, is continued at a temperature of 110 to 120°. After cooling, this is used as a product. Next, the molecular formula for chemical exchange separation is as follows. The amount of each raw material used can be calculated from the molecular equivalent of each chemical, and metaplastic crystals are calcium citrate and calcium malate 59.14
%: Shall have a content composition of 40.85%. Calcium citrate 2C 6 H 5 Na 3 O 7・2H 2 O + 3CaCl 2 = Calcium citrate C 12 H 10 Ca 3 O 14 Molecular weight 498
Only metaplasia + 6NaCl Calcium malate 2C 4 H 4 Na 2 O 5・1/2H 2 O + Calcium chloride 2CaCl = Calcium malate 2C 4 H 4 CaO 5 + 2NaCl Metaplastic calcium with molecular weight 172 x 2 = 344 The relative ratio of salt is 498 + 344 = 842...Amount of metaplastic calcium citrate and calcium malate Calcium citrate 498/842 = 59.14% Calcium malate Calcium 344/842 = 40.85
%, and these are a predetermined ratio of calcium citrate:calcium malate 3:2. Water solubility test 1 to 2 g of the sample of the present invention was ground into a fine powder in a small mortar, and 100 c.c. of water at a temperature of 20°C was added directly to the mortar, and the contents were thoroughly crushed using a pestle. Mix and stir this content for 30 minutes.
When transferred to a 100 c.c. graduated cylinder and left to stand for 3 hours, an excessive amount of insoluble precipitate settles at the bottom and separates into a colorless and transparent upper layer liquid. Accurately collect this transparent upper layer liquid with a 20 ml home pipette, carefully transfer it to a small evaporating dish of known weight, evaporate it on a heavy boiling water pot, and after the content water has evaporated, the remaining solids in the evaporating dish are 1 in a constant temperature dryer at 100~110° with the evaporating dish.
After drying for ~2 hours, leave to cool in an excircator, weigh, and subtract the amount of the evaporating dish whose weight is known from the total weight to obtain the total amount of the sample dissolved in 20 ml. Multiply that number by 5 to get the amount of sample dissolved in 100ml. Small evaporating dish 18.41g 20c.c.m Total weight after evaporation 18.57g 18.57 ∴ −18.41 0.16 0.13×5=0.65g…100c.c. in water 0.16×5=0.8g The product of the present invention is included in the Japanese Pharmacopoeia. The results of a solubility test conducted in accordance with the above are as follows (Shizuoka Prefectural Institute of Health Test Results). 0.4% dissolves. 0.5% Not completely dissolved. 0.6% Same as above Solubility 0.14% (19℃).

Claims (1)

【特許請求の範囲】 1 リンゴ酸カルシウム:クエン酸カルシウムの
分子重量比が少なくとも2:1の割合で結合して
いることを特徴とする、水溶性のリンゴ酸カルシ
ウム・クエン酸カルシウムの複合組成物。 2 70%未満のクエン酸と30%以上のリンゴ酸を
水に溶解し、これに水酸化カルシウム又は炭酸カ
ルシウムを添加して該溶液を中和し、又は70%未
満のクエン酸ナトリウムと30%以上のリンゴ酸ナ
トリウムを水に溶解し、これに対応し得る化学分
子当量の塩化カルシウムを添加し、ついで生成し
た結晶性沈殿物を分別することを特徴とする、各
分子重量比が少なくとも2:1の割合で結合して
いるリンゴ酸カルシウム・クエン酸カルシウム複
合組成物の製造法。
[Claims] 1. A water-soluble composite composition of calcium malate and calcium citrate, characterized in that the molecular weight ratio of calcium malate to calcium citrate is at least 2:1. . 2 Dissolve less than 70% citric acid and more than 30% malic acid in water and neutralize the solution by adding calcium hydroxide or calcium carbonate, or dissolve less than 70% sodium citrate and 30% The above sodium malate is dissolved in water, a corresponding chemical molecular equivalent of calcium chloride is added, and the resulting crystalline precipitate is then separated, each having a molecular weight ratio of at least 2: A method for producing a composite composition of calcium malate and calcium citrate in which calcium malate and calcium citrate are combined at a ratio of 1.
JP17317279A 1979-12-28 1979-12-28 Conjugated compound of calcium citrate and calcium malate and its preparation Granted JPS5697248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17317279A JPS5697248A (en) 1979-12-28 1979-12-28 Conjugated compound of calcium citrate and calcium malate and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17317279A JPS5697248A (en) 1979-12-28 1979-12-28 Conjugated compound of calcium citrate and calcium malate and its preparation

Publications (2)

Publication Number Publication Date
JPS5697248A JPS5697248A (en) 1981-08-05
JPH0448421B2 true JPH0448421B2 (en) 1992-08-06

Family

ID=15955419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17317279A Granted JPS5697248A (en) 1979-12-28 1979-12-28 Conjugated compound of calcium citrate and calcium malate and its preparation

Country Status (1)

