JPH0448201A - Interference measuring instrument - Google Patents

Interference measuring instrument

Info

Publication number
JPH0448201A
JPH0448201A JP15816490A JP15816490A JPH0448201A JP H0448201 A JPH0448201 A JP H0448201A JP 15816490 A JP15816490 A JP 15816490A JP 15816490 A JP15816490 A JP 15816490A JP H0448201 A JPH0448201 A JP H0448201A
Authority
JP
Japan
Prior art keywords
interference
measured
optical axis
optical element
interferometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15816490A
Other languages
Japanese (ja)
Inventor
Ryusuke Nozawa
野澤 龍介
Shinichi Mizuno
真一 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP15816490A priority Critical patent/JPH0448201A/en
Publication of JPH0448201A publication Critical patent/JPH0448201A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure the surface accuracy of a surface to be inspected with high accuracy by measuring distortion that the condenser lens system and interference fringe detecting means of an interferometer and other internal optical elements have and correcting a measurement result with the measured values. CONSTITUTION:The instrument is equipped with a tilt angle adjusting part 4 which tilts a holding part 3 and an optical element 2 to be inspected in one body to the optical axis of the interferometer 1, an alignment controller 6 which controls the tilt angle and movement in the direction of the optical axis, an interference fringe detecting means 7 which detects interference fringes, etc. Then the distortion of the optical system of the interferometer 1 itself is measured and the measurement data of the optical element 2 to be inspected is corrected with the measurement data. The measurement data is based upon interference fringe data obtained while the optical element 2 to be inspected or a reference surface is tilted to the optical axis from the state wherein the center of curvature of a curved surface is aligned with the optical axis of the interference measuring instrument. Consequently, the surface accuracy of the object surface can be measured with extremely high accuracy.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光学素子の面形状を高精度に測定する干渉測定
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an interference measuring device that measures the surface shape of an optical element with high precision.

[従来の技術] 従来から、光の干渉を利用して被検光学素子の表面形状
を測定する干渉測定装置が提供されている。
[Prior Art] Conventionally, interference measuring devices have been provided that measure the surface shape of an optical element to be tested using light interference.

これらの干渉測定装置は、その測定精度を向上させるた
めに、特開昭62−214305号公報の光学的測定装
置に示されるように、研磨面の測定データをもとにし、
干渉測定装置の内部光学系の持つ収差を求め、これを補
正用データとして測定値を補正するか、または、特開昭
62−129707号公報の表面形状測定装置に示され
るように、干渉測定装置において原器を光軸のまわりに
回転もしくは光軸方向に移動させて得られる複数の測定
データから、干渉測定装置のもつ参照面のひずみおよび
固有収差をあらかじめ求め、これを補正データとして、
被検面の測定結果から差し引くことにより、被検面の面
形状を測定するようにしている。
In order to improve the measurement accuracy, these interference measurement devices are based on measurement data of polished surfaces, as shown in the optical measurement device of Japanese Patent Application Laid-Open No. 62-214305.
Either the aberrations of the internal optical system of the interferometric measurement device are determined and the measured values are corrected using this as correction data, or the interferometric measurement device is From multiple measurement data obtained by rotating the prototype around the optical axis or moving it in the optical axis direction, the distortion and inherent aberration of the reference plane of the interferometric measurement device are determined in advance, and this is used as correction data.
The surface shape of the test surface is measured by subtracting it from the measurement results of the test surface.

[発明が解決しようとする課題] かように、従来技術の干渉測定装置の測定データの補正
は、干渉測定装置の参照面の干渉光学系の収差を基準面
を測定することによってあらかじめ求めて行っているが
、これらの方法では干渉測定装置の光学系が持つデイス
ト−ジョンによる干渉縞のゆがみが測定されないで測定
誤差となって、被検面の測定データに重畳されてしまう
という問題があった。
[Problem to be Solved by the Invention] As described above, correction of measurement data of the conventional interferometric measurement device is performed by determining in advance the aberration of the interference optical system of the reference surface of the interferometric measurement device by measuring the reference surface. However, these methods have the problem that distortion of the interference fringes due to distortion in the optical system of the interferometric measurement device is not measured, resulting in measurement errors that are superimposed on the measurement data of the surface to be measured. .

本発明は上記の問題点を解決するためになされたもので
、干渉測定装置の持つデイスト−ジョンを測定し、この
測定値からデイスト−ジョン補正値を求め、被検面の測
定データを補正し、より高精度の干渉測定装置を得るこ
とを目的とするもの本発明は光源から射出された光束を
2分して、一方の分割光束を参照面に、他方の分割光束
を被検面にそれぞれ入射させ、各々の反射光を干渉させ
て得られた干渉縞から被検面の形状を測定する干渉計と
、被検光学素子を保持するための保持部と、被検光学素
子のティルトを調整するための傾き角調整部と、光軸方
向に移動可能に保持する支持部を有する測定台と、この
ティ゛ルトおよび光軸方向の移動を制御するためのアラ
イメント制御装置と、干渉縞を電気信号に変換する干渉
縞検出手段と、電気信号をデジタル信号に変換するA/
D変換器と、得られたデジタル信号を入力し演算処理す
るための演算装置とで構成される干渉測定装置において
、干渉計自体の光学系のデイスト−ジョンを測定し、こ
の測定データにより被検光学素子の測定データを補正す
ることを特徴とする。
The present invention was made to solve the above problems, and measures the distortion of an interference measurement device, calculates a distortion correction value from this measurement value, and corrects the measurement data of the surface to be measured. The present invention aims to obtain an interference measuring device with higher precision.The present invention divides a light beam emitted from a light source into two, and uses one divided beam as a reference surface and the other divided beam as a test surface. An interferometer that measures the shape of the test surface from the interference fringes obtained by interfering with each reflected light beam, a holder for holding the test optical element, and adjusting the tilt of the test optical element. a measuring table having a tilt angle adjustment section for controlling the angle of interference; a measuring table having a support section for movably holding it in the direction of the optical axis; an alignment control device for controlling the tilt and movement in the direction of the optical axis; An interference fringe detection means for converting into a signal, and an A/A for converting an electric signal into a digital signal.
In an interference measurement device consisting of a D converter and an arithmetic unit for inputting and processing the obtained digital signal, the distortion of the optical system of the interferometer itself is measured, and the measurement data is used to measure the distortion of the optical system of the interferometer itself. It is characterized by correcting measurement data of optical elements.

本発明干渉測定装置の実施に当たり、上記測定データは
、基準となる曲面の曲率中心を干渉測定装置の光軸に一
致させた状態から被検光学素子または参照面を光軸に対
してティルトさせた状態で得られる干渉縞データに基づ
いた測定データとする。
In implementing the interferometric measurement device of the present invention, the above measurement data was obtained by tilting the optical element to be measured or the reference surface with respect to the optical axis from a state in which the center of curvature of the reference curved surface coincided with the optical axis of the interferometric measurement device. Measurement data is based on interference fringe data obtained under the following conditions.

第1図は本発明干渉測定装置を概念的に表わしたもので
あって、収束光または平行光を作り、所定の位置に配置
された被検光学素子2の反射光と参照面の反射光との干
渉による干渉縞を形成する干渉計1と、被検光学素子を
保持するための保持部3と、該保持部が取り付けられ、
保持部と被検光学素子を一体として、干渉計1の光軸に
対してティルトさせる傾き角調整部4と、光軸方向に平
行移動させる光軸方向移動支持部5と、傾き角及び光軸
方向の移動を制御するアライメント制御装置6と、干渉
縞を検出する干渉縞検出手段7と、干渉縞検出手段7の
出力をデジタル信号に変換するA/D変換器8と、干渉
縞のデータに基づいて被検面の形状を演算する演算装置
9とを有する干渉測定装置において、被検光学素子2と
して、比較的面精度のよい被検面を用い、干渉計の光束
の集光点と、被検面の曲率中心が一致して被検面の干渉
縞かはとんと観察されないように光軸に対してアライメ
ントを調整した後、アライメント制御装置6により被検
光学素子2を面頂位置が変化しないようにして微少量だ
けティルトさせることにより平行直線状の干渉縞を発生
させる。
FIG. 1 conceptually shows the interferometric measurement device of the present invention, which generates convergent light or parallel light, and separates the reflected light from the optical element 2 to be measured placed at a predetermined position and the reflected light from the reference surface. an interferometer 1 that forms interference fringes due to the interference of
A tilt angle adjustment unit 4 that integrally tilts the holding unit and the optical element to be tested with respect to the optical axis of the interferometer 1, an optical axis direction movement support unit 5 that moves parallel to the optical axis direction, and tilt angle and optical axis An alignment control device 6 that controls movement in the direction, an interference fringe detection means 7 that detects interference fringes, an A/D converter 8 that converts the output of the interference fringe detection means 7 into a digital signal, and an A/D converter 8 that converts the output of the interference fringe detection means 7 into a digital signal. In an interferometric measurement apparatus having an arithmetic unit 9 that calculates the shape of the surface to be measured based on the measured surface, a surface to be measured with relatively good surface accuracy is used as the optical element 2 to be measured, and a convergence point of the light beam of the interferometer, After adjusting the alignment with respect to the optical axis so that the centers of curvature of the test surface coincide and interference fringes on the test surface are not clearly observed, the alignment control device 6 changes the surface top position of the test optical element 2. Parallel and linear interference fringes are generated by tilting only a very small amount without causing any interference.