Country Link
JP (1) JPS5697248A (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4551342A (en) * 1983-02-01 1985-11-05 The Procter & Gamble Company Beverages containing specific cation-edible acid mixtures for improved flavor impression
US4737375A (en) * 1985-12-26 1988-04-12 The Procter & Gamble Company Beverages and beverage concentrates nutritionally supplemented with calcium
US4786510A (en) * 1987-07-02 1988-11-22 The Procter & Gamble Company Calcium-iron mineral supplements
ATE88633T1 (en) * 1987-08-28 1993-05-15 Norwich Eaton Pharma USE OF CERTAIN CALCIUM CITRATE MALATE IN THE MANUFACTURE OF A PHARMACEUTICAL PREPARATION FOR THE TREATMENT OF OSTEOPOROSIS.
US5128374A (en) * 1987-08-28 1992-07-07 The Procter & Gamble Company Use of calcium citrate malate for the treatment of osteoporosis and related disorders
US5314919A (en) * 1987-08-28 1994-05-24 The Procter & Gamble Company Calcium supplements
EP0304987B1 (en) * 1987-08-28 1992-11-11 Norwich Eaton Pharmaceuticals, Inc. Novel calcium supplements
US4992282A (en) * 1989-05-08 1991-02-12 The Procter & Gamble Company Stable nutritional vitamin and mineral supplemented beverage
US5186965A (en) * 1990-06-14 1993-02-16 The Procter & Gamble Company Calcium citrate malate composition
US5232709A (en) * 1990-08-06 1993-08-03 The Procter & Gamble Company Calcium and trace mineral supplements comprising estrogen
AU9046591A (en) * 1990-10-31 1992-05-26 Procter & Gamble Company, The Calcium fortified sauces
DE69233250T2 (en) * 1991-05-06 2004-08-26 The Procter & Gamble Company, Cincinnati COMBINATIONS OF CALCIUM AND VITAMIN D
CA2123604C (en) * 1991-12-26 1998-02-17 Alice Lyles Burkes Storage stable calcium-supplemented beverage concentrates
US5389387A (en) * 1991-12-26 1995-02-14 The Procter & Gamble Company Storage stable calcium-supplemented beverage concentrates
CA2146631C (en) * 1992-10-21 1999-07-20 Alice Lyles Burkes Storage stable calcium-supplemented beverage premix concentrates and syrups
EP0788318B1 (en) * 1992-10-21 2000-12-20 The Procter & Gamble Company Concentrated bioavailable calcium source
EP0665719B1 (en) * 1992-10-21 1997-01-15 The Procter & Gamble Company Sweetener containing a concentrated bioavailable calcium source
DE69303621T2 (en) * 1992-11-19 1997-02-20 Procter & Gamble METHOD FOR IMPROVING THE BIOAVAILABILITY OF BETA-CAROTINE BY ADDING CALCIUM AND CARBOHYDRATES
JP3240102B2 (en) 1994-08-11 2001-12-17 江崎グリコ株式会社 Phosphorylated sugar and method for producing the same
US6811800B2 (en) 1998-09-29 2004-11-02 The Procter & Gamble Co. Calcium fortified beverages
US7166313B2 (en) * 2004-02-02 2007-01-23 Delavau L.L.C. Calcium fortification of bread dough
US7927640B2 (en) 2004-02-02 2011-04-19 Delavau Llc Calcium fortification of bread dough
JP5349744B2 (en) 2005-12-19 2013-11-20 松谷化学工業株式会社 Mineral absorption promoter, food and feed
US8889195B2 (en) * 2006-08-17 2014-11-18 The Procter & Gamble Company Compositions comprising calcium citrate malate and methods for making the same
CN101505731B (en) * 2006-08-17 2011-11-16 宝洁公司 Compositions comprising calcium citrate malate and methods for making the same
CN101778573A (en) * 2007-07-13 2010-07-14 株式会社美你康 Calcium absorption enhancer
CN102946889B (en) 2010-03-31 2015-05-06 东洋水产株式会社 Calcium preparation and production method therefor
KR101420315B1 (en) 2014-03-19 2014-07-17 남봉길 Pharmaceutical liquid composition
CN109310774A (en) 2015-08-17 2019-02-05 费林股份公司 Containing can sulfate and magnesium citrate liquid preparation

Also Published As

Publication number Publication date
JPS5697248A (en) 1981-08-05

Similar Documents

Publication Publication Date Title
JPH0448421B2 (en)
Fox et al. Bioavailability of iron glycine as a fortificant in infant foods
Deehr et al. Effects of different calcium sources on iron absorption in postmenopausal women
JP3213666B2 (en) Method for producing creatine beverage
Van Dokkum et al. Bioavailability of calcium of fresh cheeses, enteral food and mineral water. A study with stable calcium isotopes in young adult women
CN103083648B (en) Troche for enhancing bone mineral density based on milk mineral salt as raw material as well as preparation method thereof
Fairweather-Tait et al. The effect of tea on iron and aluminium metabolism in the rat
US6787169B1 (en) Physiological food salt product
Tahiri et al. The rhamnogalacturonan-II dimer decreases intestinal absorption and tissue accumulation of lead in rats
Sayers et al. The fortification of common salt with ascorbic acid and iron
CN102415447B (en) Calcium supplement electuary for infants and preparation process thereof
KR101171068B1 (en) Pharmaceutical Compositions for Diabetes Improvement and Prevention Containing Mineral Compositions as Effective Component
Olu-Owolabi et al. Proximate and elemental composition and their estimated daily intake in infant formulae from developed and developing countries: A comparative analysis
JPH0352950B2 (en)
CN102659569B (en) Royal jelly acid calcium, and health product for antiatherosclerosis and antiosteoporosis prepared from royal jelly acid calcium and vitamin K2
JP2011115046A (en) Collagen absorption-promoting composition
JP3666094B2 (en) Calcium liquid, calcium beverage and method for producing the same
JPH0853358A (en) Calcium composition excellent in absorbability
JPH0998738A (en) Easily absorbable calcium composition
Zahoor et al. Evaluation of inorganic profile and anti-nutritional values of Cocculus hirsutus
Bhargavi et al. Mineral content of water and food in fluorotic villages and prevalence of dental fluorosis
CN110786442A (en) Method for reducing bioavailability and toxicity of cadmium in food
KR20000065465A (en) Nutritional Drink of Containing Extracts of Oyster Shell and Method of Manufacturing Thereof
Sheikh et al. Calcium absorption: effect of meal and glucose polymer
CN108967543A (en) Cow's milk Biocal and preparation method thereof