本来干渉計1自体及び干渉縞検出手段7の光学系にディ
ストーションがない場合には第2図(a)に示すように
干渉縞は平行な等間隔の直線となるか、デイスト−7ヨ
ンがあるため、第2図(b)に示すようなひずんだ干渉
縞となる。この干渉縞を干渉縞検出手段7により検出し
、A/D変換器8を通して演算装置9にとり込む。一方
被検光学素子の傾き量からデイスト−ジョンがない場合
の被検面の位相を求め、実際に測定された被検面の位相
との差から、この干渉計の内部光学系のデイスト−ジョ
ン量を演算し、この演算結果をもとに被検面の測定ディ
ストーションを補正するものである。
Originally, if there is no distortion in the optical system of the interferometer 1 itself and the interference fringe detection means 7, the interference fringes will be parallel, equally spaced straight lines, as shown in FIG. 2(a), or there will be distortions. This results in distorted interference fringes as shown in FIG. 2(b). These interference fringes are detected by the interference fringe detection means 7 and taken into the arithmetic unit 9 through the A/D converter 8. On the other hand, the phase of the test surface in the absence of distortion is determined from the amount of tilt of the test optical element, and from the difference between the phase of the test surface and the actually measured phase, the distortion of the internal optical system of this interferometer is determined. The measured distortion of the surface to be inspected is corrected based on the result of the calculation.

被検面をティルトさせた時に測定される被検面の位相か
ら、干渉計内部のデイスト−ジョンを求めて測定データ
の補正量を計算する手法は、被検光学素子の被検面をX
、  Y、  Z (Z:光軸)座標で表わすとき、そ
のX、 Y座標は、干渉縞検出手段の観測面上のx、 
 y座標と直線的に対応する。
The method of determining the distortion inside the interferometer from the phase of the test surface measured when the test surface is tilted and calculating the amount of correction for the measurement data is based on the phase of the test surface measured when the test surface is tilted.
, Y, Z (Z: optical axis) coordinates, the X, Y coordinates are x, Y, on the observation plane of the interference fringe detection means.
Corresponds linearly with the y-coordinate.

被検面上の干渉縞の位相をΦ(X、 Y)とし、干渉縞
検出手段の像面上の対応する座標を(x、 y)、像面
上の位相をΦ’(x、  y)とする。デイスト−ジョ
ンは、光軸に対して軸対称な現象であるので、被検面の
X軸上の点は像面のX軸に写像される。
Let the phase of the interference fringe on the surface to be measured be Φ(X, Y), the corresponding coordinates on the image plane of the interference fringe detection means be (x, y), and the phase on the image plane be Φ'(x, y). shall be. Since distortion is an axially symmetrical phenomenon with respect to the optical axis, a point on the X-axis of the test surface is mapped onto the X-axis of the image surface.

簡単のために、X(またはX)軸上のみで考えると、被
検面がY軸まわりに微少量だけ回転したとき、像面上の
X軸上の位相はデイスト−ジョンの影響を受けて第3図
に示すようになる。即ち、デイスト−ジョンがOである
と仮定したときの位相LOは Lo:Φ=αX   (α:被検面の傾き)となるのに
対し、デイスト−ジョンがある場合の実際の位相りは L Φ=α (x−D(x)) となる。
For the sake of simplicity, if we consider only the X (or The result is as shown in FIG. In other words, when the distortion is assumed to be O, the phase LO is Lo:Φ=αX (α: inclination of the surface to be tested), whereas the actual phase shift when there is a distortion is L Φ=α (x-D(x)).

即ち、本来のある位相値Φがあるべき位置からのずれD
 (x)がデイスト−ジョンの量となる。このD(x)
を測定値から求める。ここでαは、アライメント制御装
置の出力から演算して求めることができる。
In other words, the deviation D from the position where the original phase value Φ should be
(x) is the amount of distortion. This D(x)
is determined from the measured values. Here, α can be calculated and determined from the output of the alignment control device.

次に、被検面の形状測定で測定された像面上の位相に対
し−D(γ)半径方向に補正を行う。ここにrは光軸か
ら補正する点までの距離である。デイスト−ジョン量は
像面上での補正する点から光軸までの距離γの関数D(
γ)であり、物体面上の任意の位置(X、 Y)に対す
る像面上の位置(x。
Next, the phase on the image plane measured in the shape measurement of the surface to be inspected is corrected in the -D(γ) radial direction. Here, r is the distance from the optical axis to the point to be corrected. The amount of distortion is a function D(
γ), and the position (x) on the image plane for any position (X, Y) on the object plane.

y)に対しては次に示す関係が成立する(第4図参照)
For y), the following relationship holds true (see Figure 4)
.

X=βX+D (7) cosθ y=βY+D (γ) cosθ 即ち、 X=(1/β) (x−D (y) cosθ)Y=(
1/β) (y−D (7) sinθ)−(1)ただ
しβ・像倍率 γ:(x2+ y2) l/2 θ tan−’(y / x ) 正確性をより一層増すためには、被検面をY軸まわりの
みでな(、光軸と直交する他の複数の軸まわりにティル
トさせきめ細かい補正データをとる手段もある。
X=βX+D (7) cosθ y=βY+D (γ) cosθ That is, X=(1/β) (x−D (y) cosθ)Y=(
1/β) (y-D (7) sin θ)-(1) However, β・image magnification γ: (x2+y2) l/2 θ tan-'(y/x) To further increase accuracy, There is also a means to obtain detailed correction data by tilting the surface to be inspected not only around the Y axis (but also around a plurality of other axes orthogonal to the optical axis).

[実施例コ 以下に、本発明による干渉測定装置の具体的な実施例に
ついて説明する。
[Embodiments] Specific embodiments of the interference measurement apparatus according to the present invention will be described below.

第5図は本発明干渉測定装置の第1実施例の構成を示す
説明図である。レーザー光等のコヒーレントな光源11
からの光束は、ビームエキスパンダ12にて所望の径に
まで拡幅されてビームスプリッタ13に入射し、集光レ
ンズ系14を通過して参照面15に直角に入射し、光線
の一部は参照面で反射され、再びビームスプリッタ13
に戻って反射され干渉縞検出手段であるスクリーン19
に到達する。
FIG. 5 is an explanatory diagram showing the configuration of the first embodiment of the interference measuring device of the present invention. Coherent light source 11 such as laser light
The beam from the beam is expanded to a desired diameter by the beam expander 12, enters the beam splitter 13, passes through the condenser lens system 14, and enters the reference surface 15 at right angles. reflected by the beam splitter 13
is reflected back to the screen 19 which is an interference fringe detection means.
reach.

一方、参照面15を透過した光、線は、被検面の曲率中
心が、参照面の曲率中心と一致するようにアライメント
調整された、被検光学素子16の被検面で反射され、再
び参照面15、集光レンズ14を経てビームスプリッタ
13で反射され、前の光線と干渉するため、スクリーン
19上で干渉縞が観察されるようになる。この干渉縞を
干渉縞検出手段としての撮像素子20により電気信号に
変換し、A/D変換器21によりデジタル信号に変換し
て演算装置に取込む。
On the other hand, the light or line transmitted through the reference surface 15 is reflected by the test surface of the test optical element 16 whose alignment has been adjusted so that the center of curvature of the test surface coincides with the center of curvature of the reference surface, and is reflected again. The light passes through the reference surface 15 and the condensing lens 14 and is reflected by the beam splitter 13 and interferes with the previous light beam, so that interference fringes are observed on the screen 19. The interference fringes are converted into an electrical signal by an image sensor 20 serving as an interference fringe detection means, and converted into a digital signal by an A/D converter 21 and input into an arithmetic unit.

次に、ピエゾ素子をアクチュエータとして構成した傾き
角及び光軸方向移動調整部18を、アライメント制御装
置23により被検光学素子16の被検面の面頂位置から
変化しないよう制御しながら、保持部17を微少量ティ
ルトさせる。このティルトは、演算装置22からアライ
メント制御装置23に指令を出して行うこともできる。
Next, while controlling the tilt angle and optical axis direction movement adjusting section 18 configured with a piezo element as an actuator so as not to change from the top position of the surface to be measured of the optical element 16 to be tested by the alignment control device 23, the holding section 17 is tilted slightly. This tilt can also be performed by issuing a command from the calculation device 22 to the alignment control device 23.

被検面をティルトさせることによりスクリーン19上に
は平行な直線状の干渉縞が現われるようになる。この干
渉縞を撮像素子2Dで取込みA/D変換器21でデジタ
ル信号に変換した後、演算装置22に入力し、被検光学
素子の面ひずみを演算する。
By tilting the surface to be inspected, parallel linear interference fringes appear on the screen 19. These interference fringes are taken in by the image pickup device 2D, converted into digital signals by the A/D converter 21, and then inputted to the calculation device 22 to calculate the surface distortion of the optical element to be tested.

この測定値に対して演算プログラムに組込んだ各X、Y
の位置に見合った補正量を(1)式にしたがって差引い
て被検面の真の形状データを得る。
Each X, Y incorporated into the calculation program for this measured value
A correction amount commensurate with the position is subtracted according to equation (1) to obtain true shape data of the surface to be inspected.

本実施例では、特に集光レンズ系14の持つデイスト−
ジョンと、撮像装置20の持つディストーションとを合
わせて補正することができる。
In this embodiment, in particular, the condensing lens system 14 has a
It is possible to correct both the distortion and the distortion of the imaging device 20.

第5図に示した第1実施例の干渉測定装置の干渉計はフ
ィゾー型干渉計とするが、本発明はこの型の干渉計に限
定されるものではない。
Although the interferometer of the interference measurement apparatus of the first embodiment shown in FIG. 5 is a Fizeau type interferometer, the present invention is not limited to this type of interferometer.

第6図は本発明干渉測定装置の第2実施例を示す。本例
実施例でも第1実施例につき説明した所と同様のフィゾ
ー型干渉計を用いて被検光学素子16の透過波面の収差
を測定する干渉測定装置を構成する。
FIG. 6 shows a second embodiment of the interference measuring device of the present invention. In this embodiment as well, an interference measuring device for measuring the aberration of the transmitted wavefront of the optical element 16 to be tested is constructed using a Fizeau interferometer similar to that described in the first embodiment.

本例では、被検光学素子16の透過波面を測定するため
に、干渉計の集光レンズ系24の焦光点に被検光学素子
16の焦点位置が一致するように配置され、被検光学素
子16を透過した光束を反射し、もとの方向に戻す面精
度のよい平面反射鏡25を傾き角及び光軸方向移動調整
部18に設けるようにしている。
In this example, in order to measure the transmitted wavefront of the optical element 16 to be tested, the optical element 16 is arranged so that the focal position of the optical element 16 coincides with the focal point of the condensing lens system 24 of the interferometer. A plane reflecting mirror 25 with good surface precision is provided in the tilt angle and optical axis direction movement adjustment section 18 to reflect the light beam transmitted through the element 16 and return it to the original direction.

本実施例においては、被検光学素子16を傾けるかわり
に平面反射鏡18を傾けることによって平行直線状の干
渉縞を得、この干渉縞データから、干渉計の内部収差を
演算し、測定値を補正することができる。
In this example, parallel linear interference fringes are obtained by tilting the plane reflecting mirror 18 instead of tilting the optical element 16 to be tested, and from this interference fringe data, the internal aberration of the interferometer is calculated, and the measured value is calculated. Can be corrected.

本実施例の干渉測定装置によれば、平面反射鏡25の面
ひずみを含めた干渉計1のデイスト−ジョンが補正され
た被検光学素子16の透過波面の収差を測定することが
できる。
According to the interferometric measurement apparatus of this embodiment, it is possible to measure the aberration of the transmitted wavefront of the optical element 16 to be measured in which the distortion of the interferometer 1 including the surface distortion of the plane reflecting mirror 25 has been corrected.

第7図は本発明干渉測定装置の第3実施例を示す。本例
では第1実施例の干渉計1の代わりにトワイマン・グリ
ーン型干渉計を用いて干渉測定装置を構成する。このト
ワイマン・グリーン型干渉計では、参照面15の代わり
に、参照ミラー26を配置し、参照ミラー26による反
射光と、被検光学素子16の被検面による反射光とを干
渉させて、スクリーン19上に干渉縞を形成する。この
型の干渉計でも、第1実施例につき説明した所と同様に
、集光し/ズ系24の焦点と、被検光学素子16の被検
面の曲率中心とか一致するようアライメント調整した後
、被検光学素子16をティルトさせて生しる干渉縞から
、被検面の波面収差を測定し、干渉計に内在するデイス
ト−ジョン量を演算によって求めることができる。この
演算値を、被検光学素子の測定時に(1)式によって補
正する。
FIG. 7 shows a third embodiment of the interference measuring device of the present invention. In this example, a Twyman-Green type interferometer is used in place of the interferometer 1 of the first example to construct an interference measurement apparatus. In this Twyman-Green type interferometer, a reference mirror 26 is arranged in place of the reference surface 15, and the light reflected by the reference mirror 26 and the light reflected by the test surface of the test optical element 16 are made to interfere with each other. Interference fringes are formed on 19. In this type of interferometer, the alignment is adjusted so that the focal point of the condenser/zoom system 24 coincides with the center of curvature of the surface to be measured of the optical element 16, as described in the first embodiment. The wavefront aberration of the surface to be measured is measured from the interference fringes produced by tilting the optical element 16 to be tested, and the amount of distortion inherent in the interferometer can be determined by calculation. This calculated value is corrected using equation (1) when measuring the optical element to be tested.

本実施例の干渉測定装置によれば、参照ミラー26の面
ひずみによる誤差をも含めて補正することができる。ま
た、傾き角及び光軸方向移動調整部を参照ミラー26に
設けて被検光学素子16を傾ける代わりに、参照ミラー
26を傾けることによりデイスト−ジョンを測定するこ
とも可能である。この場合には可動部を干渉計本体に内
蔵することかでき、従って、被検光学素子の保持部が簡
単な構成になるというメリットがある。
According to the interference measurement device of this embodiment, it is possible to correct errors including errors caused by surface distortion of the reference mirror 26. Further, instead of providing the reference mirror 26 with a tilt angle and optical axis direction movement adjusting section to tilt the optical element 16 to be tested, it is also possible to measure distortion by tilting the reference mirror 26. In this case, the movable part can be built into the interferometer main body, which has the advantage that the holding part for the optical element to be tested can have a simple structure.

[発明の効果] 上述した本発明干渉測定装置によれば、干渉計の集光レ
ンズ系や干渉縞検出手段、その他の内部光学素子の持つ
デイスト−ジョンを測定し、その測定値によって測定結
果を補正することができるため、被検面の面精度を極め
て高精度で測定することができる。
[Effects of the Invention] According to the above-mentioned interference measuring device of the present invention, the distortion of the condensing lens system of the interferometer, the interference fringe detection means, and other internal optical elements can be measured, and the measurement results can be obtained based on the measured values. Since the correction can be made, the surface accuracy of the surface to be inspected can be measured with extremely high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明干渉測定装置の基本構成を概念的に示す
説明図、 第2図(a)は歪みのない場合における干渉縞を示す説
明図、 第2図(b)は歪みのある場合における干渉縞を示す説
明図、 第3図は被検面上の干渉縞の位相と像面上の位相との関
係を示す説明図、 第4図は歪み量に対する物体面上の任意の位置と像面上
の位置との関係を示す説明図、第5図は本発明干渉測定
装置の第1実施例の構成を示す説明図、 第6図は本発明干渉測定装置の第2実施例の構成を示す
説明図、 第7図は本発明干渉測定装置の第3実施例の構成を示す
説明図である。 干渉計 被検光学素子 保持部 傾き角調整部 光軸方向移動支持部 アライメント制御装置 干渉縞検出装置 A/D変換器 演算装置 光源 ビームエキスパンダ ビームスプリッタ 集光レンズ系 参照面 被検光学素子 保持部 傾き角及び光軸方向移動調整部 スクリーン 撮像素子 A/D変換器 演算装置 アライメント制御手段 集光レンズ系 平面反射鏡 参照ミラー
Fig. 1 is an explanatory diagram conceptually showing the basic configuration of the interferometric measurement device of the present invention, Fig. 2 (a) is an explanatory diagram showing interference fringes in the case without distortion, and Fig. 2 (b) is an explanatory diagram in the case with distortion. Fig. 3 is an explanatory diagram showing the relationship between the phase of interference fringes on the test surface and the phase on the image plane, and Fig. 4 shows the relationship between arbitrary positions on the object plane and the amount of distortion. An explanatory diagram showing the relationship with the position on the image plane, FIG. 5 is an explanatory diagram showing the configuration of the first embodiment of the interference measuring device of the present invention, and FIG. 6 is a diagram showing the configuration of the second embodiment of the interferometric measuring device of the present invention. FIG. 7 is an explanatory diagram showing the configuration of a third embodiment of the interference measuring device of the present invention. Interferometer Test optical element holder Tilt angle adjustment unit Optical axis direction movement support unit Alignment control device Interference fringe detection device A/D converter Arithmetic device Light source beam expander Beam splitter Converging lens system Reference plane Test optical element holder Tilt angle and optical axis direction movement adjustment unit Screen image pickup device A/D converter Arithmetic unit Alignment control means Condensing lens system Plane reflector Reference mirror

Claims (2)

【特許請求の範囲】[Claims] (1)光源から射出された光束を2分して、一方の分割
光束を参照面に、他方の分割光束を被検面にそれぞれ入
射させ、各々の反射光を干渉させて得られた干渉縞から
被検面の形状を測定する干渉計と、被検光学素子を保持
するための保持部と、被検光学素子のティルトを調整す
るための傾き角調整部と、光軸方向に移動可能に保持す
る支持部を有する測定台と、このティルトおよび光軸方
向の移動を制御するためのアライメント制御装置と、干
渉縞を電気信号に変換する干渉縞検出手段と、電気信号
をデジタル信号に変換するA/D変換器と、得られたデ
ジタル信号を入力し演算処理するための演算装置とで構
成される干渉測定装置において、干渉計自体の光学系の
ディストーションを測定し、この測定データにより被検
光学素子の測定データを補正することを特徴とする干渉
測定装置。
(1) Interference fringes obtained by dividing the light beam emitted from the light source into two, making one divided light beam incident on the reference surface and the other divided light beam on the test surface, and making each reflected light interfere. An interferometer that measures the shape of the surface to be measured, a holding part to hold the optical element to be measured, and a tilt angle adjustment part to adjust the tilt of the optical element to be measured, and is movable in the optical axis direction. A measurement table having a supporting part for holding, an alignment control device for controlling the tilt and movement in the optical axis direction, an interference fringe detection means for converting interference fringes into electrical signals, and an interference fringe detection means for converting the electrical signals into digital signals. In an interference measurement device consisting of an A/D converter and an arithmetic unit for inputting and processing the obtained digital signal, the distortion of the optical system of the interferometer itself is measured, and the measurement data is used to measure the distortion of the optical system of the interferometer itself. An interference measurement device characterized by correcting measurement data of an optical element.
(2)上記測定データは、基準となる曲面の曲率中心を
干渉測定装置の光軸に一致させた状態から被検光学素子
または参照面を光軸に対してティルトさせた状態で得ら
れる干渉縞データに基づいた測定データとすることを特
徴とする請求項1に記載の干渉測定装置。
(2) The above measurement data is an interference pattern obtained by tilting the optical element or reference surface to the optical axis from a state in which the center of curvature of the reference curved surface coincides with the optical axis of the interference measurement device. The interference measurement device according to claim 1, wherein the measurement data is based on data.
JP15816490A 1990-06-15 1990-06-15 Interference measuring instrument Pending JPH0448201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15816490A JPH0448201A (en) 1990-06-15 1990-06-15 Interference measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15816490A JPH0448201A (en) 1990-06-15 1990-06-15 Interference measuring instrument

Publications (1)

Publication Number Publication Date
JPH0448201A true JPH0448201A (en) 1992-02-18

Family

ID=15665671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15816490A Pending JPH0448201A (en) 1990-06-15 1990-06-15 Interference measuring instrument

Country Status (1)

Country Link
JP (1) JPH0448201A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5768150A (en) * 1993-10-14 1998-06-16 Asahi Kogaku Kogyo Kabushiki Kaisha Device and method for measuring a characteristic of an optical element
US6008904A (en) * 1996-09-20 1999-12-28 Nikon Corporation Apparatus and methods for detecting and correcting distortion of interference fringes
JP2007298528A (en) * 2002-01-17 2007-11-15 Agilent Technol Inc System and method for heterodyne interferometer high velocity type non-linearity compensation
JP2007304114A (en) * 2001-11-13 2007-11-22 Agilent Technol Inc System and method for nonlinearity compensation of interferometer
JP2010145184A (en) * 2008-12-17 2010-07-01 Canon Inc Measuring method and measuring device
JP2010145185A (en) * 2008-12-17 2010-07-01 Canon Inc Measuring method and measuring device
US8314937B2 (en) 2009-01-14 2012-11-20 Canon Kabushiki Kaisha Measurement method and measurement apparatus that measure a surface figure of an aspheric surface based on an interference pattern
US8345263B2 (en) 2008-12-17 2013-01-01 Canon Kabushiki Kaisha Measurement method and measurement apparatus that measure a surface figure of an aspheric surface based on an interference pattern

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5768150A (en) * 1993-10-14 1998-06-16 Asahi Kogaku Kogyo Kabushiki Kaisha Device and method for measuring a characteristic of an optical element
US6008904A (en) * 1996-09-20 1999-12-28 Nikon Corporation Apparatus and methods for detecting and correcting distortion of interference fringes
JP2007304114A (en) * 2001-11-13 2007-11-22 Agilent Technol Inc System and method for nonlinearity compensation of interferometer
JP2007298528A (en) * 2002-01-17 2007-11-15 Agilent Technol Inc System and method for heterodyne interferometer high velocity type non-linearity compensation
JP2010145184A (en) * 2008-12-17 2010-07-01 Canon Inc Measuring method and measuring device
JP2010145185A (en) * 2008-12-17 2010-07-01 Canon Inc Measuring method and measuring device
US8345263B2 (en) 2008-12-17 2013-01-01 Canon Kabushiki Kaisha Measurement method and measurement apparatus that measure a surface figure of an aspheric surface based on an interference pattern
US8314937B2 (en) 2009-01-14 2012-11-20 Canon Kabushiki Kaisha Measurement method and measurement apparatus that measure a surface figure of an aspheric surface based on an interference pattern

Similar Documents

Publication Publication Date Title
US4732483A (en) Interferometric surface profiler
US8928891B2 (en) Optical distance sensor with tilt error correction
JP5486379B2 (en) Surface shape measuring device
WO1998016799A1 (en) Interferometer with catadioptric imaging system having expanded range of numerical aperture
CN109029288B (en) Reflective large-gradient aspheric surface and free-form surface detection device and method based on DMD wave-front sensing technology
JPH0666537A (en) System error measuring method and shape measuring device using it
JPH02228505A (en) Interferometer
JP2003057016A (en) High speed measuring method for shape of large caliber surface and measuring instrument therefor
JPS61178635A (en) Interference apparatus for measuring wave front aberration
JPH0448201A (en) Interference measuring instrument
JP2007010609A (en) Method for manufacturing aspheric lens, eccentricity measuring method of aspheric lens, eccentricity measuring device, and aspheric lens manufactured by this method
CN114396887A (en) Dynamic interferometer and measuring method
JP2951366B2 (en) Interferometer and alignment detection method thereof
US6721056B1 (en) Surface shape measuring apparatus and method
JP2006133059A (en) Device for measuring interference
JPS62127601A (en) Interference device
JPS63210605A (en) Apparatus for measuring configuration of optical surface
JP2003004424A (en) Surface geometry measuring method and apparatus
JP2753545B2 (en) Shape measurement system
JP2009186254A (en) Beam angle detector
WO2003083408A1 (en) Fizeau lens, interference measuring device, interference measuring method, method of manufacturing projective optical system, and projective exposure device
JPS6318208A (en) Apparatus for measuring surface shape
CN117663978A (en) Self-adaptive interference device and detection method thereof
JPS6353481B2 (en)
JPH02132310A (en) Correcting method for shearing interferometer